TY - CHAP A1 - Schönhals, Andreas A1 - Böhning, Martin A1 - Szymoniak, Paulina ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - (Nano)Composite Materials—An Introduction N2 - The chapter gives a brief introduction to (nano)compositecomposite materials having the focus on polymer-based nanocomposites. The different dimensionalities of nanoparticles are introduced, along with their distribution in the matrix. Different application fields of polymer-based nanocomposites, like flame retardancy, filled rubbers, nanofilled thermosets and thermoplastics, separation membranes and nanodielectrics, are considered in greater detail. KW - Polymer-based nanocomposites KW - Nanoparticle KW - Distribution of nanoparticles KW - Filled rubbers KW - Filled thermosets and plastics KW - Separation membranes KW - Nanodielectrics PY - 2022 DO - https://doi.org/10.1007/978-3-030-89723-9_1 SP - 1 EP - 31 PB - Springer CY - Cham, Switzerland AN - OPUS4-54565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - von Werder, Julia A1 - Manninger, Tanja A1 - Maier, Bärbel A1 - Fladt, Matthias A1 - Simon, Sebastian A1 - Gardei, Andre A1 - Höhnel, Desirée A1 - Pirskawetz, Stephan A1 - Meng, Birgit T1 - A multiscale and multimethod approach to assess and mitigate concrete damage due to alkali-silica reaction N2 - Alkali-silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The publication aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro to the micro level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test-setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical and X-ray methods, to the development of a testing methodology for existing concrete pavements including in-depth analysis of the visual damage indicator and the de-icing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented. KW - Mitigation strategies KW - Concrete KW - Damage analysis KW - Alkali silica reaction KW - Road pavement KW - Accelerated testing KW - Non-destructive testing KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:101:1-2022052515100075090235 DO - https://doi.org/10.1002/adem.202101346 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 36 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koyutürk, B. A1 - Farber, E. A1 - Wagner, F. A1 - Fellinger, Tim-Patrick A1 - Eisenberg, D. T1 - A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe–N–C catalyst for acidic ORR N2 - Carbons doped with iron and nitrogen (Fe–N–Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe–N–Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure – a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe–N–C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe–N4 active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the “active site imprinting” and “self-templating” strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m2 g−1), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe–N4 sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V vs. RHE at pH 1 and a mass activity of 1.22 A g−1 at 0.8 V vs. RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis. KW - Catalysis KW - Fe-N-C catalysts KW - Fuel Cells KW - Electrochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550113 DO - https://doi.org/10.1039/d2ta00925k SN - 2050-7488 SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Grengg, C. A1 - Ukrainczyk, N. A1 - Mittermayr, F. A1 - Dietzel, M. T1 - Acid resistance of alkali-activated materials: Recent advances and research needs N2 - Cementitious materials are frequently applied in environments in which they are exposed to acid attack, e.g., in sewer systems, biogas plants, and agricultural/food-related industries. Alkali-activated materials (AAMs) have repeatedly been shown to exhibit a remarkably high resistance against attack by organic and inorganic acids and, thus, are promising candidates for the construction and the repair of acid-exposed structures. However, the reaction mechanisms and processes affecting the acid resistance of AAMs have just recently begun to be understood in more detail. The present contribution synthesises these advances and outlines potentially fruitful avenues of research. The interaction between AAMs and acids proceeds in a multistep process wherein different aspects of deterioration extend to different depths, complicating the overall determination of acid resistance. Partly due to this indistinct definition of the ‘depth of corrosion’, the effects of the composition of AAMs on their acid resistance cannot be unambiguously identified to date. Important parallels exist between the deterioration of low-Ca AAMs and the weathering/corrosion of minerals and glasses (dissolution-reprecipitation mechanism). Additional research requirements relate to the deterioration mechanism of high-Ca AAMs; how the character of the corroded layer influences the rate of deterioration; the effects of shrinkage and the bond between AAMs and substrates. KW - Alkali-activated materials KW - Acid attack KW - Acid resistance KW - Concrete repair KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557376 DO - https://doi.org/10.21809/rilemtechlett.2022.157 SN - 2518-0231 VL - 7 SP - 58 EP - 67 PB - RILEM Publications SARL CY - Paris AN - OPUS4-55737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieu, D.T. A1 - Kosslick, H. A1 - Riaz, M. A1 - Schulz, A. A1 - Springer, A. A1 - Frank, M. A1 - Jäger, Christian A1 - Minh Thu, N.T. A1 - Son, L.T. T1 - Acidity and Stability of Bronsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol N2 - Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 ◦C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 ◦C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 ◦C. Although a part of the clinoptilolite framework is maintained up to 600 ◦C, a loss of crystallinity is already observed starting from 450 ◦C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 ◦C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 ◦C. A part of the Brønsted sites is lost after calcination specifically at 500 ◦C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1 -C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 ◦C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 ◦C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. KW - Etherification KW - Glycerol KW - Zeolite KW - Clinoptilolite KW - Bronsted acidity KW - Dehydroxylation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546982 DO - https://doi.org/10.3390/catal12030253 VL - 12 IS - 3 SP - 1 EP - 24 PB - MDPI AN - OPUS4-54698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Ponader, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 DO - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented. T2 - Seminar of the Academic Centre for Materials and Nanotechnology CY - Online meeting DA - 12.05.2022 KW - Nanoparticles KW - Thin films KW - Nano Characterisation KW - Nanomaterials KW - Surface morphology KW - Surface chemistry PY - 2022 UR - https://www.agh.edu.pl/en/info/article/seminar-advanced-characterization-of-the-surface-morphology-and-chemistry-within-nanobam/ AN - OPUS4-54820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Advanced materials broadening the scope of antibody-based analytical methods N2 - Immunoanalytical Techniques, i.e., antibody-based analytical methods, have been used for decades in clinical diagnostics. What makes them attractive for other fields of application is their short time-to-result and high sensitivity. Microplate-based assays such as ELISA have been adopted early in environmental and food analysis. Yet, to make immunoassays even faster, more sensitive, robust, and, most desirable, portable, advanced materials, sometimes developed for other purposes, can be profitably used to achieve these goals. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or nanoparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the assays to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Specialty electrodes can enable for higher sensitivity in electrochemical detection. All this broadens the scope of application and lowers effort and cost for analysis at the point-of-need. T2 - ChemForum - Kolloquium des Instituts für Strukturchemie CY - Lisbon, Portugal DA - 07.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Raza, M. H. A1 - Ye, M.-Y. A1 - Sachse, René A1 - Paul, B. A1 - Gunder, R. A1 - Pinna, N. A1 - Kraehnert, R. T1 - ALD-coated mesoporous iridium-titanium mixed oxides: Maximizing iridium utilization for an outstanding OER performance N2 - With the increasing production of renewable energy and concomitant depletion of fossil resources, the demand for efficient water splitting electrocatalysts continues to grow. Iridium (Ir) and iridium oxides (IrOₓ) are currently the most promising candidates for an efficient oxygen evolution reaction (OER) in acidic medium, which remains the bottleneck in water electrolysis. Yet, the extremely high costs for Ir hamper a widespread production of hydrogen (H₂) on an industrial scale. Herein, the authors report a concept for the synthesis of electrode coatings with template-controlled mesoporosity surface-modified with highly active Ir species. The improved utilization of noble metal species relies on the synthesis of soft-templated metal oxide supports and a subsequent shape-conformal deposition of Ir species via atomic layer deposition (ALD) at two different reaction temperatures. The study reveals that a minimum Ir content in the mesoporous titania-based support is mandatory to provide a sufficient electrical bulk conductivity. After ALD, a significantly enhanced OER activity results in dependency of the ALD cycle number and temperature. The most active developed electrocatalyst film achieves an outstanding mass-specific activity of 2622 mA mg(Ir)⁻¹ at 1.60 V(RHE) in a rotating-disc electrode (RDE) setup at 25 °C using 0.5 m H₂SO₄ as a supporting electrolyte. KW - Acidic oxygen evolution reaction KW - Atomic layer deposition KW - Electrocatalysis KW - Iridium oxide KW - Soft-templated mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542651 DO - https://doi.org/10.1002/admi.202102035 SN - 2196-7350 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Yongzheng A1 - Ren, Kaiyue A1 - Huang, Weixing A1 - Wu, Dejian T1 - An alternative explosion criterion of combustible dusts based on combustion duration time: Applications for minimum explosion concentration and limiting oxygen concentration N2 - minimum explosion concentration (MEC) and limiting oxygen concentration (LOC) in our recent works. This work further studies the reasonability and reliability of the alternative method experimentally and theoretically. Six different dust samples were tested via a 20-L spherical explosion chamber. The experimental results showed that the data of MEC and LOC determined by using the alternative and the standardized methods are in good agreement. The minimum flame propagation velocity (Sf) and the corresponding maximum combustion duration time (tc) were found at its MEC and LOC, suggesting that the theoretical analysis can well explain all the experimental data. It is the first time to study the theoretical basis of the explosion criterion, thus helping to improve our understandings of dust explosion characteristics, and to amend the explosion criterion in future test standards. KW - General Chemical Engineering PY - 2022 DO - https://doi.org/10.1016/j.powtec.2022.117851 SN - 0032-5910 VL - 409 SP - 1 EP - 13 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Agudo Jácome, Leonardo T1 - Anisotropy in natural rubber / graphene nanocomposites N2 - The incorporation of nanoscale particles into elastomers enable a boost in performance and/or a distinct reduction of conventional filler loadings due to their high surface to volume ratio. 2D layered nanoparticles like graphene and graphene-related materials provide a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. The type and properties of the nanoparticles, their interface and the elastomeric matrix materials influence the technical behavior, and therefore the potential application fields of such rubber nanocomposites. Especially crucial for the efficiency of the nanofiller, however, is its best possible incorporation into the elastomer. The dispersing of nanoparticles without agglomerates usually constitutes a challenge when using conventional two-roll milling or internal mixing. Academic approaches for highly dispersed nanocomposites solve this problem but are often energy and time consuming with no feasible scale up possibility. Therefore, an ultrasonic assisted NR latex premixing process was established to produce highly filled masterbatches, enabling the main processing with conventional rubber processing techniques. Two carbon-based nanoparticles with similar specific surface areas were investigated and incorporated in natural rubber as nanocomposites: A commercially available multilayer graphene (MLG) and a nanoscale carbon black (nCB). The mentioned premixed masterbatches were further processed to nanocomposites by the addition of matrix NR, two-roll milling, and hot pressing (vulcanization). By this procedure an increase in Young’s modulus of 157% (MLG) and 71% (nCB) could be obtained at a concentration level of 3 phr. As anisotropic material behavior was observable for the nanocomposites containing MLG, different measurement methods were investigated to quantify the orientation of the nanoparticles in the nanocomposites: Sorption measurements (swelling in 2 dimensions), hardness and dynamical mechanical analysis (in-plane vs. cross-plane), X-Ray diffraction and transmission and scanning electron microscopy. T2 - DKT IRC 21 CY - Nuremberg, Germany DA - 27.06.2022 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Orientation KW - Anisotropy PY - 2022 AN - OPUS4-55205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of polypropylene as possible reference material for nanoplastics N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 µm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP). We found an easy way to form nanoparticles consisting of PP (nano-PP), adapting and improving the method presented for polystyrene (PS). Nano-PP was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No additional surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering (DLS). The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - European Polymer Congress 2022 CY - Prag, Czechia DA - 26.06.2022 KW - Nanoplastic PY - 2022 AN - OPUS4-55960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous dispersions of polypropylene: towards referencematerials for nanoplastics characterization N2 - Plastic pollution in the environment is a rising concern for the health of our planet. The plastic litter that pollutes our environment leads to microplastic particles. They can be found (nearly) everywhere. The processes that lead to microplastic can also form nanoplastic particles, which have a size below 1 µm. Because of the small size they can penetrate tissue more easily. Only few risk assessment studies of nanoplastics were carried out so far. Using polystyrene (PS) nanoparticles to test effects on organisms is easy because it is commercially available. However, this falls a little short, as the polyolefins i.e., polypropylene (PP) and polyethylene (PE), are produced in a larger proportion than PS. Moreover, these plastics are mainly used for disposable products, which means that they also account for a large proportion of plastic waste. Therefore, the percentage of polyolefins in environmental nanoplastic is presumably high. It is important to test the toxicological effects also with nanoplastics made of PP and PE to have more realistic results. Herein, we present an easy and repeatable method to prepare an aqueous dispersion of polypropylene nanoplastics (nano-PP). They are stabilized electrostatically, resulting in a strongly negative zeta potential of -43 mV (± 2 mV) and making no surfactant necessary to keep the dispersion stable. The size and the size distribution were determined via Dynamic Light Scattering (DLS) and gives a hydrodynamic diameter of 180.5 nm (± 5.8 nm) and a PDI of 0.084 (± 0.023). Finally, ca. 480 bottles of the dispersion with a volume of 10 mL each were prepared to serve as a potential reference material for further testing of detection methods or risk assessments. T2 - International Conference on Microplastic Pollution in the Mediterranean Sea CY - Neapel, Italy DA - 25.09.2022 KW - Nanoplastic PY - 2022 AN - OPUS4-55963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Atomic force microscope study of friction at the submicron-scale during tribotests with self-mated steel N2 - Friction at the microscale during reciprocal sliding tribotests was studied for the first time with self-mated steel (100Cr6/AISI 52100) taking advantage of an atomic force microscope (AFM). To this aim, microsized steel particles were glued to the AFM-cantilever and employed as colloidal tips to perform tribotests on a steel disc. The torsion of the cantilever, which correlates with the friction force, was measured during the tests. Few tests with the same load did not yield any wear and show that the load and adhesion contributions to friction stay constant when the shape of the test particle does not change. Most of the presented tribotests engendered wear. For those tests, the increase of friction during the tribotests was attributed to the emerging plowing contribution. Furthermore, analysis of both torsion and local slope gives information on the creation of wear particles and their influence on friction. KW - Friction KW - Microtribology KW - Sliding KW - Wear PY - 2022 DO - https://doi.org/10.1115/1.4054251 VL - 144 IS - 10 SP - 1 EP - 9 PB - ASME AN - OPUS4-54839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdicke, M. G. A1 - Hildebrandt, Jana A1 - Schindler, C. A1 - Sperling, R. A. A1 - Maskos, M. T1 - Automated QuantumDots Purification via Solid Phase Extraction N2 - The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types. KW - Quantum Dots KW - Purification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559590 DO - https://doi.org/10.3390/nano12121983 SN - 2079-4991 VL - 12 IS - 12 PB - MDPI CY - Basel AN - OPUS4-55959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -