TY - CONF A1 - Komann, Steffen A1 - Reiche, I. A1 - Ramsay, J. A1 - Pilecki, L. A1 - Hirose, M. A1 - Fukuda, T. A1 - Moutarde, M. A1 - Fiaccabrino, V. A1 - Malesys, P. A1 - Nöring, R. T1 - Development of the IAEA safety guide_format and content of the package design safety report_PDSR for the transport of radioactive material T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - Since 2005, several European countries, coordinated by the European Association of Competent Authorities (EACA), have been developing a guide on contents and structure of the documentation demonstrating the compliance with the regulations for packages for the transport of radioactive material (package design safety report, PDSR). This guide has been periodically improved, considering feedback from Designers and authorities. Taking into account the successful application of this guide in Europe, in 2013 the International Atomic Energy Agency (IAEA) decided to establish a similar guide as an IAEA document for promotion of worldwide use. The development of this IAEA guide started from the latest version of the European PDSR guide. In 2016/2017, during a 120-day review period, comments on the draft were received from member states and international organizations. These were incorporated into the draft in a series of meetings in 2017. In another meeting in December 2018 the draft was updated to be in line with the latest revision of the IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6). In this process the draft has been improved significantly, regarding structure as well as implementation of a graded approach depending on the package type, and clarified. This paper points to the major considerations in developing the guide and important improvements over the last version of the European PDSR guide. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - Safety report KW - Radioactive material KW - European Guide KW - Guidance material KW - Package types KW - Package design PY - 2019 SP - Paper 1172, 1 EP - 7 AN - OPUS4-49097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by bam of a new package design for the transport of snf from a german research reactor T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 SP - Paper 1176, 1 AN - OPUS4-49054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Debruyne, M. A1 - Eckert, B. A1 - Gauthier, F. A1 - Ben Ouaghrem, K. A1 - Le Bars, I. A1 - Jouve, A.-C. A1 - Cordier, N. T1 - Assessment of safety demonstrations relative to packages containing UF6 T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - The safety demonstrations realized by applicants in the case of approval request for the package designs containing enriched UF6 have to take into account some specific technical issues. Concerning the shipment of enriched UF6, the package designs consist in general of a filled 30B cylinder surrounded by an overpack. The description of the content, considering the UF6 origin, i.e. natural or reprocessed, shall be clearly justified especially when the UF6 isotopic composition exceeds the limits specified in ASTM standards. Concerning the containment of the UF6, the applicant shall demonstrate in all conditions of transport the leak-tightness of the valve and plug of the cylinders filled with enriched UF6. In this regard, when mechanical justifications are based on numerical calculations, the absence of contact between these components of the cylinder and the internal surfaces of the overpack after the regulatory drop tests shall be shown to respect the IAEA regulations. Furthermore, the representativeness of the ballast used to simulate the behaviour of the UF6 loaded within the cylinder shall be justified if drop tests are performed. The representativeness of the ballast should also be justified for numerical calculations. In addition, the applicant shall demonstrate that the melting temperature of the valve and the plug, including the tinned joint, will not be exceeded during the regulatory fire test. Finally, specific provisions relative to the use of plugs and the maintenance of cylinders should be included in the safety analysis report. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Valve KW - Fire test KW - Content simulation KW - UF6 KW - Intumescent material PY - 2019 SP - Paper 1208, 1 EP - 8 AN - OPUS4-49094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Apel, Andreas A1 - Kuschke, Christian A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standard and IAEA guidance material for package load attachment Points - Current approaches and developments T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 SP - Paper 1130, 1 EP - 10 AN - OPUS4-49095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - Experience by BAM in the transport package safety assessment of German waste containers T2 - WM2018 Symposia (Proceedings) N2 - Transport and storage containers for low and midlevel radioactive waste are getting more and more of relevance due to the nuclear phase out decision in 2011. For higher activities Type B(U) approved waste containers will be needed for the shut down and dismantling phases of NPPs. It is expected that large quantities are required in the near future. German waste containers are generally approved for transport and interim storage and are also intended for the final disposal in the Konrad repository. BAM is involved in the authority licensing of transport package designs in Germany. In this context, BAM is responsible for the assessment of safe containment, mechanical, thermal and quality management issues. BAM also operates test facilities and performs drop as well as thermal tests during package licensing procedures. This paper summarizes our experience in the transport package design assessment of Type B(U) waste containers. A general overview of the approval process, the requirements and approaches BAM applies are described. Some examples are used to illustrate different aspects and technical issues we are addressing during the package assessment. In the first part of the paper the specific design aspects of German waste containers are described. Here, a general overview is given e.g. about closure systems, impact limiter designs, and the handling concepts. Furthermore, the wide range of radioactive content and their physical behavior including the impact on the packages assessment are described. The second part is focused on questions about the licensing and assessment process of German waste containers from the BAM authority point of view. The general approaches for the strategy of demonstration are outlined on the basis of the test conditions according to IAEA Regulations SSR-6. Furthermore, particular issues of the mechanical and thermal assessment with respect to the specific test conditions are discussed. For accident conditions of transport, aspects to be mentioned are e.g. the assessment of the lid bolts, the axial gap applied between content and lid, and the thermal behavior of the wood filled impact limiter after the fire test. However, issues of the assessment for routine and normal conditions of transport are addressed in this paper, too. The intention of this paper is introduce recent approval procedure experience in Germany, describing technical evaluation issues and so reduce rounds of questions during applications. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Transport packages KW - Safety assessment KW - Lowlevel and midlevel radioactive waste PY - 2018 SP - Paper 18469, 1 EP - 10 AN - OPUS4-44861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank ED - Schönfelder, Thorsten T1 - Design assessment of a dual purpose cask for damaged spent nuclear fuel T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 SP - Paper 1204, 1 EP - 10 AN - OPUS4-48685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor T2 - Pressure Vessels Piping Conference N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Recent developments in standards and IAEA guidance material for package load attachment points T2 - Proceedings of the 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials N2 - For transport package design and operation according to IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. Another standard with relevance to the load attachment of packages is ISO 10276. This standard deals with trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology and proposed revised text for the ISO standard for international discussion. The paper describes relevant tie-down aspects, gives background argumentation, and tries to support harmonized application of the revised IAEA guidance material and future ISO 10276 standard. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Verzögerungswerte KW - Lastanschlag KW - Trunnion design KW - ISO KW - Retention PY - 2018 SP - 18511, 1 EP - 8 AN - OPUS4-45294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask T2 - Proceedings of the ASME 2018 Pressure Vessels an Piping Conference N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Internal gaps KW - Drop test KW - IAEA PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-60996 SP - 1 EP - 6 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Debruyne, M. A1 - Eckert, B. A1 - Wille, Frank A1 - Gauthier, F. A1 - Le Bars, I. A1 - Cordier, N. A1 - Jouve, A.-C. T1 - Assessment of safety demonstrations relative to packages containing UF6 T2 - Proceedings of 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials N2 - Specific attention should be paid on safety demonstrations transmitted by applicants in the case of approval request for the package designs containing enriched UF6. Concerning the shipment of enriched UF6, the package designs consist in general of a filled 30B cylinder surrounded by an overpack. The description of the content, considering the UF6 origin, i.e. natural or reprocessed, shall be clearly justified especially when the UF6 isotopic composition exceeds the limits specified in ASTM standards. Concerning the containment of the UF6, the applicant shall demonstrate in all conditions of Transport the leak-tightness of the valve and plug of the cylinders filled with enriched UF6. In this regard, when justifications are based on numerical calculations, the absence of contact between These components of the cylinder and the internal surfaces of the overpack after the regulatory drop tests shall be shown. In particular, absence of contact between the valve and any other component of the packaging shall be confirmed to respect the current IAEA regulations [3]. If complementary calculations show a contact between the plug and the internal surfaces of the overpack, additional tests are required to confirm that the strength resulting from this contact will not affect the plug leak-tightness. It can be noticed that the future revision of the IAEA regulations will include additional provision in case of contact of the plug with any other component of the packaging. In addition, the applicant shall demonstrate that the melting temperature of the valve, including the tinned joint, will not be exceeded during the regulatory fire test. Furthermore, the representativeness of the ballast used to simulate the behaviour of the UF6 loaded within the cylinder shall be justified if drop tests are performed. Finally, specific provisions relative to the use of plugs and the maintenance of cylinders should be included in the safety analysis reports. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Uranhexaflourid KW - Package safety KW - Valve KW - Drop testing KW - Radioactive material PY - 2018 SP - 18523, 1 EP - 8 AN - OPUS4-45295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Drop tests assessment of internal shock absorbers for packages loaded with encapsulations for damaged spent nuclear fuel T2 - Pressure Vessels & Piping Conference 2020 N2 - Damaged spent nuclear fuel (DSNF) can be loaded in German dual-purpose casks (DPC) for transport and interim storage. Encapsulations are needed to guarantee a safe handling and a tight closure, separated from the package enclosure. These encapsulations shall be durable and leak-tight for a long storage period, because they are usually not accessible within periodical inspections of the DPC. Due to the general design of DPCs for standard fuel assemblies, specific requirements have to be considered for the design of encapsulations for DSNF to ensure the loading in existing package designs. Especially the primary lid system of a DPC is designed for maximum loads due to the internal impact of the content during drop test conditions. The main difference of encapsulations for damaged spent nuclear fuel is that they have usually a much higher stiffness than standard fuel assemblies. Therefore the design of an internal shock absorber, e.g. at the head of an encapsulation is required to reduce mechanical loads to the primary lid system during impacts. BAM as part of the German competent authority system is responsible for the safety assessment of the mechanical and thermal package design, the release of radioactive material and the quality assurance of package manufacturing and operation. Concerning the mechanical design of the encapsulation BAM was involved in the comprehensive assessment procedure during the package design approval process. An internal shock absorber was developed by the package designer with numerical analyses and experimental drop tests. Experimental drop tests are needed to cover limiting parameters regarding, e.g. temperature and wall thickness of the shock absorbing element to enable a detailed specification of the whole load-deformation behavior of the encapsulation shock absorber. The paper gives an overview of the assessment work by BAM and points out the main findings which are relevant for an acceptable design of internal shock absorbers. The physical drop tests were planned on the basis of pre-investigations of the applicant concerning shape, dimension and material properties. In advance of the final drop tests the possible internal impact behavior had to be analyzed and the setup of the test facility had to be validated. The planning, performance and evaluation of the final drop tests were witnessed and assessed by BAM. In conclusion it could be approved that the German encapsulation system for damaged spent nuclear fuel with shock absorbing components can be handled similar to standard fuel assemblies in existing package designs. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Encapsulations for damaged spent nuclear fuel KW - Drop tests KW - Internal shock absorber KW - Design assessment of RAM packages PY - 2020 SP - 1 EP - 9 AN - OPUS4-51546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vlassopoulos, E. A1 - Caruso, S. A1 - Linnemann, Konrad A1 - Nasyrow, R. A1 - Gretter, R. A1 - Fongaro, L. A1 - Papaioannou, D. T1 - Mechanical integrity of spent nuclear fuel rods T2 - Proceedings of ANS Annual Meeting 2018 N2 - The properties of spent nuclear fuel (SNF) rods change significantly during their operation life in the reactor core. Further changes occur after their discharge mainly due to the heating-cooling processes and possible ageing associated with the cumulative effects of radioactive decay induce damage in the fuel. Such changes may affect the response of the SNF rods to mechanical solicitations corresponding to normal and accidental conditions. Research activities at JRC-KARLSRUHE aim at assessing the integrity of SNF rods and processes which might affect their mechanical properties during their interim storage, transport or other handling operations. JRC Hot Cell facilities have been fully adapted to fulfil the experimental goals. The number of experiments that can be performed, however, is limited and there is an acute need to model them, using this process to validate codes, to deeper understand and to extend the results gained at the JRC beyond the conditions that have been tested. For the experimental campaigns two devices for gravitational impact and 3-point bending tests were developed and installed in a hot cell. Segments of real SNF rods pressurized at their original pressures after discharge have been investigated. The setup is fully operational and new results are reported continuously. T2 - ANS Annual 2018 CY - Philadelphia, PA, USA DA - 17.06.2018 KW - Spent nuclear fuel KW - Mechanical testing KW - Hot cell testing PY - 2018 SP - 170 EP - 172 AN - OPUS4-44862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -