TY - CONF A1 - Kalinka, Gerhard T1 - Optische Beobachtungen der Faser-Matrix-Trennung im Pull-out-Versuch N2 - Der Vortrag behandelt Rissentstehung und Ausbreitung an Faser-Matrix-Interfaces, untersucht mit dem optischen Mikroskop. T2 - Composites United, CU-Arbeitsgruppe/n Faser-Matrix-Haftung & Matrices CY - Online meeting DA - 02.12.2021 KW - Faser KW - Matrix KW - Pull-out KW - Interface PY - 2021 AN - OPUS4-53968 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraa, Lucas A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Roetsch, Karl A1 - Scheffler, Christina A1 - Sambale, Anna A1 - Uhlig, Kai A1 - Stommel, Markus A1 - Trappe, Volker T1 - Characterisation and Modelling of the Fibre-Matrix Interface of Short Fibre Reinforced Thermoplastics using the Push-Out Technique N2 - This study investigates the suitability of the single fibre push-out (SFPO) test for the determination of the interfacial shear strength (IFSS) of injection moulded short fibre reinforced thermoplastics. It includes a detailed description of the required sample preparation steps and the boundary conditions of the SFPO setup. Experimental SFPO tests were carried out on PA66 GF, PPA GF35 and PA6 GF50 materials. Furthermore, a finite element model was set up to simulate the behaviour of these materials during this test. The numerical results showed that the inhomogeneous stress distribution in the fibre-matrix interphase during the test causes the measured apparent IFSS to underestimate the true strength of the interphase. The simulations put the experimental results into perspective and provide valuable information for the further development of the test setup. This study therefore not only provides new insights into the interphase strength of injection moulded short fibre reinforced thermoplastics, but also an insight into local load conditions during testing and thus an indication of the true IFSS. KW - GFRP KW - Interface KW - fibre matrix bond KW - single fibre push-out PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626087 DO - https://doi.org/10.1016/j.compositesb.2025.112317 SN - 1879-1069 VL - 297 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-62608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodricks, Carol Winnifred A1 - Prockat, Annabell A1 - Kalinka, Gerhard A1 - Trappe, Volker T1 - Novel Recyclable Hierarchical Carbon Fiber/Epoxy Composites: Preserving Fiber Length and Orientation Using Elium N2 - Current recycling methods for polymer matrix composites produce short, unoriented carbon fibers, limiting their use to intermediate‐strength applications. A method is therefore needed to recycle fibers while preserving their original length and orientation, enabling a circular economy for carbon fiber composites. This study proposes a novel hierarchical composite designed to retain fiber length and orientation during recycling. Virgin carbon fibers are encased in an insoluble epoxy matrix to form tapes that act as the primary units of the structure. The primary tape matrix shields the fibers from chemical degradation while preserving their alignment throughout recycling. The tapes are then embedded in a secondary recyclable matrix, Elium, a thermoplastic polymer soluble in acetone with mechanical properties comparable to epoxy. The composite is recycled by dissolving the secondary Elium matrix in acetone and recovering the primary tape units with intact fiber length and orientation. The primary units can then be used to assemble new composites. In this study, hierarchical composite laminates underwent recycling up to three times. Their mechanical properties were assessed after each cycle. Laminates with an Elium secondary matrix retained 60%–90% of the mechanical performance of epoxy‐based laminates. Minimal degradation was observed between cycles, and fiber length, orientation, and volume fraction were fully preserved. Pushout tests confirmed that fibers in the primary tapes were sufficiently shielded during the recycling process. These results validate the feasibility of a hierarchical recyclable composite that combines recyclability with high mechanical performance, serving as a proof of concept and providing opportunities for future development. KW - Review KW - Interface KW - Micromechanics KW - Polymer matrix composites KW - Glass fibre reinforced composites PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655276 DO - https://doi.org/10.1002/pc.70869 SN - 0272-8397 SP - 1 EP - 16 PB - Wiley Periodicals LLC. AN - OPUS4-65527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colombo, Marta A1 - Mostoni, Silvia A1 - Fredi, Giulia A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Riva, Massimiliano A1 - Vassallo, Andrea A1 - Di Credico, Barbara A1 - Scotti, Roberto A1 - Zappalorto, Michele A1 - D'Arienzo, Massimiliano T1 - Interfacial Chemistry Behind Damage Monitoring in Glass Fiber‐Reinforced Composites: Attempts and Perspectives N2 - Glass Fiber Reinforced Polymers (GFRPs) are widely used in structural applications but degrade over time due to internal damage. Structural Health Monitoring (SHM) enables early damage detection, improving reliability and reducing maintenance costs. Traditional SHM methods are often invasive and expensive. An emerging solution involves the embedding of carbon‐based filler like carbon nanotubes and reduced graphene oxide into GFRPs, forming conductive networks that detect damage through resistance changes. However, poor adhesion among GF, filler, and matrix can reduce mechanical performance. Therefore, tailoring GF and filler surface chemistry is essential to enhance durability and enable effective self‐sensing properties. This review summarizes the most recent efforts in modifying GF with carbon‐based filler to design GFRP with improved sensing ability and mechanical performance. After a brief introduction on the role of SHM solutions in early damage detection, an overview of the common GF and filler used in GFRPs will be provided. Then, the most relevant GF modification strategies exploited to incorporate carbon‐based filler in GFRPs will be described, focusing on the chemical grafting approach, which allows a careful optimization of the fiber/matrix interface. Last, a concise summary of the key mechanical and electrical tests to evaluate interfacial adhesion and self‐sensing will be supplied. KW - Review KW - Interface KW - Micromechanics KW - Polymer matrix composites KW - Glass fibre reinforced composites PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639934 DO - https://doi.org/10.1002/pc.70332 SN - 0272-8397 SP - 1 EP - 30 PB - Wiley AN - OPUS4-63993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -