TY - CONF A1 - Tiebe, Carlo A1 - Mieller, Björn A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Prager, Jens A1 - Schukar, Marcus A1 - Strohhäcker, J. T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Die Nutzung von Sensortechnologien, insbesondere im Bereich der Gasdetektion mit einem Schwerpunkt auf Wasserstoff, spielt eine entscheidende Rolle in verschiedenen Anwendungsbereichen der Wasserstofftechnologie. Sicherheitsüberwachung, Leckdetektion und Prozesskontrolle gehören zu den prominenten Anwendungsgebieten dieser Sensortechnologien. Ein zentrales Ziel ist die Erkennung von freigesetztem Wasserstoff sowie die genaue Bestimmung des Wasserstoff-Luftverhältnisses mithilfe von Gassensoren. Dies ist von entscheidender Bedeutung, um potenzielle Gefahren frühzeitig zu erkennen und angemessene Maßnahmen zu ergreifen. Ein weiterer Schwerpunkt dieses Beitrags liegt auf der Analytik und der Verwendung zertifizierter Referenzmaterialien in Verbindung mit Metrologie für die Wasserstoffspeicherung. Dies gewährleistet eine präzise und zuverlässige Charakterisierung von Wasserstoff und unterstützt die Entwicklung sicherer Speichertechnologien. Im Rahmen des Euramet-Vorhabens Metrology for Advanced Hydrogen Storage Solutions (MefHySto) wird eine Kurzvorstellung präsentiert. Der Vortrag stellt zwei zerstörungsfreie Prüfverfahren zum strukturellen Zustandsüberwachung (Structural Health Monitoring, SHM) für Wasserstofftechnologien vor. Insbesondere die Fehlstellenerkennung mittels geführter Ultraschallwellen spielt eine bedeutende Rolle bei der Lebensdauerüberwachung von Wasserstoffspeichern. Ein weiterer Aspekt ist die Anwendung faseroptischer Sensorik zur Schadensfrüherkennung von Wasserstoffspeichern. Diese zerstörungsfreien Prüfverfahren ermöglichen eine präzise und frühzeitige Identifizierung von Schäden, was die Sicherheit und Effizienz von Wasserstoffspeichersystemen entscheidend verbessert. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 15.11.2023 KW - H2Safety@BAM KW - Gassensorik KW - Metrologie KW - zertifizierte Referenzmaterialien KW - Zerstörungsfreie Prüfung KW - Ultraschall KW - Faseroptik PY - 2023 AN - OPUS4-59230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Brence, Blaž A1 - Prager, Jens T1 - Untersuchung der Ausbreitung von geführten Ultraschallwellen in Wasserstoffdruckbehältern zur Zustandsüberwachung T2 - Fortschritte der Akustik - DAGA 2023 N2 - Die zunehmende Bedeutung von Wasserstoff als emissionsfreier Energieträger der Zukunft lässt die Anforderungen an eine technisch einwandfreie und sichere Wasserstoffspeicherung steigen. Im Mobilitätssektor kommen dabei vorwiegend Kohlefaserverbundbehälter zur Speicherung von gasförmigem Wasserstoff im Hochdruckbereich zum Einsatz, die sich durch ihre Leichtbauweise bei gleichzeitig hoher Speicherkapazität auszeichnen. Materialfehler oder -ermüdung können jedoch zum Ausfall bis hin zum kritischen Versagensfall führen. Ein sicherer Betrieb der Behälter erfordert daher ein innovatives und zuverlässiges Konzept, um deren Integrität zu gewährleisten und folgenschwere Zwischenfälle zu vermeiden. Die Strukturüberwachung mittels geführter Ultraschallwellen ist dafür einer der prominentesten Ansätze, da sich die Wellen über große Entfernungen in der Struktur ausbreiten können und zudem sehr empfindlich auf kleinste Materialdefekte reagieren. In diesem Beitrag wird der Aufbau eines Sensornetzwerks zur Schadenserkennung und -lokalisierung vorgestellt, das auf den Prinzipien der Ausbreitung geführter Ultraschallwellen in Druckbehältern aus Verbundwerkstoffen basiert. Dazu werden in einem ersten Schritt das dispersive und multimodale Ausbreitungsverhalten analysiert und dominante Wellenmoden identifiziert. Basierend auf der Analyse werden Dämpfungsverhalten und Empfindlichkeit gegenüber künstlichen Defekten bestimmt. Unter Verwendung der ermittelten Informationen wird ein Sensornetzwerk bestehend aus piezoelektrischen Flächenwandlern entworfen, welches den zu untersuchenden Bereich vollständig abdecken soll. Das Ergebnis wird anschließend durch Aufbringen künstlicher Defekte experimentell evaluiert und präsentiert. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - Geführte Ultraschallwellen KW - Zustandsüberwachung KW - Wasserstoffdruckbehälter KW - Sensornetzwerk KW - Structural Health Monitoring PY - 2023 UR - https://pub.dega-akustik.de/DAGA_2023 SN - 978-3-939296-21-8 SP - 1598 EP - 1601 CY - Berlin AN - OPUS4-58022 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert A1 - Mair, Georg A1 - Tiebe, Carlo A1 - Melzer, Michael A1 - Klaus, Christian A1 - Nattuveettil, Keerthana A1 - Engel, Thomas A1 - Prager, Jens T1 - Eine digitale QI für technische Anlagen: Beispiel Wasserstofftankstelle (H2) N2 - Mit der Initiative QI-Digital werden völlig neue Perspektiven für das Sicherheitsmanagement und die Qualitätssicherung technischer Anlagen erschaffen. Unsere Forschung im Kontext einer Wasserstofftankstelle zeigt, wie digitale Innovationen und Verfahren die Herausforderungen effizienter und verlässlicher Qualitätssicherung für komplexe Anlagen bewältigen können. In diesem Vortrag werden Potentiale und Beispiele der digitalen QI für technische Anlagen demonstriert und diskutiert: Moderne Anlagenüberwachung mit digitalen Zwillingen und KI sowie Kalibriermanagement mithilfe digitaler Kalibrierscheine und elektronischem Siegel. T2 - 2. QI Digital Forum CY - Berlin, Germany DA - 10.10.2023 KW - Wasserstoff KW - Sensorik KW - Qualitätsinfrastruktur KW - Digitalisierung KW - Druckspeicher KW - Verwaltungsschale PY - 2023 AN - OPUS4-58599 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung von Rohrleitungen - Teil 2: Technische Hintergründe - Schadensursachen und Prüfeinrichtungen JF - Technische Sicherheit N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing – DAS) zur kontinuierlichen Überwachung von Rohrleitungen eingesetzt werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die Hauptschadensursachen an Rohrleitungen, den Versuchsstand zur mechanischen Belastung von Rohren sowie die Möglichkeiten zu Untersuchungen im Realmaßstab eingegangen werden. KW - Schadensursachen an Rohrleitungen KW - Monitoring von Rohrleitungen KW - Verteilte Faseroptische Sensorik KW - Rohrbiegeprüfstand KW - Leckage PY - 2018 SN - 2191-0073 VL - 8 IS - 3 SP - 24 EP - 29 PB - Springer VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-44507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter T2 - DGZfP-Jahrestagung 2018 N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449797 SP - 1 EP - 4 AN - OPUS4-44979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -