TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Advanced materials broadening the scope of antibody-based analytical methods N2 - Immunoanalytical Techniques, i.e., antibody-based analytical methods, have been used for decades in clinical diagnostics. What makes them attractive for other fields of application is their short time-to-result and high sensitivity. Microplate-based assays such as ELISA have been adopted early in environmental and food analysis. Yet, to make immunoassays even faster, more sensitive, robust, and, most desirable, portable, advanced materials, sometimes developed for other purposes, can be profitably used to achieve these goals. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or nanoparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the assays to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Specialty electrodes can enable for higher sensitivity in electrochemical detection. All this broadens the scope of application and lowers effort and cost for analysis at the point-of-need. T2 - ChemForum - Kolloquium des Instituts für Strukturchemie CY - Lisbon, Portugal DA - 07.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Bestimmung von anthropogenen Markerkonzentrationen für die SARS-CoV-2 Quantifizierung mittels eines Hochdurchsatzverfahrens (ELISA) N2 - Vortrag zum Kick-off des Projektes. Ziel des Projektes ist es, die Eignung der Bestimmung eines oder mehrerer der genannten anthropogenen Marker im Abwasser zur Volumenkorrektur („Kalibration“) im SARS-CoV-2-Monitoring von Abwässern auf der Basis eines von der BAM zu erhebenden Messdatensatzes zu evaluieren. T2 - Kick-off Meeting zum Projekt MARKERIA (VH1802) CY - Berlin, Germanyy DA - 01.04.2022 KW - Biosensoren KW - Immunoassay KW - SARS-CoV-2 PY - 2022 AN - OPUS4-57109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Wurzler, Nina A1 - Terol, E. C. A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Beyond corrosion: Development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion N2 - The development of the microbiologically influenced corrosion ( MIC ) -specific inductively coupled plasma-time of flight-mass spectrometry ( ICP-ToF-MS ) analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis. For this, a MIC-specific staining procedure was developed, which ensures the analysis of intact cells. It allows the analysis of archaea at a single cell level, which is extremely scarce compared to other well-characterized organisms. The detection method revealed elemental selectivity for the corrosive methanogenic strain Methanobacterium -affiliated IM1. Hence, the possible uptake of individual elements from different steel samples was investigated and results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to uptake chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The methods developed and information obtained will be used in the future to elucidate underlying mechanisms, compliment well-developed methods, such as SEM-EDS, and develop novel material protection concepts. KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac083 SN - 1756-591X VL - 14 IS - 11 SP - 1 EP - 15 PB - Oxford University Press CY - Oxford AN - OPUS4-56254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Stamatopoulou, E.P. A1 - Assadillayev, A. A1 - Wolff, C. A1 - Sugimoto, H. A1 - Fuji, M. A1 - Mortensen, N.A. A1 - Raza, S. A1 - Tserkezis, C. T1 - Cathodoluminescence Spectroscopy of Silicon Nanoparticles N2 - The fabrication of nanostructures with ever-decreasing sizes has increased the demand of suitable characterization methods which allow to determine their shape and size at the true nanoscale, and similarly important, enable the investigation of their optical properties beyond the diffraction limit. Due to its high spectral and spatial resolution down to the (sub-) nanometer range, electron beam-based techniques, namely cathodoluminescence (CL) has become a powerful characterization tool, particularly to study plasmonic and dielectric nanostructures. However, the interpretation of the resulting spectral CL maps is not always unambiguously straightforward. In this work, Mie resonances in single Si nanospheres of different sizes have been systematically studied, using experimental CL spectroscopy and an analytical CL model. For smaller spheres (r ~ 75 nm), the eigenmodes can be unequivocally identified, with relative changes in intensity of the electric and magnetic dipole depending on the electron beam position within the sphere. However, in larger spheres (r ~ 105 nm), the modal assignment becomes increasingly difficult due to a larger number of Mie modes in the visible spectral range. Additionally, penetrating electron beams generate two radiating dipoles at the two Si interfaces – due to the electron and its image charge collapsing at those interfaces – which can, depending on the electron beam’s velocity and its path length inside the particle, produce distinct resonances or dips (constructive or destructive interference of those two radiative dipoles). It is demonstrated that superimposed on the eigenmodes of the studied nanospheres, these resonances can distort the recorded spectrum and lead to potentially erroneous assignment of modal characters to the spectral features. An intuitive analogy is developed to unambiguously distinguish those resonance induced by transition radiation from the nanoparticle-specific Mie resonances. T2 - Optoelectronic Processes at Nanostructured Interfaces 2022 CY - Bad Honnef, Germany DA - 21.03.2022 KW - Cathodoluminescence KW - Silicon nanoparticles KW - Mie resonances PY - 2022 AN - OPUS4-54526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Qiao, X. A1 - Ou, J. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Core−Shell NaYF4:Yb3+/Tm3+@NaGdF4:Ce3+/Eu3+ Nanoparticles for Upconversion and Downconversion Dual-Mode Fluorescence-Based Temperature Sensing N2 - NaYF4 as the core and NaGdF4 as the outer layer were used to obtain NaYF4:Yb3+/Tm3+@NaYF4:Ce3+/Eu3+ nanoparticles. Physical and morphological investigations indicated that the obtained nanoparticles were prepared in a hexagonal shape, with the NaGdF4 shell layer uniformly encapsulated on the NaYF4 core. Strong Tm3+ upconversion emission peaks were observed for a 980-nm-laser-excited sample, while strong Eu3+ downconversion emission peaks were observed for a 254-nm-laser-excited sample. By zonal doping of Tm3+ and Eu3+, their fluorescence intensity can be significantly increased; more importantly, simultaneous temperature measurements with dual-mode upconversion/downconversion can be achieved. The temperature measurement properties of the dual mode were also investigated, and it was discovered that the upconversion 3F3 → 3H6 and 1G4 → 3F4 thermocouple energy levels gave the best temperature measurements with maximum absolute and relative sensitivities of 0.0877 K−1 and 1.95% K−1, respectively, which are better than the current temperature measurement sensitivities of most rare-earth-based materials. This material was prepared as fiber-optic temperature-sensing probes to detect the temperature in the environment in real time and was found to perform excellently for temperature measurement. KW - Upconversion nanoparticle KW - Lanthanide KW - Sensing; temperature KW - Photophysics PY - 2022 DO - https://doi.org/10.1021/acsanm.2c01611 VL - 5 IS - 7 SP - 9266 EP - 9276 PB - American Chemical Society AN - OPUS4-55363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monks, M.-J. A1 - Würth, Christian A1 - Kemnitz, Erhard A1 - Resch-Genger, Ute T1 - Dopant ion concentration-dependent upconversion luminescence of cubic SrF2:Yb3+, Er3+ nanocrystals prepared by a fluorolytic sol–gel method N2 - A fluorolytic sol–gel method was used for the fast and simple synthesis of small cubic-phase SrF2:Yb3+, Er3+ upconversion (UC) nanocrystals (UCNC) of different composition at room temperature. Systematic studies of the crystal phase and particle size of this Yb3+,Er3+-concentration series as well as excitation power density (P)-dependent UC luminescence (UCL) spectra, UCL quantum yields (ΦUCL), and UCL decay kinetics yielded maximum UCL performance for doping amounts of Yb3+ of 13.5% and Er3+ of 1.3% in the studied doping and P-range (30–400 W cm−2). Furthermore, ΦUCL were determined to be similar to popular β-NaYF4:Yb3+,Er3+. The relative spectral UCL distributions revealed that all UCNC show a strong red emission in the studied doping and P-range (30–400 W cm−2) and suggest that the UCL quenching pathway for unshelled cubic-phase SrF2:Yb3+,Er3+ UCNC differs from the commonly accepted population and depopulation pathways of β-NaYF4:Yb3+,Er3+ UCNC. In SrF2:Yb3+,Er3+ UCNC the 4S3/2 → 4I13/2 transition exhibits a notably stronger sensitivity towards P and reveals increasing values for decreasing Yb3+–Yb3+ distances while the 4I9/2 → 4I15/2 transition is significantly less affected by P and energy migration facilitated UCL quenching. These results emphasize the complexity of the UC processes and the decisive role of the crystal phase and symmetry of the host lattice on the operative UCL quenching mechanism in addition to surface effects. Moreover, the room temperature UCNC synthesis enabled a systematic investigation of the influence of the calcination temperature on the crystal phase of powder-UCNC and the associated UCL properties. Calcination studies of solid UCNC of optimized doping concentration in the temperature range of 175 °C and 800 °C showed the beneficial influence of temperature- induced healing of crystal defects on UCL and the onset of a phase separation connected with the oxygenation of the lanthanide ions at elevated temperature. This further emphasizes the sensitivity of the UC process to the crystal phase and quality of the host matrix. KW - Upconversion nanoparticle KW - Lanthanide KW - Photophysics KW - Synthesis PY - 2022 DO - https://doi.org/10.1039/d2nr02337g SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Climent Terol, Estela A1 - Marcos, M. D. A1 - Sancenón, F. A1 - Rurack, Knut A1 - Martínez-Máñez, R. T1 - Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles N2 - We report herein the design of a strip-based rapid test utilizing bioinspired hybrid nanomaterials for the in situ and at site detection of the drug scopolamine (SCP) using a smartphone for readout, allowing SCP identification in diluted saliva down to 40 nM in less than 15 min. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles loaded with a fluorescent reporter (rhodamine B) and functionalized with bethanechol, a potent agonist of recombinant human muscarinic acetylcholine receptor M2 (M2-AChR). M2-AChR interaction with the anchored bethanechol derivative leads to capping of the pores. The sensing mechanism relies on binding of SCP to M2-AChR resulting in pore opening and delivery of the entrapped rhodamine B reporter. Moreover, the material was incorporated into strips for lateral-flow assays coupled to smartphone readout, giving fast response time, good selectivity, and exceptional sensitivity. In an attempt to a mobile analytical test system for law enforcement services, we have also developed a dualplex lateral flow assay for SCP and 3,4-methylenedioxypyrovalerone (MDPV) also known as the so-called “cannibal drug”. KW - Rapid tests KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Scopolamine KW - Gesteuerte Freisetzung KW - Cannibal Drug PY - 2022 DO - https://doi.org/10.1039/d2nr03325a SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella T1 - Engineered Nanomaterials- Novel Approaches for Risk Assessment and Safe-by-Design N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls not only for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials, but also for standardized and validated methods for surface analysis. 4,5 The analysis and quantification of surface chemistry is hence in the focus of an increasing number of standardization organizations and interlaboratory comparisons with different analytical methods are being done.5 For the monitoring of nanomaterial synthesis and the fast assessment of the number of functional groups such as carboxyl and amino functionalities, which are very commonly used functionalities in the life sciences, simple and validated methods are needed that can be performed with common laboratory instrumentation. 5,6 Here we provide a brief overview of the ongoing research in division Biophotonics employing quantitative NMR (qNMR), conductometry, and colorimetric and fluorometric optical assays for the determination of the total and the accessible number of carboxyl and amino groups on differently sized polymer and silica nano- and microparticles.5-7 T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Standardization KW - Quality assurance KW - Validation KW - qNMR KW - Silica KW - Polymer KW - Fluorescence KW - Assay KW - Conductometry KW - Method comparison KW - Analytical sciences PY - 2022 AN - OPUS4-54999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -