TY - JOUR A1 - Lay, Vera A1 - Buske, S. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. D. A1 - Gorman, A. A1 - Bertram, M. A1 - Hall, K. A1 - Lawton, D. A1 - Kofman, R. T1 - 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand JF - Journal of Geophysical Research: Solid Earth N2 - The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z < 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z < 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa. KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539163 DO - https://doi.org/10.1029/2021JB023013 VL - 126 IS - 12 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-53916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance T2 - Springer Handbook of Mechanical Engineering N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 DO - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action JF - F1000 Research N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - BAM Inside #2/2021 T2 - BAM Inside - Neuigkeiten für BAM-Mitarbeiter*innen N2 - Interner E-Mail-Newsletter der BAM. PY - 2021 N1 - Der BAM Inside Newsletter bündelt die aktuellen Informationen der BAM. Da Informationen ggf. nur für einen definierten Zeitraum relevant sind, werden einige Links nach gewisser Zeit nicht mehr verfügbar sein. Bitte haben Sie Verständnis, dass nicht alle Links permanent vorgehalten werden können. IS - 02/2021 SP - 1 EP - 5 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-52230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - BAM Inside #3/2021 T2 - BAM Inside - Neuigkeiten für BAM-Mitarbeiter*innen N2 - Interner E-Mail-Newsletter der BAM. PY - 2021 N1 - Der BAM Inside Newsletter bündelt die aktuellen Informationen der BAM. Da Informationen ggf. nur für einen definierten Zeitraum relevant sind, werden einige Links nach gewisser Zeit nicht mehr verfügbar sein. Bitte haben Sie Verständnis, dass nicht alle Links permanent vorgehalten werden können. IS - 03/2021 SP - 1 EP - 4 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53151 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Panne, Ulrich T1 - BAM Report 2021/22 - Sicherheit im Wandel T1 - BAM report 2021/22 - Safety in transition N2 - Liebe Leser*innen, wir stehen an der Schwelle einer globalen Transformation, des Aufbruchs in ein neues Zeitalter. Deutschland hat sich verpflichtet, bis 2045 das Ziel der Klimaneutralität zu erreichen, und stellt sich damit der Verantwortung, die Erderwärmung in vertretbaren Grenzen zu halten. Der Weg zu einer CO₂-neutralen Zukunft wird nur mit sicheren Technologien und Innovationen möglich sein. Der Koalitionsvertrag der neuen Bundesregierung betont in seiner Präambel, dass "dieser Fortschritt auch mit einem Sicherheitsversprechen einhergehen muss". Unsere Expertise als Ressortforschungseinrichtung des Bundes mit dem Auftrag, Sicherheit in Technik und Chemie zu gewährleisten, ist daher auch 150 Jahre nach unserer Gründung gefragt - vielleicht mehr denn je. Wir verbinden sie mit dem Anspruch, Wissenschaft mit Wirkung zu betreiben, und leisten so einen Beitrag für eine klimaneutrale Zukunft. Dieser Wandel und seine Innovationen werden von neuen Ideen in der Chemie sowie den Material- und Werkstoffwissenschaften getragen, unsere Zukunft ist eine stoffliche. Neue und alte Materialsysteme, Komponenten und Infrastrukturen werden im Kontext der Nachhaltigkeit gedacht werden müssen. Ihre Sicherheit macht Märkte, trägt also zum gesellschaftlichen Wohlstand bei, wenn wir das Vertrauen in Wissenschaft und Technik stärken. Dieses Vertrauen wiederum erwächst aus der Expertise von Menschen und der Verlässlichkeit von Institutionen wie der BAM. Im letzten Jahr haben wir unsere Anstrengungen insbesondere in Schlüsselbereichen der Energiewende ausgebaut: unter anderem mit unserem Kompetenzzentrum für die Sicherheit moderner Wasserstofftechnologien, umfassenden Testmöglichkeiten für elektrische Energiespeicher und der Suche nach effizienteren, umweltschonenden Alternativen zu Lithium-Ionen-Batterien sowie mit Projekten zur Standfestigkeit noch größerer, leistungsstärkerer Windenergieanlagen und zur CO₂-Einsparung. Zusammen mit unseren Partner*innen haben wir die große Chance, den Wandel aktiv voranzubringen. Davon erfahren Sie mehr in unserem neuen BAM Report 2021/22. Viel Spaß beim Lesen und Eintauchen in unsere Arbeit! N2 - Dear Readers, we are on the threshold of a global transformation, the dawn of a new age. Germany has committed itself to achieving the goal of climate neutrality by 2045 and is thus taking on the responsibility of keeping global warming within acceptable limits. We can only move ahead on the road to a CO₂-neutral future if we use safe technologies and innovations. In its preamble, the coalition agreement of the new German government emphasises that "this progress must also be accompanied by a promise of safety". Our expertise as a departmental research institution of the German Government, with a mandate to ensure safety in technology and chemistry, is therefore still in demand 150 years after our founding, perhaps more so than ever. We combine it with the claim of doing science with impact and thus contribute to a climate-neutral future. This change and its innovations are driven by new ideas in chemistry and materials science, our future is a material one. New and old material systems, components and infrastructure types will have to be considered in the context of sustainability. Their safety creates markets, i.e. it contributes to society’s prosperity if we strengthen confidence in science and technology. This confidence, in turn, grows from the expertise of people and the reliability of institutions such as BAM. Last year, we increased our efforts in key areas of the energy transition, in particular with our Centre of Competence for the safety of modern hydrogen technologies, comprehensive testing facilities for electrical energy storage systems, the search for more efficient and environmentally friendly alternatives to lithium-ion batteries and projects dealing with the stability of even larger, more powerful wind turbines and creating CO₂ savings. Together with our partners, we have a great opportunity to actively promote this change. You can read more about this in our new BAM Report 2021/22. Enjoy reading and immersing yourself in our work! T3 - BAM Reports/Jahresberichte - 2021/22 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546577 SN - 0934-9456 SN - 2627-0153 SN - 2940-7532 N1 - Volltext (PDF) in deutsch und englisch - Full text (PDF) in German and English. VL - 2021/22 SP - 1 EP - 145 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54657 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - BAM Update #2/2021 T2 - BAM Update N2 - Newsletter der BAM für die interessierte Öffentlichkeit. T3 - BAM Newsletter - 2/2021 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531502 N1 - Der BAM Update Newsletter bündelt die aktuellen Informationen der BAM. Da Informationen ggf. nur für einen definierten Zeitraum relevant sind, werden einige Links nach gewisser Zeit nicht mehr verfügbar sein. Bitte haben Sie Verständnis, dass nicht alle Links permanent vorgehalten werden können. IS - 02/2021 SP - 1 EP - 4 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53150 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Zekhnini, Khalid T1 - BAM-Meerwassercontainer – Konzept und zukünftige Forschungsideen N2 - Dieser Vortrag gibt einen Einblick in das Konzept und den Aufbau des BAM-Meerwassercontainers. Es werden Ergebnisse aus laufenden Messreihen gezeigt. T2 - Sitzung der DECHEMA/GfKORR-Fachgruppe "Mikrobielle Materialzerstörung und Materialschutz" CY - Online meeting DA - 10.11.2021 KW - Korrosionsprüfung KW - Kathodischer Korrosionsschutz KW - Mariner Bewuchs PY - 2021 AN - OPUS4-53730 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Muth, Thilo T1 - Better data quality for man and machine in materials research and testing N2 - Applying data-driven AI systems makes it possible to extract patterns from given data, generate predictions and helps making decisions. Material research and testing holds a plethora of AI-based applications, for example, for the automatized search and synthesis of new materials, the detection of materials defects, or the prediction of process and materials parameters (inverse problems). However, AI algorithms can often only be as good as the training data from which the corresponding models are learned. Therefore, it is also indispensable to develop measures for the standardization and quality assurance of such data. For this purpose, we develop and implement methods from transferring data from various sources into a homogeneous data repository with uniform data descriptions. Through the standardization and corresponding machine-readable interfaces, research data can be made usable and reusable for further data analyses. In addition to the technical implementation of integrative platforms, it is crucial that quality-assured research data management is recognized and implemented as an integral part of daily scientific work. Finally, we provide a vision of how the Federal Institute for Materials Research and Testing can benefit from data-driven AI systems. We discuss early applications and take a peek at future research. T2 - BR50 AI Workshop CY - Online meeting DA - 13.12.2021 KW - Data quality KW - Machine learning KW - Research data management PY - 2021 AN - OPUS4-56681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Schreiber, Frank T1 - Biocide resistance evolution of corrosion causing sulfate reducing bacteria N2 - SRB are environmentally and industrially important microorganisms. The disadvantage of their metabolic activity (e.g. sulfate reduction) results in the formation of toxic sulfide that leads to microbial influenced corrosion. SRB have been responsible for biocorrosion of ferrous metal. One of mitigation strategy is the use of biocides. However, it has been shown that various bacteria develop antimicrobial resistance due to excessive use of biocides. Thus, a deeper understanding of the evolution of biocide resistance of SRB is necessary. Three commonly used biocides, THPS, BAC, and GLUT were applied to investigate the susceptibility of Desulfovibrio alaskensis G20.The minimum inhibitory and bactericidal concentration and the killing kinetics of the three biocides was determined. These results will be used to conduct evolution experiments to determine the evolution of resistance towards biocides of SRBs. The outcome of this work can be helpful to improve the management of MIC treatments. T2 - Panel, Pitch & Popcorn by EUROMIC CY - Online meeting DA - 21.06.2021 KW - Biocide KW - Evolution KW - Mircobially influcenced corrosion KW - Sulfate reducing bacteria PY - 2021 AN - OPUS4-56940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Cost action EURO MIC (CA20130) N2 - Vorstellung des vor kurzen angelaufenen EU-Projekts: COST ACTION EURO MIC ( CA20130). Die BAM hat hierbei die Rolle des Chairs sowie Grant-Holding Institute. COST fördert internationale Netzwerk Aktivitäten. Durch COST Action können neue Kooperationen (Industrie, Akademie oder Politk) entstehen. T2 - Dechema CY - Online meeting DA - 10.11.2021 KW - Netzwerk KW - COST KW - Mikrobiell beeinflusste Korrosion KW - MIC PY - 2021 AN - OPUS4-54023 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - COST-Action - EURO-MIC (CA20130) European MIC Network - New paths for science, sustainability and standards N2 - Microbiologically Influenced Corrosion (MIC) is a phenomenon that is increasingly becoming a problem for the society. MIC describes the negative effects a material can experience due to the presence of microorganisms. In Europe, several research groups/ other industrial stakeholders are already dealing with MIC. Unfortunately, the discussions are fragmented and the exchange of information is limited. A true transdisciplinary approach is hardly ever experienced, although this would be logical for this material/biology related challenge. USA, Canada and Australia have strong networks, and develop methods, prevention measures and standards, which Europe is forced to use, since nothing similar exists for a network and combined knowledge to design them according to european standards. This makes Europe extremely dependent and, in some cases, the potential measures or standards cannot been used because the suggested solutions are prohibited by European laws (e.g. use of biocides). Therefore, it is important to initiate a new European MIC-network. Europe needs to combine the efforts as experts in different fields and develop prevention measures according to the European rules, in close cooperation with industry and plant operators and owners of critical infrastructure. This COST Action will provide the necessary interaction and communication, knowledge sharing, training of personnel and of researchers of different disciplines. This will bring Europe to a leading role in this process, bringing ideas on an equal level with other nations, considering the values which are important for Europe and attitudes (e.g.environmental protection) and representing greater protection for people, property and the environment. The main aim and objective of the Action is to , in the context of MIC-research/control, encourage a fluent/synergistic collaboration/communication, closing the gap between materials scientists, engineers, microbiologists, chemists and integrity managers to encourage sufficient interaction between academia and industry. This Action will create a common MIC-Network, including the important stakeholders. T2 - EuroCorr CY - Online meeting DA - 19.09.2021 KW - COST Action KW - MIC KW - Interdisciplinary KW - Stakeholder KW - Academia PY - 2021 AN - OPUS4-53382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Koraimann, G. A1 - Ukrainczyk, N. A1 - Rudic, O. A1 - Luschnig, S. A1 - Gluth, Gregor A1 - Radtke, Martin A1 - Dietzel, M. A1 - Mittermayr, F. T1 - Cu- and Zn-doped alkali activated mortar – Properties and durability in (bio)chemically aggressive wastewater environments JF - Cement and concrete research N2 - Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosion. (Un-)exposed AAM were tested regarding their physicochemical and microstructural properties, bioreceptivity and overall durability. Metal addition led to a retarding effect during alkali-activation reaction, as well as to an increase in open porosity of up to 3.0% and corresponding lower compressive strength of up to 10.9%. Reduced microbial colonization and diversity were observed on AAM with Cu, while Zn addition led to increased biodiversity. We propose that the observed higher durability of Cu-doped AAM is due to antibacterial effects and associated reduction of biogenic acid production, superseding overall negative effects of metal-dosage on physical material properties. Observed lower durability of Zn-doped AAM was related to combined negative physicochemical and microbial effects. KW - Microbially induced corrosion KW - Alkali-activated materials KW - Biogenic acid corrosion KW - Biogene Schwefelsäurekorrosion KW - MIC PY - 2021 DO - https://doi.org/10.1016/j.cemconres.2021.106541 SN - 0008-8846 VL - 149 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-53070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Gluth, Gregor A1 - Mittermayr, F. A1 - Ukrainczyk, N. A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Leis, A. A1 - Dietzel, M. T1 - Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study JF - Cement and concrete research N2 - In this study, a multi-proxy approach combining 29Si, 27Al and 1H MAS-NMR, FEG-EPMA, XANES at the Cu K-edge and XRD analytics with hydrochemical tools such as ICP-OES analyses, oxygen-isotope signatures, and thermodynamic modelling was applied to K-silicate-activated metakaolin specimens - with and without CuSO4·5H2O addition - exposed to sulfuric acid at pH = 2 for 35 days. The results revealed a multistage deterioration mechanism governed by (i) acid diffusion, (ii) leaching of K-A-S-H, (iii) microstructural damage related to precipitation of expansive (K,Ca,Al)-sulfate-hydrate phases (iv) complete dissolution of the K-A-S-H framework, (v) and formation of silica gel in the outermost corroded regions. Copper ions were mainly located in layered spertiniite-chrysocolla-like phases in the as-cured materials. The results demonstrate an overall negative effect of Cu addition on chemical material durability, implying that the reported higher durability of Cu-doped AAM in biocorrosion environments can be best explained by bacteriostatic effects. KW - Alkali-activated materials KW - Acid resistance KW - Microbially induced corrosion KW - MIC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520567 DO - https://doi.org/10.1016/j.cemconres.2021.106373 SN - 0008-8846 VL - 142 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-52056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Schleeh, C. A1 - Weller, Michael G. T1 - Development of a high-sensitivity biosensor for the quasi-continuous detection of the explosive TNT and the illegal drug cocaine N2 - An immunofluorometric biosensor with laser-induced fluorescence detection was presented. For TNT an LOD of 60 ppb and for cocaine an LOD of 9 ppb was achieved. A swipe test was performed in less than 3 minutes. No significant cross-reactivity was observed. T2 - 15. Interdisziplinäres Doktorandenseminar des Arbeitskreises Prozessanalytik der GDCh CY - Online meeting DA - 06.09.2021 KW - PETN KW - HMX KW - RDX KW - Microfluidic mixing KW - Lab-on-a-chip KW - Affinity column KW - Monolithic material KW - Sintered glass KW - Dy-654 KW - Flowcell KW - Epifluorescence KW - CMOS camera KW - Diode laser KW - Antibody screening PY - 2021 AN - OPUS4-53329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa ED - Dinter, Adelina-Elisa T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - With the latest ICP-MS technology - ICP-ToF (time of flight)-MS - it is possible to analyze the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g. when considering corrosion processes. Microbiologically influenced corrosion (MIC) is highly unpredictable due to the diversity of microbial communities involved. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. The supplied document shows the basis of a four minutes lightning talk. T2 - EuroMIC 2021 CY - Online meeting DA - 22.06.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Lightning talk PY - 2021 AN - OPUS4-52905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - ICP-ToF (Flugzeitanalysator, engl. time of flight)-MS ermöglicht den Multielement Fingerabdruck einzelner Zellen (single cell) zu analysieren. Die single cell-ICP-ToF-MS kommt bei dem vorgestellten Poster bei der Analyse von Archaeen, die an mikrobiell beeinflusster Korrosion (engl. microbiologically influenced corrosion, MIC) von Stahl eine Rolle spielen, zum Einsatz. Mittels sc-ICP-ToF-MS wird die mögliche Aufnahme von einzelnen Elementen aus dem jeweiligen Stahl untersucht – die erhaltenen Informationen fließen zukünftig in die Aufklärung zugrunde liegender Mechanismen sowie Entwicklung möglicher Materialschutzkonzepte ein. Die Arbeiten Verknüpfen moderne Methoden der Analytical Sciences mit Materialien. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-52941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xie, Y. A1 - Cui, Y. A1 - Wu, Dejian A1 - Zeng, Y. A1 - Sun, L. T1 - Economic analysis of hydrogen-powered data center JF - International Journal of Hydrogen Energy N2 - The data center needs more and more electricity due to the explosive growth of IT servers and it could cause electricity power shortage and huge carbon emission. It is an attractive and promising solution to power the data center with hydrogen energy source. The present work aims to conduct an economic analysis on the hydrogen-powered data center. Configurations of hydrogen-powered and traditional data centers are compared and the differences focus on backup power system, converter/inverter, fuel cell subsystem, carbon emission, hydrogen and electricity consumptions. Economic analysis is conducted to evaluate the feasibility to power the data center with hydrogen energy source. Results show that electricity price increasing rate and hydrogen cost are the main factors to influence economic feasibility of hydrogen-powered data center. When the electricity price keeps constant in the coming two decades, the critical hydrogen price is about 2.8 U.S. dollar per kilogram. If the electricity price could increase 5% annually due to explosive growth of electric vehicles and economy, critical hydrogen price will become 6.4 U.S. dollar per kilogram. Hydrogen sources and transportation determine the hydrogen price together. Hydrogen production cost varies greatly with hydrogen sources and production technologies. Hydrogen transport cost is greatly influenced by distances and H2 consumptions to consumers. It could be summarized that the hydrogen-powered data center is economic if hydrogen could be produced from natural gas or H2-rich industrial waste streams in chemical plant and data center could not be built too far away from hydrogen sources. In addition, large-scale hydrogen-powered data center is more likely to be economic. Solar hydrogen powered data center has entered into a critical stage in the economic feasibility. Solar hydrogen production cost has restrained the H2 utilization in data center power systems now, since it could be competitive only when more strict carbon emission regulation is employed, hydrogen production cost reduces greatly and electricity price is increasing greatly in the future. However, it could be expected solar hydrogen-powered system will be adopted as the power source of data centers in the next few years. KW - Hydrogen KW - Date center KW - Economic analysis PY - 2021 DO - https://doi.org/10.1016/j.ijhydene.2021.06.048 SN - 0360-3199 VL - 46 IS - 55 SP - 27841 EP - 27850 PB - Elsevier Ltd. AN - OPUS4-53658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, S. A1 - Cai, Y. A1 - Guo, H. A1 - Wu, Dejian A1 - Xie, Y. T1 - Effect of fuel concentration, inert gas dilutions, inert gas–water mist twin fluid medium dilutions, and end boundary condition on overpressure transients of premixed fuel vapor explosion JF - Fuel N2 - A series of experiments were conducted in a 10L closed and vented tube with L/D = 10.0, and effects of initial fuel volume concentration, inert gas dilutions (diluted by N2 and CO2), inert gas–water mist twin fluid medium dilutions (diluted by N2-H2O twin fluid medium, CO2-H2O twin fluid medium) and end boundary conditions on overpressure transients of hydrocarbon fuel–air mixtures explosion were revealed. Results show that the overpressure-time profiles consistent with the dynamic evolution law of ‘approximately zero-1st overpressure rising stage-2nd overpressure rising stage-descending stage’, and ‘rate of overpressure rise-time’ curves exhibit the characteristics of multi-stages and multi-peaks, such as (dp/dt)(1,max), (dp/dt)(1,min), (dp/dt)(2,max) and (dp/dt)(2,min). Specifically, as the fuel volume concentration increased, both the maximum overpressures (pmax), and the maximum rates of overpressure rise ((dp/dt)(1,max) and (dp/dt)(2,max)) show a variation trend of increasing firstly and then decreasing, while the corresponding times (tmax, θ(1,max) , θ(2,max)) show a total different variation trend. Moreover, when YCH is lower than 1.88%, the value of (dp/dt)(1,max) is greater than (dp/dt)(2,max), while the value of (dp/dt)(1,max) was less than (dp/dt)(2,max), and when YCH was higher than 1.88%. The addition of N2 and CO2 can obviously inhibit the explosion intensity of hydrocarbon fuel, and the inhibition effect of CO2 is better than that of N2. Due to the synergy inhibition effect of the inert gas and ultrafine water mist, all the values of pmax, (dp/dt)(1,max) and (dp/dt)(2,max) diluted by inert gas-ultrafine water mist twin fluid medium were smaller than those diluted by sole inert gases. In addition, there are significant differences in the overpressure-time and the rate of overpressure rise-time profiles between closed and end venting explosions. The values of maximum overpressure and the rates of overpressure rise of the closed explosion were higher than those of the venting explosion, but the minimum rate of overpressure rise is a smaller one. KW - Premixed fuel vapour KW - Overpressure transients KW - Inert gas KW - Diluent additions KW - Twin fluid medium KW - Venting boundary condition PY - 2021 DO - https://doi.org/10.1016/j.fuel.2021.122083 SN - 0016-2361 VL - 309 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-55055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Ein inverses Verfahren zur Schadensrekonstruktion mittels geführter Wellen T2 - Tagungsband DAGA 2021 N2 - Eine zentrale Aufgabe der zerstörungsfreien Prüfung und der Strukturüberwachung (engl. Structural Health Monitoring - SHM) mit Ultraschallwellen ist die Bewertung von Schäden in Bauteilen. In vielen Bauteilen, wie zum Beispiel platten- und schalenförmigen Strukturen, Rohrleitungen oder Laminaten, breitet sich der Ultraschall in Form geführter Wellen aus. Zwar haben geführte Wellen eine relativ große Reichweite innerhalb des Bauteils und ermöglichen so eine großflächige Prüfung, ihre multimodalen und dispersiven Eigenschaften erschweren jedoch die Analyse der vom Schaden kommenden Reflexionen. Eine Möglichkeit, die Messsignale zu interpretieren und die Schäden zu charakterisieren, ist deren Vergleich mit der Wellenausbreitung in einem digitalen Modell. Hierbei stellt sich die Aufgabe, den Schaden im digitalen Modell anhand der Messdaten zu rekonstruieren. Diese Rekonstruktion beschreibt ein inverses Problem, das mehrere Vorwärtsrechnungen braucht, um das Schadensmodell an die Messdaten anzupassen. Durch die kleine Wellenlänge von Ultraschallwellen sind klassische Vorwärtsmethoden wie die Finte Elemente Methode rechenintensiv, weshalb die Autoren die semi-analytische Scaled Boundary Finite Element Method (SBFEM) benutzen, um den Rechenaufwand zu verringern. Im Beitrag wird ein inverses Verfahren basierend auf dem Automatischen Differenzieren in Kombination mit der SBFEM vorgestellt und an verschiedenen Schadenstypen in 2D-Querschnittmodellen von Wellenleitern getestet. In der präsentierten Vorstudie werden dafür „Messdaten“ aus unabhängigen Simulationen verwendet. T2 - DAGA 2021 - 47. Jahrestagung für Akustik CY - Vienna, Austria DA - 15.08.2021 KW - SBFEM KW - Inverse Probleme KW - SHM KW - NDT KW - AD PY - 2021 SP - 1 EP - 4 PB - Deutsche Gesellschaft für Akustik (DEGA) CY - Berlin AN - OPUS4-53305 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Elemental Analysis Methods in Material- & Environmental Analysis N2 - Materials in contact with the environment release e.g., metal-ions, elemental species and/or (nano-)particles. Once these species and/or particles are released, they are ingested by organisms and cells and thus, might have a negative impact on the environment. Thus, identification as well as quantification of potentially harmful substances is of utmost importance and highly needed to assess ecotoxicological impact of (emerging) pollutants. The oral presentation provides an overview on the power of elemental analytical techniques, in particular ICP-MS as well as HR-CS-GFMAS in environmental research. Current research topics from Division 1.1 @ BAM - Inorganic trace analysis will be highlighted: i) Elemental Speciation & Isotope analysis - new tools: Among elemental species separation and quantification, one of the main challenges in environmental elemental speciation analysis is the distinction between anthropogenic and natural elemental species. The on-line combination of elemental speciation and isotope analysis combines “the best from both worlds” - species specific isotopic information becomes available. As an application example the analysis of current anti-fouling agents via CE/MCICP-MS will be highlighted. ii) HR-CS-GFMAS for PFC analysis: Per- and polyfluorinated compounds (PFC) are emerging contaminants in particular in soil and surface water samples. Due to the large number of compounds (>4700), target analytical methods are not sufficient and sum parameter methods for organically bound fluorine are highly needed. High resolution-continuum source-graphite furnace molecular absorption spectroscopy (HR-CS-GFMAS) based methods for organically bound fluorine analysis will be presented. Application examples (soil and surface water) will be highlighted. iii) Single cell-ICP-ToF-MS - ecotox. assessment: Single cell and single organism analysis for e.g. ecotoxicological/medicinal assessment are hot topics in the research field of ICP-MS. In particular ICP-ToF-MS is a powerful, emerging techniques in terms of single cell/particle analysis. Automated single cell/diatom-ICP-ToF-MS as a potential tool in ecotoxicological testing will be presented. T2 - Eingeladener Fachvortrag Kolloquium AG Bleiner - EMPA CY - Online meeting DA - 03.11.2021 KW - HR-CS-GFMAS KW - SC-ICP-ToF-MS KW - Speciation analysis PY - 2021 AN - OPUS4-53707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Environmental conditions affect the corrosion product composition of Methanogen induced microbiologically influenced corrosion (Mi-MIC) N2 - Corrosion is a very expensive and serious problem in the different industry sectors, eg. Petroleum-, On- and off-shore, infrastructure. It is estimated that 20% of all corrosion damage is caused by microorganisms or microbiologically influenced corrosion (MIC). Several microorganisms are known to cause corrosion, including sulfate-reducing bacteria, nitrate-reducing bacteria, methanogens etc. For several years, methanogens were regarded as a mild corroder (~0.065 mm/yr), largely due to a lack of detailed investigation on the corrosion mechanism under real-environment simulated conditions. Resulting in the common belief that siderite, a non-conductive compound, is the sole corrosion product (CP) of methanogen-induced MIC (Mi-MIC). To simulate natural environmental conditions, we developed and introduced the multiport flow column system (MFC), a multi-sectional corrosion flow-cell. Using the MFC, we obtained ten times higher corrosion rates than previously reported. With a combination of several analytical techniques, such as ToF-SIMS, SEM-EDS and FIB-SEM, we found strong indication that siderite is not the sole corrosion product of Mi-MIC. The corrosion layers contained phosphorus, oxygen, magnesium, calcium and iron. The differences in the CP between static and dynamic environments demonstrated the impact of testing procedures on the corrosive potential of methanogens. To further verify and deepen our understanding of Mi-MIC, we are currently studying the influence of additional environmental parameters (e.g. pH, salinity, flow rate) on Mi-MIC. Overall, results of this study will expand the current understanding of MIC from both analytical and mechanistic points of view, thus aiding the development of different mitigation strategies for various industry sectors. T2 - ISMOS-8 CY - Online meeting DA - 08.06.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - ToF-SIMS KW - Modelling studies PY - 2021 AN - OPUS4-54041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Environmental conditions impact the corrosion layer composition of Methanogen induced microbiologically influenced corrosion (Mi-MIC) N2 - Microbiologically influenced corrosion (MIC) is a now well-known challenge and affects industry, society and infrastructure. For a long time, the impact of methanogen-induced MIC (Mi-MIC) was underestimated. This was mainly due to the rather low published corrosion rates and the presumed corrosion product siderite, which is not electrically conductive. In our laboratory, we were able to show that this trivialization or underestimation of Mi-MIC was due to the nature of the testing. The static systems used so far do not provide environmentally relevant information about the corrosion rate and the corrosion product, especially for methanogens To further illustrate the importance of the environment on the MIC process, we established a multiport flow column (MFC), to simulate the natural environment. With this method, and in contrast to published results using the static conditions, we obtained ten times higher corrosion rates. We analyzed the corrosion products with a combination of techniques, like ToF-SIMS, SEM-EDS and FIB-SEM, and found strong evidence that siderite is not the sole corrosion product of Mi-MIC. The corrosion layers contain phosphorus, oxygen, magnesium, calcium and iron and lacked on carbon-related species. It is hypothesized that methanogens may have influenced the nucleation process of siderite, converting bicarbonate into carbon dioxide for methanogenesis. This results in increased localized corrosion and reduced siderite formation. To verify and deepen our understanding of Mi-MIC, we are currently studying the influence of additional environmental parameters (e.g. pH, salinity, flow rate etc.) on Mi-MIC and the subsequent impacts on corrosion rates and the corrosion products. Overall, results of this study will expand the current understanding of MIC from both analytical and mechanistic points of view, thus aiding the development of different mitigation strategies for various industry sectors. T2 - Eurocorr 2021 CY - Online meeting DA - 20.09.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - SEM-EDS KW - Modelling studies PY - 2021 AN - OPUS4-54043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heeger, Felix A1 - Bourne, E. C. A1 - Wurzbacher, C. A1 - Funke, E. A1 - Lipzen, A. A1 - He, G. A1 - Ng, V. A1 - Grigoriev, I. V. A1 - Schlosser, D. A1 - Monaghan, M. T. T1 - Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica JF - Journal of Funghi N2 - Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources. KW - Aquatic fungi KW - Differential expression KW - Lignocellulose KW - Laccase KW - RNA-Seq PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536843 DO - https://doi.org/10.3390/jof7100854 VL - 7 IS - 10 SP - 2 EP - 11 PB - MDPI CY - Basel, Schweiz AN - OPUS4-53684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wipfler, B. A1 - Bradler, S. A1 - Büsse, S. A1 - Hammel, J. A1 - Müller, Bernd R. A1 - Pass, G. T1 - Evolutionary morphology of the antennal heart in stick and leaf insects (Phasmatodea) and webspinners (Embioptera) (Insecta: Eukinolabia) JF - Zoomorphology N2 - The morphology of the antennal hearts in the head of Phasmatodea and Embioptera was investigated with particular reference to phylogenetically relevant key taxa. The antennal circulatory organs of all examined species have the same basic construction: they consist of antennal vessels that are connected to ampullae located in the head near the antenna base. The ampullae are pulsatile due to associated muscles, but the points of attachment differ between the species studied. All examined Phasmatodea species have a Musculus (M.) interampullaris which extends between the two ampullae plus a M. ampulloaorticus that runs from the ampullae to the anterior end of the aorta; upon contraction, all these muscles dilate the lumina of both ampullae at the same time. In Embioptera, only the australembiid Metoligotoma has an M. interampullaris. All other studied webspinners instead have a M. ampullofrontalis which extends between the ampullae and the frontal region of the head capsule; these species do not have M. ampulloaorticus. Outgroup comparison indicates that an antennal heart with a M. interampullaris is the plesiomorphic character state among Embioptera and the likely ground pattern of the taxon Eukinolabia. Antennal hearts with a M. ampullofrontalis represent a derived condition that occurs among insects only in some embiopterans. These findings help to further clarify the controversially discussed internal phylogeny of webspinners by supporting the view that Australembiidae are the sister group of the remaining Embioptera. KW - Phylogeny KW - Polyneoptera KW - Metoligotoma PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527795 DO - https://doi.org/10.1007/s00435-021-00526-4 SN - 1432-234X VL - 140 IS - 3 SP - 331 EP - 340 PB - Springer AN - OPUS4-52779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschöke, K. A1 - Müller, I. A1 - Memmolo, V. A1 - Moix-Bonet, M. A1 - Moll, J. A1 - Lugovtsova, Yevgeniya A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Schubert, L. T1 - Feasibility of Model-Assisted Probability of Detection Principles for Structural Health Monitoring Systems based on Guided Waves for Fibre-Reinforced Composites JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control N2 - In many industrial sectors, Structural Health Monitoring (SHM) is considered as an addition to Non-Destructive Testing (NDT) that can reduce maintenance effort during lifetime of a technical facility, structural component or vehicle. A large number of SHM methods is based on ultrasonic waves, whose properties change depending on structural health. However, the wide application of SHM systems is limited due to the lack of suitable methods to assess their reliability. The evaluation of the system performance usually refers to the determination of the Probability of Detection (POD) of a test procedure. Up to now, only few limited methods exist to evaluate the POD of SHM systems, which prevent them from being standardised and widely accepted in industry. The biggest hurdle concerning the POD calculation is the large amount of samples needed. A POD analysis requires data from numerous identical structures with integrated SHM systems. Each structure is then damaged at different locations and with various degrees of severity. All of this is connected to high costs. Therefore, one possible way to tackle this problem is to perform computer-aided investigations. In this work, the POD assessment procedure established in NDT according to the Berens model is adapted to guided wave-based SHM systems. The approach implemented here is based on solely computer-aided investigations. After efficient modelling of wave propagation phenomena across an automotive component made of a carbon fibre-reinforced composite, the POD curves are extracted. Finally, the novel concept of a POD map is introduced to look into the effect of damage position on system reliability. KW - Reliability KW - Acoustics KW - Monitoring KW - Automotive engineering KW - Elastodynamic Finite Inegration Technique PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528218 DO - https://doi.org/10.1109/TUFFC.2021.3084898 VL - 68 IS - 10 SP - 3156 EP - 3173 AN - OPUS4-52821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Hydrogen Safety - Explosion Protection for Hydrogen Applications N2 - In this lecture the safety related properties og hydrogen compared to other fuel gases and the explosion protection measures of avoiding flammable mixtures, avoiding ignition sources and mitigating the consequences of explosions when handling hydrogen and hydrogen mixtures are presented. The Joint European Summer School JESS 2021 addresses these issues by offering high quality graduate level courses on selected topics of vehicle technology, innovation & business development, safe handling of hydrogen, and modelling. The course content is tailored to the needs of a diverse audience: newcomers to the field, experienced students, and young professionals working at the forefront of fuel cell and hydrogen applications. T2 - Joint European Summer School (JESS) CY - Online meeting DA - 06.09.2021 KW - Explosionsschutz KW - Explosionsgrenzen KW - Zündenergie KW - Zündquellen KW - Auswirkung von Explosionen PY - 2021 AN - OPUS4-53808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Is Methanogen-induced microbiologically influenced corrosion (Mi-MIC) underestimated? N2 - The role of methanogens in microbiologically influenced corrosion (Mi-MIC) is often neglected, due to 1) low reported corrosion rates and 2) the suspected corrosion product siderite, which is electrically non-conductive. Typically, MIC corrosion studies are carried out using batch cultures, which did not represent the dynamic conditions, i.e. pipeline and provide insufficient information on the overall corrosion potential. We established a unique approach, a multiport flow column (MFC), to simulate pipeline conditions and obtained 10-times higher corrosion rates than previously published. Our result showed that testing procedures have a large impact on the corrosive potential of methanogens. We found strong indications with a combination of ToF-SIMS, SEM-EDS and FIB-SEM analyses that siderite is not the sole corrosion product. The corrosion layers contain phosphorus, oxygen, magnesium, calcium and iron. To verify and deepen our understanding of Mi-MIC, we are currently studying the influence of other environmental parameters (e.g. pH) on Mi-MIC. T2 - VAAM 2021 CY - Online meeting DA - 18.03.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - MIC Island PY - 2021 AN - OPUS4-54042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Bender, B. ED - Göhlich, D. T1 - Korrosion und Korrosionsschutz T2 - DUBBEL - Taschenbuch für den Maschinenbau: Grundlagen und Tabellen N2 - Das Kapitel beginnt mit einer kurzen Einführung über die Korrosion (Wechselwirkung zwischen einem Metall, einer korrosiven Umgebung und der der jeweiligen Konstruktion). Im zweiten Abschnitt werden die wichtigsten Formen der wässrigen elektrochemischen Korrosion (Flächenkorrosion, galvanische, selektive und interkristalline Korrosion sowie Loch- und Spaltkorrosion) betrachtet. Darüber hinaus wird die elektrochemische Korrosion unter mechanischer Belastung betrachtet (Spannungsrisskorrosion, wasserstoffunterstützte Rissbildung, Korrosionsermüdung), sowie Sonderformen der Korrosion (Erosion, Fretting und mikrobiologisch induzierte Korrosion). Der dritte Abschnitt befasst sich mit der chemischen und Hochtemperaturkorrosion (Oxidation, Aufkohlung, Hochtemperatur-Wasserstoffangriff, Aufschwefelung, Nitrierung, Halogenierung). Zusätzlich enthält das Kapitel Maßnahmen zur Vermeidung der Korrosion. KW - Korrosion KW - Korrosionsschutz KW - Spannungsrisskorrosion KW - Wasserstoff KW - Loch- u. Spaltkorrosion PY - 2021 SN - 978-3-662-59710-1 DO - https://doi.org/10.1007/978-3-662-59711-8_34 VL - 1 SP - 691 EP - 725 PB - Springer-Verlag GmbH, ein Teil von Springer Nature CY - Berlin ET - 26 AN - OPUS4-52156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitu, M. A1 - Razus, D. A1 - Schröder, Volkmar T1 - Laminar burning velocities of hydrogen-blended methane-air and natural gas-air mixtures, calculated from the early stage of p(t) records in a spherical vessel JF - Energies N2 - The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore, their explosion characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have significant importance from a safety point of view. At the same time, the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study, an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH, follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of heat release, and the concentration of active radical species in the flame front and contribute, thus, to LBV variation. KW - Hydrogen KW - Methane KW - Natural gas KW - Laminar burning velocity (LBV) KW - Closed vessel combustion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569083 DO - https://doi.org/10.3390/en14227556 SN - 1996-1073 VL - 14 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters JF - Chemical Science N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kunte, Hans-Jörg A1 - Koerdt, Andrea ED - Eibergen, N. ED - Poulassichidis, T. T1 - Microbiologically Influenced Corrosion (MIC) by Halophilic (Salt-Loving) Nitrate and Sulfate-Reducing Microorganisms T2 - Corrosion 2021 N2 - The survey of Canadian shale sites showed a dominance of halophilic microorganisms, including Halomonas (HA). Nitrate-amended incubations of the field samples under high salinity (14.6% NaCl), revealed a dominance of HA (>72%) and an accumulation of nitrite. Nitrite accumulation directly inhibited the growth of SRB, thereby decreasing their souring and corrosion risks. However, accumulated nitrite may also contribute to iron corrosion, which will be tested by using different concentrations of nitrate as an electron acceptor to HA. Different salinities are further tested on HA strains supplemented with iron coupons to determine their effects on iron corrosion rates. HA incubated with separate cultures of corrosive methanogen and SRB were tested to determine whether a positive or adverse effect will occur between them. Lastly, analyses of iron coupons will be conducted using TOF-SIMS, FIB-SEM and EDS for corrosion product characterization T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Bacteria KW - Halophile KW - Corrosion KW - Environmental condition KW - Korrosion KW - High salinity PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2914f145-7f8f-ea11-813a-005056a95a7c SP - Paper C2021-16284, 1 AN - OPUS4-52479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koerdt, Andrea T1 - Mikrobiell beeinflusste Korrosion – die Testungsart entscheidet JF - Karriere, Köpfe & Konzepte N2 - In diesem kurzem Artikel wird die neue Testungsart druch Hi-Tension vorgestellt. Der Hauptfokus liegt dabei auf die Umweltsimulations-Säule, mit deren Hilfe die bisher bekannten Korrosionsraten von methanogenen Archaea signifikant erhöht wurden. KW - Hi-Tension KW - MIC KW - Methanogene KW - Umweltsimulation PY - 2021 DO - https://doi.org/10.1007/s12268-021-1507-7 VL - 27 SP - 100 EP - 100 PB - BIOspektrum Springer AN - OPUS4-52193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Babutzka, Martin A1 - Zekhnini, Khalid T1 - Mikrobielle Zusammensetzung im Wassertank N2 - Der Fachbereich 7.6 untersucht seit einiger Zeit an Auslagerungsständen auf dem Testgelände in Horstwalde Korrosion im maritimen Bereich. Im Moment läuft das System mit künstlichem Meerwasser und simuliert die Bewitterung von Metallproben unter angenäherten klimatischen Bedingungen ähnlich zum natürlichem Habitat. Im Laufe der Zeit konnte nicht intendierter mikrobieller bewuchs beobachtet werden. Es stellte sich die Frage, welche Mikroorganismen vorlagen und ob diese einen Einfluss auf die Korrosionsuntersuchungen haben könnte. Aus diesem Grund wurden 16S-rRNA Untersuchungen durchgeführt welche alle drei Domänen des Lebens widerspiegeln Bakterien, Archaea und Eukaryoten. Es konnte gezeigt werden, dass über 95% der vorliegenden Biomasse Grünalgen waren, die durch Licht Eintrag in den Container Photosynthese betrieben und dadurch an Biomasse zunahmen. Des weiteren konnten Bakterien detektiert werden, welche in der Regel halophilen und aeroben Habitaten zu finden sind. Allerdings wurden auch Sulfat reduzierende Bakterien (MIC) detektiert, wenn auch in einem geringen prozentualen Anteil. Es muss allerdings Berücksichtigt werden, dass die mikrobielle Zusammensetzung sich im Laufe der Zeit weiter ändern kann. Als Ursprung der Biomasse wird, das künstliche Sediment vermutet. Außerdem wäre es für zukünftige Experiment denkbar, das System mit echtem Sediment aus dem marinen Habitat anzuimpfen. T2 - Dechema CY - Online meeting DA - 10.11.2021 KW - Mikroorganismen KW - Mikrobielle Gemeinschaft KW - Korrosion KW - Simulation PY - 2021 AN - OPUS4-54035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Hille, Falk A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Papadrakakis, M. ED - Fragiadakis, M. T1 - Monitoring of a prestressed bridge model byultrasonic measurement and vibration recordings T2 - COMPDYN 2021 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - The aim of this work is to improve the current structural health monitoring (SHM) methods for civil structures. A field experiment was carried out on a two-span bridge with a built-in un-bonded prestressing system. The bridge is a 24-metre long concrete beam resting on three bear-ings. Cracks were formed subsequently when a prestressing force of 350 kN was changed to 200 kN, so that different structural states could be demonstrated. The structural assessment of this reference bridge was accomplished by the non-destructive testing using ultrasonic devices and vibration measurements. The ultrasonic velocity variations were investigated by using the coda wave interferometry method. The seismic interferometry technique was applied to the vi-bration recordings to reconstruct the wave propagation field in the bridge. This investigation shows that the wave velocity is sensitive to the current structural state and can be considered as the damage indicator. Overall, the implementation of coda cave interferometry and seismic interferometry technique facilitates structural health monitoring (SHM) in civil engineering. T2 - COMPDYN 2021 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering CY - Online meeting DA - 28.06.2021 KW - Structural health monitoring KW - Non-destructive testing KW - Coda wave interferometry KW - Seismic interferometry KW - Ultrasonic measurement KW - Prestress PY - 2021 SP - 1 EP - 9 PB - European Community on Computational Methods in Applied Sciences (ECCOMAS) AN - OPUS4-52957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Deland, Eric ED - Eibergen, N. ED - Poulassichidis, T. T1 - Novel Multiport Flow-Column Corrosion Monitoring System (MFC) Revealed High Corrosion Rates by Corrosive Methanogenic Archaea T2 - Corrosion 2021 N2 - MFC was used to study the corrosiveness of iron-utilizing methanogen, Methanobacterium IM1 under flow conditions. Comparing against electrical SRM, Desulfovibrio ferrophilus IS5, results showed under standard mesophilic conditions, average corrosion rates of Methanobacterium IM1 was double that of SRM. The highest corrosion rate of Methanobacterium IM1 reached up to 0.60 mm/yr under neutral conditions, and severe pitting was observed on the iron surface. Furthermore, the corrosion products of Methanobacterium IM1 were characterized with TOF-SIM, FIB-SEM and EDX, and preliminary results revealed FeCO3 is not the only corrosion product of Mi-MIC, as previously reported. Under low pH conditions, the maximum corrosion rate of Methanobacterium IM1 reached 1.57 mm/yr, which resulted in severed deformity of the iron specimen. Additional comparisons using different types of incubation material were conducted to standardize MFC MIC testing. T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Microbiologically influenced corrosion KW - Biocorrosion KW - Hi-Tension KW - Environmental condition KW - Flow Model KW - Modelling KW - Korrosion PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2b6387be-7390-ea11-813a-005056a95a7c SP - Paper C2021-16303, 1 AN - OPUS4-52480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Taché, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. T1 - Other than spherical/monodisperse Towards real world NPs as candidate reference materials for traceable size measurements N2 - By far most of the current nanoparticle (NP) research is dealing with (quasi-) spherical and/or monodisperse particles. However, many NPs used in industrial applications are rather aspherical and polydisperse. This inhomogeneity considerably hampers their characterization and, particularly, the accurate determination of the nanoparticle size. In order to overcome this problem and to promote the availability of standardized size measurement methods, it is crucial to develop and establish (candidate) reference materials with inhomogeneous size (distribution), aspherical shape as well as agglomerated or aggregated particles. Therefore, a new set of NPs including Au-, SiO2 , and TiO2-particles is investigated. The range of properties comprises polydisperse spherical, bimodal spherical, rod-like, acicular, bipyramidal, sheet-like as well as cubic NPs. With respect to a good traceability of the measurements, size and size distributions of the candidate reference materials are determined using microscopic methods like scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning electron microscopy in transmission mode (STEM-in-SEM), atomic force microscopy (AFM) as well as small angle X-ray scattering (SAXS) as an ensemble technique. The development of protocols for sample preparation is of particular importance to obtain a homogeneous dispersion of the NPs on a substrate. Further, approaches for signal modelling for all the methods above are being developed. The initiation of two VAMAS (www.vamas.org/twa34/index.html) inter-laboratory comparisons on bipyramidal titania and bimodal silica with different modal concentration ratios will be also highlighted. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Nanoparticles KW - Particle size distribution KW - Imaging KW - Traceability KW - Reference material PY - 2021 AN - OPUS4-52764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Nicolas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection JF - Nature Communications N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic Treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell Surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538532 DO - https://doi.org/10.1038/s41467-021-27019-8 SN - 2041-1723 VL - 12 IS - 1 SP - 6792 PB - Springer AN - OPUS4-53853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior JF - Materials and Corrosion N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Hodoroaba, Vasile-Dan A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part II: Effect on biofilm formation and microbially influenced corrosion processes JF - Materials and Corrosion N2 - Biofilm formation and microbially influenced corrosion of the iron-reducing microorganism Shewanella putrefaciens were investigated on stainless steel surfaces preconditioned in the absence and presence of flavin molecules by means of XANES (X-ray absorption near-edge structure) analysis and electrochemical methods. The results indicate that biofilm formation was promoted on samples preconditioned in electrolytes containing minute amounts of flavins. On the basis of the XANES results, the corrosion processes are controlled by the iron-rich outer layer of the passive film. Biofilm formation resulted in a cathodic shift of the open circuit potential and a protective effect in terms of pitting corrosion. The samples preconditioned in the absence of flavins have shown delayed pitting and the samples preconditioned in the presence of flavins did not show any pitting in a window of −0.3- to +0.0-V overpotential in the bacterial medium. The results indicate that changes in the passive film chemistry induced by the presence of minute amounts of flavins during a mild anodic polarization can change the susceptibility of stainless steel surfaces to microbially influenced corrosion. KW - Biofilms KW - XANES KW - Microbially influenced corrosion (MIC) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528130 DO - https://doi.org/10.1002/maco.202012192 VL - 72 IS - 6 SP - 983 EP - 994 PB - Wiley AN - OPUS4-52813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa JF - Frontiers in Microbiology N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Keßler, S. A1 - Maack, Stefan T1 - Reliability assessment of existing structures using results of nondestructive testing JF - Structural Concrete N2 - Making optimal decisions about the reliability of existing structures requires that the information used in assessment adequately represents the properties and the condition of the structures. The knowledge gap regarding a structure to be assessed can be successively filled by individually purposeful observations on site. This paper gives an overview of an approach for utilizing nondestructively gathered measurement results in reliability assessment of existing structures. An essential part of measurement-based stochastic modeling of basic variables is the calculation of measurement uncertainties, which serves to establish confidence in measurement, to ensure the comparability of unambiguously expressed measurement results, and to quantify the quality of the measured information. Regarding the current discourse on how to treat information collected on-site in the context of assessment, the authors recommend that measurement uncertainty becomes an uncertainty component mandatorily to be represented in measurement-based stochastic models. The main steps of the proposed concept are presented, and the advantages of its application are emphasized by means of a prestressed concrete bridge as case study. The bridge is assessed regarding the serviceability limit state decompression using ultrasonic and radar data measured at the structure. KW - Bridge KW - Measurement uncertainty KW - Prestressed concrete KW - Stochastic modeling KW - Probabilistic methods PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529927 DO - https://doi.org/10.1002/suco.202100226 SN - 1751-7648 VL - 22 IS - 5 SP - 2895 EP - 2915 PB - John Wiley & Sons Ltd CY - Oxford AN - OPUS4-52992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Sicherheitstechnische Eigenschaften von Erdgas/Wasserstoff-Gemischen - Auswirkungen auf den Explosionsschutz N2 - Hinsichtlich ihrer sicherheitstechnischen Kenngrößen (STK) unterscheiden sich Wasserstoff und Erdgas zum Teil stark. Im Vortrag werden verschiedene STK von Erdgas/Wasserstoff-Gemischen im Abhängigkeit des Wasserstoffanteils vorgestellt und die Auswirkung der Beimischung von Wasserstoff zum Erdgas auf die Wirksamkeit von Explosionsschutzmaßnahmen erläutert. T2 - DVGW-Kongress 2021 "Gasinfrastruktur für Erdgas-H2-Gemische" CY - Online meeting DA - 07.10.2021 KW - Explosionsschutz KW - Explosionsgrenzen KW - Zündenergie KW - Power to Gas KW - Erdgasnetz KW - Zündquellen PY - 2021 AN - OPUS4-53725 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Behrens, H T1 - Sintering and Foaming of Silicate Glass Powders N2 - The lecture focuses on the mechanisms of non-desired gas bubble formation and foaming during the sintering of glass powder compacts. It is shown that foaming is driven by carbon gases and that carbonates, encapsulated in micropores or mechaniacally dissolved beneath the glass surface, provide the major foaming source. T2 - Sandanski Workshop Sinter crystallization 27th-29th September 2021 PROJECT “THEORY AND APPLICATIONS OF SINTER-CYSTALLIZATION” DN 19/7 CY - Online meeting DA - 27.10. 2021 KW - Sintering KW - Non-desired foaming PY - 2021 AN - OPUS4-53772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Iwert, C. A1 - Stein, J. A1 - Appelt, C. A1 - Vogt, K. A1 - Rainer, R. J. A1 - Tummler, K. A1 - Mühle, K. A1 - Stanko, K. A1 - Schumann, J. A1 - Uebe, D. A1 - Jürchott, K. A1 - Lisec, Jan A1 - Janek, K. A1 - Gille, C. A1 - Textoris-Taube, K. A1 - Sai, S. A1 - Petersen, A. A1 - Kühl, A. A. A1 - Klipp, E. A1 - Meisel, C. A1 - Sawitzki, B. T1 - TCAIM controls effector T cell generation by preventing Mitochondria-Endoplasmic Reticulum Contact Site-initiated Cholesterol Biosynthesis T2 - bioRxiv N2 - T cells need to adapt their cellular metabolism for effector cell differentiation. This relies on alterations in mitochondrial physiology. Which signals and molecules regulate those alterations remains unclear. We recently reported, that the mitochondrial protein TCAIM inhibits activation-induced changes in mitochondrial morphology and function and thus, CD effector T cell formation. Using conditional TCAIM knock-in (KI) and knockout (KO) mice, w now show that it also applies to CD8+ T cells and more importantly, delineate the molecular processes in mitochondria by which TCAIM controls effector cell differentiation. TCAIM KI resulted in reduced activation-induced HIF1α protein expression. Metabolomics and transcriptional data in combination with mathematical flux modeling revealed an impaired induction of anabolic pathways, especially of the mevalonate pathway and cholesterol biosynthesis in TCAIM KI CD8+ T cells. Addition of cholesterol completely rescued HIF1α protein expression, activation and proliferation of TCAIM KI CD8+ T cells. At the molecular level, TCAIM delayed activation-induced mitochondria-ER contact (MERC) formation by binding to MERC promoting proteins such as RMD3 and VDAC2. In summary, we demonstrate that TCAIM suppresses effector cell differentiation by inhibiting MERC formation, which induce HIF1α-mediated increase in cellular metabolism and cholesterol biosynthesis. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533543 UR - https://www.biorxiv.org/content/10.1101/2021.04.20.440500v1 DO - https://doi.org/10.1101/2021.04.20.440500 VL - April SP - 1 EP - 45 PB - Cold Spring Harbor Laboratory AN - OPUS4-53354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Troitzsch, J. ED - Antonatus, E. T1 - The Burning of Plastics T2 - Plastics Flammability Handbook N2 - The burning of a polymer is a physico–chemical process strongly influenced by the coupling of a chemical reaction – oxidation of fuel – in the gas phase with a chemical decomposition reaction – pyrolysis – in the condensed phase via heat and mass transfer. The heat and mass flux control the intensity of fire and the ablation of fuel. Indeed, the temperature profile as a function of time may be one of the most important responses of a specimen to understand its burning behavior. Further, several physical phenomena, such as the heat absorption of the materials, thermal conductivity, and also melt flow and dripping, play a major role in determining ignition, flammability, and fire behavior. The burning of a polymer is very complex. The various phenomena interact with each other, e. g., pyrolysis also influences the viscosity of the melt, and, thus, whether dripping or charring results in a protective layer, increasing the shielding effect of the residual protective layer. Only a detailed and comprehensive description opens the door to a well-founded understanding of the burning behavior of polymeric materials. KW - Fire behaviour KW - Plastics KW - Pyrolysis KW - Decomposition KW - Ignition KW - Smoldering KW - Flame spread KW - Steady burning KW - Fire load KW - Fire resistance PY - 2021 SN - 978-1-56990-762-7 SP - 23 EP - 52 PB - Hanser CY - Munich ET - 4th Edition AN - OPUS4-52684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büttner, C. A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Friedrich, C. T1 - Ultrasonic Echo Localization Using Seismic Migration Techniques in Engineered Barriers for NuclearWaste Storage JF - Journal of Nondestructive Evaluation N2 - In the framework of non-destructive-testing advanced seismic imaging techniques have been applied to ultrasonic echo data in order to examine the integrity of an engineered test-barrier designed to be used for sealing an underground nuclear waste disposal site. Synthetic data as well as real multi-receiver ultrasonic data acquired at the test site were processed and imaged using Kirchhoff prestack depth migration reverse time migration (RTM). In general, both methods provide a good Image quality as demonstrated by various case studies, however deeper parts within the test barrier containing inclined reflectors were reconstructed more accurately by RTM. In particular, the image quality of a specific target reflector at a depth of 8 m in the test-barrier has been significantly improved compared to previous investigations using synthetic aperture Focusing technique, which justifies the considerable computing time of this method. KW - Radioactive waste disposal KW - Engineered barrier KW - Ultrasound KW - Imaging KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537956 DO - https://doi.org/10.1007/s10921-021-00824-3 SN - 0195-9298 VL - 40 IS - 4 SP - 1 EP - 10 PB - Springer AN - OPUS4-53795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Von Elementspezies, Isotope und Zellen oder: wie kommt man eigentlich von Westfalen nach Berlin N2 - Im Rahmen des Vortrages werden die Möglichkeiten der Elementanalytik an Applikationsbeispielen aus Umwelt und life-sciences aufgezeigt. Hierbei kommen ICP-MS Kopplungstechniken, stabile Isotope und Einzellen- und Partikelanalytik (sc-/sp-ICP-ToF-MS) zum Einsatz. T2 - DAAS PhD Seminar CY - Online meeting DA - 20.09.2021 KW - Elementspezies & Isotope KW - ICP-MS & HR-CS-GFMAS KW - Kopplungstechniken PY - 2021 AN - OPUS4-53378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -