TY - JOUR A1 - Geißler, Daniel A1 - Würth, Christian A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute T1 - Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios N2 - The excitation wavelength (lexc) dependence of the photoluminescence (PL) quantum yield (FPL) and decay behavior (tPL) of a series of CdSe/CdS quantum dot/Quantum rods (QDQRs), consisting of the same spherical CdSe core and rod-shaped CdS shells, with aspect ratios ranging from 2 to 20 was characterized. lexc between 400–565 nm were chosen to cover the first excitonic absorption band of the CdSe core material, the onset of absorption of the CDs shell, and the region of predominant shell absorption. A strong lexc dependence of relative and absolutely measured FPL and tPL was found particularly for the longer QDQRs with higher aspect ratios. This is attributed to combined contributions from a length-dependent shell-to-core exciton localization efficiency, an increasing number of defect states within the shell for the longest QDQRs, and probably also the presence of absorbing, yet non-emitting shell material. Although the FPL values of the QDQRs decrease at shorter wavelength, the extremely high extinction coefficients introduced by the shell outweigh this effect, leading to significantly higher brightness values at wavelengths below the absorption onset of the CdS Shell compared with direct excitation of the CdSe cores. Moreover, our results present also an interesting example for the comparability of absolutely measured FPL using an integrating sphere setup and FPL values measured relative to common FPL standards, and underline the Need for a correction for particle scattering for QDQRs with high aspect ratios. KW - Quantum dot KW - Quantum rod KW - Quantum yield KW - Integrating sphere KW - Decay time PY - 2017 DO - https://doi.org/10.1039/C7CP02142A SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 19 SP - 12509 EP - 12516 PB - Royal Society of Chemistry (RSC) AN - OPUS4-40814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, M. A1 - Würth, Christian A1 - Kraft, Marco A1 - Hyppänen, I. A1 - Soukka, T. A1 - Resch-Genger, Ute T1 - Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles – measurements and simulations N2 - Photophysical studies of nonlinear lanthanide-doped photon upconverting nanoparticles (UCNPs) increasingly used in biophotonics and photovoltaics require absolute measurements of the excitation power density (P)-dependent upconversion luminescence (UCL) and luminescence quantum yields (ΦUC) for quantifying the material performance, UCL deactivation pathways, and possible enhancement factors. We present here the P-dependence of the UCL spectra, ΦUC, and slope factors of the different emission bands of representative 25 nm-sized oleate-capped β-NaYF4:17% Yb3+, 3% Er3+ UCNPs dispersed in toluene and as powder as well as ΦUC of 3 μm-sized upconversion particles (UCμP), all measured with a newly designed integrating sphere setup, enabling controlled variation of P over four orders of magnitude. This includes quantifying the influence of the beam shape on the measured ΦUC and comparison of experimental ΦUC with simulations utilizing the balancing power density model of the Andersson-Engels group and the simulated ΦUC of UCμP from the Berry group, underpinned by closely matching decay kinetics of our UC material. We obtained a maximum ΦUC of 10.5% for UCμP and a ΦUC of 0.6% and 2.1% for solid and dispersed UCNPs, respectively. Our results suggest an overestimation of the contribution of the purple and an underestimation of that of the red emission of β-NaYF4:Yb3+,Er3+: microparticles by the simulations of the Berry group. Moreover, our measurements can be used as a guideline to the absolute determination of UCL and ΦUC KW - Upconversion KW - Photophysics KW - Nanoparticles PY - 2017 DO - https://doi.org/10.1039/c7nr02449e VL - 9 IS - 28 SP - 10051 EP - 10058 PB - The Royal Society of Chemistry AN - OPUS4-41550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Guhrenz, C. ED - Sayevich, V. ED - Weigert, Florian ED - Hollinger, E. ED - Reichhelm, A. ED - Gaponik, N. ED - Eychmüller, A. T1 - Transfer of Inorganic-Capped Nanocrystals into Aqueous Media N2 - We report on a novel and simple approach to surface ligand design of CdSe-based nanocrystals (NCs) with biocompatible, heterobifunctional polyethylene glycol (PEG) molecules. This method provides high transfer yields of the NCs into aqueous media with preservation of the narrow and symmetric emission bands of the initial organic-capped NCs regardless of their interior crystal structure and surface chemistry. The PEG-functionalized NCs show small sizes, high photoluminescence quantum yields of up to 75%, as well as impressive optical and colloidal stability. This universal approach is applied to different fluorescent nanomaterials (CdSe/CdS, CdSe/CdSCdxZn1-xS, and CdSe/CdS/ZnS), extending the great potential of organic-capped NCs for biological applications. KW - Fluorescence KW - Ligand exchange KW - Quantum dot KW - Surface chemistry KW - Semiconductor nanocrystal KW - Quantum yield KW - Lifetime KW - Dispersibillity KW - Colloid PY - 2017 DO - https://doi.org/10.1021/acs.jpclett.7b02319 VL - 8 IS - 22 SP - 5573 EP - 5578 PB - The Journal of Physical Chemistry Letters AN - OPUS4-43377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 DO - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Martynenko, Irina ED - Baimuratov, A. S. ED - Osipova, V. A. ED - Kuznetsova, V. A. ED - Purcell-Milton, F. ED - Rukhlenko, I. D. ED - Fedorov, A. V. ED - Gun'ko, Y. K. ED - Baranov, A. V. T1 - Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism N2 - Quantum dot (QD) based nanomaterials are very promising materials for the fabrication of optoelectronic devices like solar cells, light emitting diodes (LEDs), and photodetectors as well as as reporters for chemo- and biosensing and bioimaging. Many of These applications involve the monitoring of changes in photoluminescence intensity and energy transfer processes which can strongly depend on excitation wavelength or energy. In this work, we analyzed the excitation energy dependence (EED) of the photoluminescence quantum yields (PL QYs) and decay kinetics and the circular dichroism (CD) spectra of CdSe/CdS core/shell QDs with different thicknesses of the surface passivation shell. Our results demonstrate a strong correlation between the spectral position of local maxima observed in the EED of PL QY and the zero-crossing points of the CD profiles. Theoretical analysis of the energy band structure of the QDs with effective mass approximation suggests that these structures could correspond to exciton energy levels. This underlines the potential of CD spectroscopy for the study of electronic energy structure of chiroptically active nanocrystals which reveal quantum confinement effects. KW - Fluorescence KW - Semiconductor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Lifetime KW - Nanocrystal KW - Cysteine KW - Thiol KW - Ligand KW - Quantum dot KW - CdSe KW - Exciton KW - Circular dichroism KW - Theory KW - Excitation spectra KW - Excitation energy dependence PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.7b04478 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 2 SP - 465 EP - 471 PB - ACS Publications AN - OPUS4-44034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin T1 - Quantitation of luminescent properties of Yb and Ho co-doped NaYF4 colloidal nanoparticles - novel active-core-active-shell materials and novel characterization methods N2 - At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs) is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, we present here a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions, where the same dopant concentrations were distributed in different particle architectures following the scheme: YbHo core and YbHo@..., …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has critical impact on their luminescent characteristics. Interestingly, although the increased amount of Yb3+ ions boosts UCNP performance by increasing the absorption, the Yb3+ ions can also dissipate the energy stored in the material through energy migration to surface, thereby reducing the overall energy transfer efficiency to the activator ions. T2 - COST Workshop CY - Aveiro, Portugal DA - 30.06.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Ho(III) KW - Yb(III) PY - 2017 AN - OPUS4-41161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pohl, O. A1 - Kraft, Marco A1 - Kovac, J. A1 - Belec, B. A1 - Ponikvar-Svet, M. A1 - Würth, Christian A1 - Lisjak, D. A1 - Resch-Genger, Ute T1 - Optically detected degradation of NaYF4:Yb,Tm-based upconversion nanoparticles in phosphate buffered saline solution N2 - In a proof-of-concept study, we assessed different analytical and spectroscopic parameters for stability screening of differently sized β-NaYF4:20 mol % Yb3+, 2 mol % Tm3+ upconversion nanoparticles (UCNPs) exemplarily in the bioanalytically relevant buffer phosphate buffered saline (PBS; pH 7.4) at 37 and 50 °C. This included the potentiometric determination of the amount of released fluoride ions, surface analysis with X-ray photoelectron spectroscopy (XPS), and steady-state and time-resolved fluorescence measurements. Based on these results, the luminescence lifetime of the 800 nm upconversion emission was identified as an Optimum parameter for stability screening of UCNPs and changes in particle surface chemistry. KW - Upconverion KW - Nanoparticle KW - Dissolution PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.6b03907 SN - 0743-7463 VL - 33 IS - 2 SP - 553 EP - 560 PB - ACS AN - OPUS4-39212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorris, H.H. A1 - Resch-Genger, Ute T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part II: Bioanalytical applications N2 - In Part II of this Review series on lanthanide-doped photon-upconversion nanoparticles (UCNPs), we present and critically discuss the Performance and suitability of UCNPs as background-free luminescent Reporters in bioimaging and bioanalytical applications. The preparation of a biocompatible nanoparticle surface is an integral step for all life - science-related applications. UCNPs have found their way into a large number of diagnostic platforms, homogeneous and heterogeneous assay formats, and sensor applications. Many bioanalytical detection schemes involve Förster resonance energy transfert (FRET), which is still debated for UCNPs and Needs to be much improved. The Need for dedicated and standardized instruments as well as recent studies on the Dissolution and potential toxicity of UCNPs are addressed. Finally we outline future Trends and challenges in the field of upconversion. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Assay KW - Bioconjugation KW - Imaging KW - FRET KW - Sensor PY - 2017 DO - https://doi.org/10.1007/s00216-017-0482-8 SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5875 EP - 5890 PB - Springer AN - OPUS4-41706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 DO - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin T1 - Absolute Fluorescence Measurements > 800 nm - Setup Design, Challenges, and Characterization of Semiconductor and Lanthanide-based Nanocrystals N2 - There is an increasing interest in optical reporters like semiconductor and lanthanide-based nanocrystals with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as for upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation as well as by the lack of quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power densitydependent measurements of emission spectra and quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented and discussed including absolute photoluminescence measurements of upconversion and down conversion emission in different solvents. T2 - MRS 2017 CY - Boston, MA, USA DA - 26.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield KW - Energy transfer KW - Size PY - 2017 AN - OPUS4-43202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Otto, S. ED - Scholz, Norman ED - Behnke, Thomas ED - Heinze, K. T1 - Thermo-Chromium: A Contactless Optical Molecular Thermometer N2 - The unparalleled excited-state potential-energy landscape of the chromium(III)-based dye [1]3+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridin-2-ylpyridin-2,6-diamine) enables a strong dual emission in the near infrared region. The temperature dependence of this dual emission allows the use of [1]3+ as an unprecedented molecular ratiometric thermometer in the 210–373 K temperature range in organic and in aqueous media. Incorporation of [1]3+ in biocompatible nanocarriers, such as 100 nm-sized polystyrene nanoparticles and solutol micelles, provides nanodimensional thermometers operating under physiological conditions. KW - Temperature KW - Sensor KW - Dual emission KW - Fluorescence KW - Cr complex KW - Nano KW - Particle KW - Micelle KW - Probe KW - Environment PY - 2017 DO - https://doi.org/10.1002/chem.201701726 SN - 0947-6539 VL - 23 IS - 50 SP - 12131 EP - 12135 PB - Wiley-VCH AN - OPUS4-42539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wilhelm, Stefan A1 - Grauel, Bettina A1 - Hirsch, Th. A1 - Resch-Genger, Ute T1 - Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents N2 - The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb3+,2% Er3+ UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er3+. In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically KW - Upconverion KW - Quantum Yield KW - Photo physics PY - 2017 UR - http://pubs.rsc.org/en/content/articlepdf/2017/nr/c7nr00092h DO - https://doi.org/10.1039/c7nr00092h SN - 2040-3364 SN - 2040-3372 VL - 9 IS - 12 SP - 4283 EP - 4294 PB - The Royal Society of Chemistry AN - OPUS4-39849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ren, J. A1 - Weber, F. A1 - Choudhury, S. A1 - Weigert, Florian A1 - Ritter, E. A1 - Cao, D. A1 - Bande, A. A1 - Puskar, L. A1 - Schade, U. A1 - Aziz, E. F. A1 - Petit, T. T1 - Effect of surface chemistry on optical, chemical and electronic properties of blue luminescent graphene quantum dots N2 - Due to their unique physical properties, particularly their electronic and luminescent properties, graphene quantum dots (GQDs) are expected to be suitable for a wide range of applications in bioimaging, electro-optical and photonic materials or energy harvesting among others.1 Tuning the surface chemistry provides an efficient approach to modulate the fluorescence and distinct electronic properties of GQDs.2 Nevertheless, the role of surface chemistry on the electronic structure of GQDs remains poorly understood. In this presentation, we will compare systematically the electronic and chemical structures of GQDs functionalized with carboxylic and aminated groups to those of non-functionalized GQDs, combining theoretical and experimental approaches, here various photon-based spectroscopies. First, the electronic structure of GQDs was characterized by soft X-ray absorption (XA) and X-ray emission (XE) spectroscopies, probing unoccupied and occupied electronic states, respectively, at the carbon K edge for the first time. The interpretation of the XA/XE spectra was done based on theoretical calculations. Then, the chemical structure of the GQDs was characterized in situ by ATR-FTIR in water, thereby accounting for the importance of the interface between GQDs and water believed to play a central role in the chemical reactivity and the optical properties. We previously demonstrated that monitoring the OH vibrations of water molecules during exposure to humid air was a powerful method to probe H-bonding environment around carbon nanomaterials.3 For GQDs, clear surface-dependent water adsorption profiles are observed and discussed. Finally, UV/Vis absorption and photoluminescence measurements were done to characterize the optical properties of these GQDs. Our results suggest that the surface chemistry of the GQDs affects significantly their electronic structure and optical properties. These findings will contribute to an improved understanding of the structure–activity relationship of GQDs and other carbon nanomaterials with surface modifications. T2 - MRS Fall Meeting 2017 CY - Boston, USA DA - 26.11.2017 KW - Carbon KW - Nanoparticle KW - Fluorescence KW - NIR KW - IR KW - Surface chemistry KW - Deactivation pathways KW - Lifetime KW - Size KW - Giant carbon dot KW - Quantum yield PY - 2017 AN - OPUS4-43494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Mousavi, M. ED - Thomasson, B. ED - Li, M. ED - Kraft, Marco ED - Würth, Christian ED - Andersson-Engels, S. T1 - Beam-profile-compensated quantum yield measurements of upconverting nanoparticles N2 - The quantum yield is a critically important parameter in the development of lanthanide-based upconverting nanoparticles (UCNPs) for use as novel contrast agents in biological imaging and optical reporters in assays. The present work focuses on the influence of the beam Profile in measuring the quantum yield (f) of nonscattering dispersions of nonlinear upconverting probes, by establishing a relation between f and excitation light power density from a rate equation analysis. A resulting 60% correction in the measured f due to the beam profile utilized for excitation underlines the significance of the beam profile in such measurements, and its impact when comparing results from different Setups and groups across the world. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brithtness KW - Quantification KW - Nanoparticle KW - Absolute fluoreometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method PY - 2017 DO - https://doi.org/10.1039/c7cp03785f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 33 SP - 22016 EP - 22022 PB - Royal Society of Chemistry AN - OPUS4-42583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marko A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. T1 - Spectroscopic properties of upconversion nanoparticles N2 - Lanthanide-doped up-converting nanoparticles (UCNPs) are promising reporters for medical diagnostics and bioimaging. Current limitations present their relative low absorption cross sections and low fluorescence efficiencies, with the latter being affected by particle size, surface chemistry, and microenvironment, particularly water. Here, we present results from systematic studies of the excitation power density dependent upconversion luminescence spectra, intensities/intensity ratios of the individual emission bands, slope factors, and quantum yields of UCNPs of varying size, dopant concentration, and surface chemistry in different microenvironments as well as the up- and downconversion luminescence decay kinetics of the different emission bands. Moreover, first studies of the energy transfer from UCNPs to surface-bound organic dyes acting as fluorescence acceptors are shown. Based upon these measurements, fluorescence deactivation channels are identified and spectroscopic parameters for the screening of material performance are derived. T2 - Projekttreffen COST CY - Straßbourg, France DA - 09.01.2017 KW - Upconverting nanoparticles KW - Size KW - FRET KW - Fluorescence KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics KW - Power density dependence PY - 2017 AN - OPUS4-39076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kraft, Marko A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. T1 - Recent insights in the spectroscopic properties of upconversion nanoparticles N2 - Lanthanide-doped up-converting nanoparticles (UCNPs) are promising reporters for medical diagnostics and bioimaging, which are excited in the near infrared (NIR) by multiphoton absorption processes, and show multiple narrow emission bands in the visible (vis) and NIR, long luminescence lifetimes in the μs range, and excellent photostability. Current limitations present their relative low absorption cross sections and low fluorescence efficiencies, with the latter being affected by particle size, surface chemistry, and microenvironment, particularly water. Here, we present results from systematic studies of the excitation power density dependent upconversion luminescence spectra, intensities/intensity ratios of the individual emission bands, slope factors, and quantum yields of UCNPs of varying size, dopant concentration, and surface chemistry in different microenvironments as well as the up- and downconversion luminescence decay kinetics of the different emission bands. Moreover, first studies of the energy transfer from UCNPs to surface-bound organic dyes acting as fluorescence acceptors are shown. Based upon these measurements, fluorescence deactivation channels are identified and spectroscopic parameters for the screening of material performance are derived. T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Upconverting nanoparticles KW - Size KW - FRET KW - Fluorescence KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics KW - Power density dependence PY - 2017 AN - OPUS4-39075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muhr, V. A1 - Würth, Christian A1 - Kraft, Marco A1 - Buchner, M. A1 - Baeumner, A. J. A1 - Resch-Genger, Ute A1 - Hirsch, T. T1 - Particle-size-dependent Förster resonance energy transfer from upconversion nanoparticles to organic dyes N2 - Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor−acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand-exchange procedure. Timeresolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios, the FRET efficiency decreased by an increasing competition of nonradiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles. KW - Upconversion KW - FRET KW - Organic dyes PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04662 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 9 SP - 4868 EP - 4874 PB - ACS AN - OPUS4-40092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Kraft, Marco A1 - Pauli, Jutta A1 - Muhr, V. A1 - Hirsch, T. T1 - Challenges and examples for quantitative fluorescence measurements > 800 nm with semiconductor and lanthanide-doped nanocrystals N2 - There is an increasing interest in molecular and nanoscale with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) Region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation and quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power density-dependent measurements of emission spectra and photoluminescence quantum yields in the wavelength Region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented including the upconversion and downconversion emission of differently sized and surface functionalized lanthanide-doped nanoparticles and photoluminescence quenching effects are quantified. T2 - SHIFT 2017 CY - Teneriffa, Spain DA - 13.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield PY - 2017 AN - OPUS4-43203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian T1 - Theory of the Photoluminescence Quantum Yield and its Measurement for Different Emitters N2 - Mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters are reliable and quantitative photoluminescence measurements. This is of special relevance for all fluorescence applications in the life and material sciences. In the following, proccedures for the determination of this spectroscopic key parameter are presented including material-specific effects related to certain emitters T2 - COST 2017 CY - Turku, Finland DA - 03.04.2017 KW - Instrument calibration KW - Standard KW - Flourescence KW - Reference material KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Photophysics KW - Quantum yield KW - Dye PY - 2017 AN - OPUS4-43175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Characterization of nanomaterials with VIS/NIR emission - Spectroscopic properties and surface group analysis N2 - Spectroscopic methods for the absolute characterization of the optical properties of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots, upconversion nanocrystals, and dye-doped polymer nanoparticles will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated. T2 - Colloquium der Physikalischen und Theoretischen Chemie CY - Berlin, Germany DA - 21.06.2017 KW - Characterization KW - Nanomaterials PY - 2017 AN - OPUS4-40696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Kraft, Marco A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta T1 - Functional Nanomaterials with VIS/NIR Emission-Spectroscopic Properties And Surface Group Analysis N2 - Optical-spectroscopic methods for the quantitative characterization of the optical properties of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots. T2 - Universität Mainz, AK Professor K. Heinze CY - Mainz, Germany DA - 24.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Surface group analysis KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Scholz, Norman ED - Behnke, Thomas T1 - Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension - a method comparison N2 - Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key Parameter indicating the Formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence Parameters for Signal detection and ompared the results with conductometric and surface Tension measurements. Based upon These results, requirements, Advantages, and pitfalls of each methods are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface Tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant. KW - Fluorescence KW - Methods KW - Critical micelle concentration (CMC) KW - Conductometry KW - Fluorescence probe KW - Dye KW - Nile Red KW - Pitfalls KW - Method evaluation KW - Uncertainty PY - 2017 DO - https://doi.org/10.1007/s10895-018-2209-4 SN - 1053-0509 SN - 1573-4994 VL - 28 IS - 1 SP - 465 EP - 476 AN - OPUS4-43905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -