TY - CONF A1 - Kalinka, Gerhard T1 - Moderne Faserverbundwerkstoffe – Reparatur und Recycling N2 - Der Vortrag beschreibt Aktivitäten der BAM zur Reparatur von Rotorblättern von Windkraftanlagen sowie ein Konzept zum Recycling by Design für faserverstärkte Kunststoffe T2 - Reparaturgerechtes Produktdesign CY - Potsdam, Germany DA - 06.11.2024 KW - GFRP KW - Rotorblätter KW - Reparatur KW - Recycling KW - Composites PY - 2024 AN - OPUS4-61533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraa, Lucas A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Roetsch, Karl A1 - Scheffler, Christina A1 - Sambale, Anna A1 - Uhlig, Kai A1 - Stommel, Markus A1 - Trappe, Volker T1 - Characterisation and Modelling of the Fibre-Matrix Interface of Short Fibre Reinforced Thermoplastics using the Push-Out Technique N2 - This study investigates the suitability of the single fibre push-out (SFPO) test for the determination of the interfacial shear strength (IFSS) of injection moulded short fibre reinforced thermoplastics. It includes a detailed description of the required sample preparation steps and the boundary conditions of the SFPO setup. Experimental SFPO tests were carried out on PA66 GF, PPA GF35 and PA6 GF50 materials. Furthermore, a finite element model was set up to simulate the behaviour of these materials during this test. The numerical results showed that the inhomogeneous stress distribution in the fibre-matrix interphase during the test causes the measured apparent IFSS to underestimate the true strength of the interphase. The simulations put the experimental results into perspective and provide valuable information for the further development of the test setup. This study therefore not only provides new insights into the interphase strength of injection moulded short fibre reinforced thermoplastics, but also an insight into local load conditions during testing and thus an indication of the true IFSS. KW - GFRP KW - Interface KW - fibre matrix bond KW - single fibre push-out PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626087 DO - https://doi.org/10.1016/j.compositesb.2025.112317 SN - 1879-1069 VL - 297 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-62608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauklis, A. E. A1 - Starovka, O. A1 - Gibhardt, D. A1 - Aouissi, H. A. A1 - Burlakovs, J. A1 - Sabalina, A. A1 - Fiedler, Bodo A1 - Kalinka, Gerhard T1 - Reversible and irreversible effects on the epoxy GFRP fiber-matrix interphase due to hydrothermal aging N2 - Epoxy R-Glass Fiber-Reinforced Polymer (GFRP) composite plates were hydrothermally aged at 60 ◦C for 23, 75, and 133 days. The water content reached 0.97 wt%, 1.45 wt% and 1.63 wt%, respectively. The studied GFRP matrix was inert to hydrolysis or chain scission, allowing for investigation of irreversible changes in the fiber-matrix interphase due to hydrothermal aging upon re-drying. During each period, a subset of the specimens was removed from the water bath and dried in a chamber. The weight loss upon drying was explained with epoxy leaching (impurities), sizing-rich interphase hydrolysis, glass fiber surface hydrolysis, accumulated degradation products escaping, and water changing state from bound to free. The influence of hydrothermal aging on the fiber-matrix interfacial properties was investigated. Lower interfacial strength of hydrothermally aged (wet) samples was attributed to plasticization of the epoxy, plasticization and degradation of the sizing-rich interphase (including formation of hydrolytic flaws), and hydrolytic degradation of the glass fiber surface. The kinetics of epoxy-compatible epoxysilane W2020 sizing-rich interphase hydrolysis provided an estimate of ca. 1.49%, 4.80%, and 8.49% of the total composite interphase degraded after 23, 75, and 133 days, respectively. At these conditions, the interface lost 39%, 48%, and 51% of its strength. Upon re-drying the specimens, a significant part of the interfacial strength was regained. Furthermore, an upward trend was observed, being 13%, 10% and 3% strength, respectively; thus, indicating a possibility of partial recovery of properties. KW - GFRP KW - Hydrothermal Ageging KW - Interphase KW - Water Diffusion KW - Desorption KW - Interfacial Strength PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581554 DO - https://doi.org/10.1016/j.jcomc.2023.100395 SN - 2666-6820 VL - 12 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-58155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -