TY - JOUR A1 - Kalinka, Gerhard A1 - ElAbshihy, K. T1 - Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation N2 - Characterization of the size and mechanical properties of interphases is essential when designing multicomponent materials. When nanoindentation is used to investigate the size and mechanical properties of an interphase, a common challenge is that the indenter or the stress zone formed around it are often restricted by the reinforcement, making it difficult to distinguish the mechanical property variations caused by the interphase itself from those caused by the boundary effect. In this work, a testing system was developed that allows determining the indent affected zone and accounting for it in the interphase measurements of an epoxy/Cu system. Using finite element analysis, we confirmed the validity of the proposed system. Nanoindentation was used to investigate the Interphase between copper and two different epoxy systems; amine-cured and anhydride-cured. Nanoindentation results showed that a copper layer that is only 10 nm thick still exhibits a constriction effect on the indentations in its vicinity. The amine-cured epoxy did not show any sign of interphase existence using the introduced method. However, a soft interphase with a thickness of ~1.7 μm was measured on theanhydride-cured epoxy. Furthermore, we show that the proposed system can be used to determine the interphase thickness as well as its relative mechanical properties regardless of the indentation depth. This system can be further used for investigating other polymer/metal interphases to better understand the factors influencing them, thus helping engineer the interphase size and properties to enhance composite performance. KW - Interphase KW - Polymer-metal KW - Epoxy KW - Copper KW - Composites KW - Nanoindentation PY - 2017 U6 - https://doi.org/10.1080/09276440.2017.1286878 SN - 0927-6440 SN - 1568-5543 VL - 24 IS - 9 SP - 833 EP - 848 PB - Taylor & Francis CY - UK AN - OPUS4-39128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Wachtendorf, Volker T1 - Self-healing silicone rubber for F-POF partial discharge sensors in HV cable accessories N2 - To avoid a catastrophic failure of insulation in high-voltage (HV) applications, a monitoring of partial discharges (PD) is necessary. Fluorescently labelled polymer optical fibres (F-POF) offer an electrically passive method for PD detection in HV facilities. F-POF could be embedded into HV cable insulation material, which are usually made of silicone rubber. Due to the difficult accessibility of HV cable accessories, a self-healing silicone rubber, based on incorporated capsules, with prolonged service life after PD detection represents an attractive material design for HV electrical insulation. T2 - 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Fluorescent polymer optical fibres KW - Partial discharge detection KW - High voltage cable accessories KW - Self-healing KW - Silicone rubber PY - 2017 AN - OPUS4-42511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media T1 - Improving polymer matrix additives for composite structures: a focus on boehmite N2 - The aims of the Research Unit „Acting Principles of Nano-Scaled Matrix Additives for Composite Structures“ (DFG FOR 2021) are based on different synergetic pathways. Challenges are to achieve an improved damage tolerance combined with unchanged processability and a proof of the nano-based effect from molecular scale up to structural level. First of all, a comprehensive understanding of the acting mechanisms of nano-scaled ceramic additives onto polymer matrices of continuous fibre reinforced polymer composites with respect to improved matrix dominated properties is in focus. To proof of the nanoscopic and microscopic effects up to structural level; experimental investigations start on the functional correlation between the particle properties and the resulting properties of the epoxy as suspension and in the solid state. This includes tests for the resulting composite structures as well. Along the entire process chain different multi-scale simulations are performed from molecular modelling up to the macroscopic, structural level. The combination of experimental investigations and simulation methods enables a holistic understanding of the acting principles and basic mechanisms. Specialized techniques based on Scanning Force Microscopy are the basis of our analysis of physicochemical properties of the boehmite nanoparticles and their polymer environment. A surface map of mechanical properties as an input for simulations facilitate a deeper understanding of such composites across all scales. This enables us to understand the macroscopic structure-property relationship and to predict failure mechanisms as well as routes for optimization. T2 - 92nd DKG annual meeting and symposium on high performance ceramics CY - Berlin, Germany DA - 19.03.2017 KW - Boehmite nanoparticle KW - Intermodulation AFM KW - Composite structures KW - Pull-out test KW - Thermoset KW - Crack propagation energy PY - 2017 AN - OPUS4-39519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Czarnecki, Sebastian A1 - Hackelbusch, Sebastian T1 - Bioinspired hybrid organic-inorganic copolymers N2 - The demand for high-performance materials has strongly increased over the last decade. One way to improve their performance is to introduce material gradients as found in Nature (for example squid beaks, spider fangs, mussel byssal threads). One path towards the achievement of such material gradients is the synthesis of hybrid (gradient) copolymers, for instance based on silane and organic monomers. Since not all gradient copolymers can be synthesized by utilising the reactivity ratios of the monomers, forced gradients have to be used. However, in order to obtain gradient copolymers at high conversions, living or pseudo-living copolymerizations have to be performed and so far only few hybrid (organic / inorganic) gradient copolymers have been reported. In this contribution we will present the synthesis of a novel organic / inorganic hybrid copolymer via controlled radical polymerization. T2 - 5th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Lisbon, Portugal DA - 06.03.2017 KW - Hybrid organic-inorganic copolymers KW - RAFT polymerization KW - ATRP polymerization PY - 2017 AN - OPUS4-39464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Taabache, Soraya A1 - Maskos, M. T1 - Controlled Self-Assembly of Janus Dendrimers via Microfluidics N2 - Unilamellar vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of endgroups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 10th International Dendrimer Symposium CY - Weihai, China DA - 05.08.2017 KW - Micromixers KW - Janus dendrimers KW - Vesicles KW - Self-assembly PY - 2017 AN - OPUS4-41464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Luman A1 - de Greef, Nils A1 - Kalinka, Gerhard A1 - Van Bilzen, Bart A1 - Locquet, Jean-Pierre A1 - Verpoest, Ignaas A1 - Won Seo, Jin T1 - Carbon nanotube-grafted carbon fiber polymer composites: Damage characterization on the micro scale N2 - Multiwall carbon nanotubes (CNTs) e carbon fibers (CFs)hybrid materials were produced by directly growing CNTs on CFs by means of chemical vapor deposition. For the latter, the oxidative dehydrogenation reaction of C2H2 and CO2 was applied, which allows growing CNTs without damaging the CF surface. Uni-directional nano-engineered carbon fiber reinforced composites (nFRCs) were fabricated by impregnating these hybrid materials with epoxy. The nFRCs subjected to single fiber push-out tests revealed a decrease of the interfacial shear strength (IFSS) of about 36% compared to the carbon fiber composites without CNTs. By means of transverse three-point bending tests performed on pre-notched composite beams inside a scanning electron microscope, the fracturing behavior parallel to the fibers was studied in-situ. The nFRCs showed significantly reduced fiber/matrix debonding while CNTs pull-out, CNTs bridging as well as matrix failure occurred. These results demonstrate that the presence of CNTs in nFRCs affects the stress distribution and consequently the damage Initiation as well as the damage propagation. The presence of CNTs suppresses the stress concentration at the fiber/Matrix interface and reduces the debonding of CFs from the matrix. However, our results indicate that the stress concentration shifts towards the CNTs' ends/matrix interface and causes promoted matrix failure leading to lower IFSS. KW - Carbon fibres nanotubes interface PY - 2017 U6 - https://doi.org/10.1016/j.compositesb.2017.06.004 SN - 1359-8368 SN - 1879-1069 VL - 126 SP - 202 EP - 210 PB - Elsevier CY - Niederlande AN - OPUS4-42202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Kent, B. A1 - ten Brummelhuis, N. A1 - Schönhals, Andreas A1 - Asadujjaman, Asad T1 - Upper Critical Solution Temperature (UCST)-type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers that phase separate from solution upon cooling present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We want to present our latest results on the copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) that present a UCST in water as well as on two homopolymers based on an acrylamide derivative of 2,6-diaminopyridine, namely poly(N-(6-aminopyridin-2-yl)acrylamide) (PNAPAAm) and poly(N-(6-acetamidopyridin-2-yl)acrylamide) (PNAcAPAAm) that show UCST-type thermoresponsiveness in water/alcohol mixtures. Our focus for P(AAm-co-AN)) is its aggregation behaviour above and below its phase transition temperature as the size of thermoresponsive polymeric systems is of prime importance for biomedical applications (as size dependent processes take place in the body) and is linked to the optical properties of a material that matter in materials science. In the case of PNAPAAm and PNAcAPAAm, we focused on the co-solvency/co-non solvency effect on the phase transition temperature in water/alcohol mixture. Indeed, polymers with UCST behavior below 60°C in water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. T2 - Soft smart responsive materials workshop: Fundamentals and applications (SmartCECAM) CY - Mainz, Germany DA - 11.05.2017 KW - Thermoresponsive polymers KW - UCST-type polymers KW - poly(acrylamide-co-acrylonitrile) KW - 2,6-diaminopyridine-based polymers KW - co-solvency in water/acohol mixture PY - 2017 AN - OPUS4-40211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena T1 - Entwicklung eines mechanisch verstärken und selbstheilenden Silikonelastomers auf Basis eines Kapsel-basierten Ansatzes N2 - Im Arbeitskreis von Herrn Prof. Dr. Menzel (TU Braunschweig) wurde in Sievershausen ein Vortrag zum Thema „Self-healing and mechanically reinforced silicone rubber by the use of multifuctional capsules“ gehalten. Der Vortrag beginnt mit einer kurzen Motivation und einem Überblick über selbstheilende Materialien. Daraufhin werden die Ergebnisse zur Entwicklung eines selbstheilenden Silikonelastomers auf Basis von Kapseln, bestehend aus einem PDMS Kern und einer POS Hülle, dargestellt. Es folgt die Analytik, die auf DLS, TGA, UV/Vis und Fluoreszenzspektroskopie sowie SEM beruht. Der Vortrag endet mit einem Ausblick über zukünftige Arbeiten auf dem Gebiet. T2 - Seminar in Sievershausen CY - Sievershausen, Lehrte, Germany DA - 07.06.2017 KW - Selbstheilung KW - PDMS PY - 2017 AN - OPUS4-40857 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Schönhals, Andreas A1 - ten Brummelhuis, N. A1 - Ahmadi, Vahid A1 - Asadujjaman, Asad T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bioorganik 2017 – 26th Symposium "Bioorganic Chemistry" for young researchers CY - Berlin, Germany DA - 20.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine KW - Acrylamide PY - 2017 AN - OPUS4-42007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Wachtendorf, Volker T1 - Self-healing silicone rubber for fluorescent partial discharge POF sensors in high-voltage cable accessories N2 - To avoid a catastrophic failure of insulation in high-voltage (HV) applications, a monitoring of partial discharges (PDs) is necessary. Fluorescently labelled polymer optical fibers (F-POF) offer an electrically passive method for PD detection in HV facilities. F-POFs could be embedded in HV cable accessories, which are usually made of silicone rubber. Herein they detect the light emitted by the PD and convert it into an electrical signal that can be monitored. Due to the difficult accessibility of HV cable accessories, a self-healing silicone rubber with prolonged service life after PD detection represents an attractive material design for HV accessories. With this contribution, we would like to present and discuss the possibilities of combining self-healing materials with POF-based sensors for PD detection in HV applications. T2 - 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Fluorescent polymer optical fibres KW - Partial discharge detection KW - High voltage cable accessories KW - Self-healing KW - Silicone rubber PY - 2017 SN - 978-989-97345-2-4 SP - paper 16, 1 EP - 5 AN - OPUS4-42510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg A1 - Altmann, Korinna A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula T1 - Coating of carbon fibers with adhesion-promoting thin polymer layers using plasma polymerization or electrospray ionization technique—A comparison N2 - Plasma polymers and electrospray-ionization (ESI) polymer layers are compared for most efficient adhesion promotion in carbon fiber-epoxy resin composites. The ultra-thin ESI layers (2–30 nm) of commercial poly(acrylic acid) and poly-(hydroxyethylmethacrylate) produce an significant increase of adhesion measured by single-fiber pull out tests. However, plasma Treatment has also advantages, such as simultaneous activation of the fiber substrate. Chemical structure and composition are rather far from the regular structure of commercial polymers as deposited by ESI processing. KW - Plasma polymers KW - Electrospray ionization polymers KW - Poly(acrylic acid) KW - Poly- (hydroxyethylmethacrylate) PY - 2017 U6 - https://doi.org/10.1002/ppap.201600074 SN - 1612-8869 SN - 1612-8850 VL - 14 IS - 3 SP - e1600074-1 EP - 14 AN - OPUS4-40510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Taabache, Soraya A1 - Maskos, M. T1 - Controlled self-assembly of Janus dendrimers via microfluidics N2 - Vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of end groups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 6th Annual workshop on biomaterials and their interactions with biological and model membranes 2017 CY - Altafulla, Spain DA - 07.09.2017 KW - Janus dendrimers KW - Dendrimersomes KW - Microfluidic PY - 2017 AN - OPUS4-41903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Séminaire Laboratoire de Chimie des Polymères (LCP), UPMC, Paris CY - Paris, France DA - 28.09.2017 KW - UCST-type polymers KW - H-bonding monomers PY - 2017 AN - OPUS4-42478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Taabache, Soraya A1 - Maskos, M. T1 - Controlled self-assembly of Janus dendrimers via microfluidics N2 - Vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) -5 as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of end groups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 11th Young Scientists' Workshop, Fraunhofer ICT-IMM CY - Mainz, Germany DA - 27.09.2017 KW - Vesicles KW - Dendrimersomes KW - Micromixer PY - 2017 AN - OPUS4-42479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Schönhals, Andreas A1 - ten Brummelhuis, N. T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - UCT&IOCB Theoretical Chemistry Seminars CY - University of Chemistry and Technology, Department of Physical Chemistry, Prague, Czech Republic DA - 24.11.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine PY - 2017 AN - OPUS4-43129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Prewitz, Marc T1 - Charakterisierung von Glas-Polymer Verbundmaterialien fur die Hochdruckspeicherung von Wasserstoff N2 - In der vorliegenden Arbeit werden Glaskapillaren und Strukturen aus Borosilikatglas (Simax) f¨ur die Hochdruckspeicherung von Wasserstoff betrachtet. Um die mechanischen Belastungen zu analysieren und anschließend ein optimiertes Speicherdesign abzuleiten, findet die Finite Element Methode (FEM) Einsatz. Die notwendigen Materialkennwerte werden zuvor experimentell ermittelt. Dazu geh¨oren die Festigkeit, die Schubfestigkeit der Grenzfl¨ache Klebung/Glas, der Wasserstoffpermeationskoeffizient, das Temperatur-Zeit-abh¨angige Verhalten, sowie die obere Temperatureinsatzgrenze. Die Glasfestigkeit ist stark abh¨angig von der Oberfl¨acheng¨ute. Daher werden in dieser Arbeit Kapillaren selber gezogen und beschichtet. Der Einfluss auf die Festigkeit wird mit Hilfe von Berstversuchen untersucht. Die eingesetzten Polymere werden zus¨atzlich mit dem Push-out Versuch, der dynamisch mechanischen Analyse und der Permeationsmessung charakterisiert. Dar¨uber hinaus wird aus den DMA Versuchen ein viskoelastisches Materialmodell abgeleitet, womit der Temperatur- und Zeiteinfluss auf die mechanische Belastung simuliert wird. Unter Beachtung der experimentell gewonnenen Erkenntnisse, sowie der durchgef¨uhrten Simulation ist es m¨oglich, ein optimiertes Speicherdesign zu erstellen und Aussagen ¨uber die Einsatzgrenzen zu treffen. KW - Wasserstoffspeicherung KW - Glaskapillaren KW - Polymercoating PY - 2017 UR - https://depositonce.tu-berlin.de/handle/11303/6261 SP - 1 EP - 150 CY - Berlin AN - OPUS4-51065 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -