TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Deutsche Physikalische Gesellschaft (DPG)-Frühjahrtagung 2018 CY - Berlin, Germany DA - 11.03.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, A. A1 - Ahmadi, V. T1 - Upper Critical Solution Temperature (UCST)-type Thermoresponsive Polymers from Hydrogen-Bonding Monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications,but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or Ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bordeaux Polymer Conference BPC 2018 CY - Bodeaux, France DA - 28.05.2018 KW - Acrylamide KW - Thermoresponsive polymer KW - UCST-type polymer KW - H-bonds KW - Diaminopyridine PY - 2018 AN - OPUS4-45155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions with synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Makromolekulares Kolloquium Freiburg 2018 CY - Freiburg in Breisgau, Germany DA - 21.02.2018 KW - Thermoresponsive polymers KW - Cytoskeleton mimic PY - 2018 AN - OPUS4-44296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstitute some of life’s functions with or within synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Chemiedozententagung 2018 CY - Jena, Germany DA - 05.03.2018 KW - UCST-type polymers KW - Bioinspiration KW - Thermoresponsive polymers PY - 2018 AN - OPUS4-44442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Controlled self-assembly of Janus dendrimers via microfluidics N2 - Vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) -5 as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of end groups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over self assembly/mixing and thus over size, morphology and size distribution of the vesicles. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous production of soft nanoparticles. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - Invited talk Leibniz Institute of Polymer Research Dresden (IPF) CY - Dresden, Germany DA - 08.03.2018 KW - Vesicles KW - Janus dendrimers KW - Microfluidics PY - 2018 AN - OPUS4-44441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited talk (Dr. Jean-Francois Lutz) Institut Charles Sadron CY - Strasbourg, France DA - 26.01.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Taabache, Soraya A1 - Bertin, Annabelle T1 - Dendritic Amphiphiles as Macromolecular Mimetics of Cellular Constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions within synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) - Dpt. des Matériaux Organiques (DMO), invited talk by Prof. Laurent Douce CY - Strasbourg, France DA - 09.02.2018 KW - Dendritic amphiphile KW - Antibacterial properties KW - Vesicles KW - Microfluidic PY - 2018 AN - OPUS4-44146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from monomers with hydrogen-bonding interactions N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited Talk (Prof. Christine Papadakis) Technische Universität München - Soft Matter Physics CY - Munich, Germany DA - 03.07.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-45423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -