TY - CONF A1 - Marotzke, Christian A1 - Kalinka, Gerhard T1 - Local failure processes in fiber reinforced polymers N2 - The breakage of a fiber and its effect on the strain energy is studied in a model composite, this is, a single fiber embedded in a dogbone specimen. The fracture process is recorded by an acoustic emission device, the crack patterns are monitored under a microscope. A finite element analysis is performed in order to estimate the energy released by different failure scenarios. The abilities and limitations of the acoustic emission analysis in characterizing different failure types in fiber reinforced composites are evaluated. T2 - ICCM17 - 17th International conference on composite materials CY - Edinburgh, UK DA - 2009-07-27 KW - Fiber KW - Interface KW - Composite material KW - Failure KW - Acoustic emission KW - Fracture mechanics KW - Energy release rate KW - Finite element analysis PY - 2009 IS - D7:8 SP - 1 EP - 10 CY - Edinburgh, UK AN - OPUS4-21295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greenhalgh, E.S. A1 - Ankersen, J. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. A1 - Houlle, M. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Mistry, M. A1 - Nguyen, S. A1 - Qian, H. A1 - Shaffer, M.S.P. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Mechanical and microstructural characterisation of multifunctional structural power composites N2 - Although the inherent anisotropy of polymer composites has presented daunting technical challenges, these materials now offer engineers considerable opportunities for efficient structural design. More recently, the advent of multifunctional composites which can fulfill more than one role within a system has attracted considerable interest, providing designers with exciting opportunities to innovate. Of particular interest here are structural power composites, which simultaneously carry mechanical load whilst storing/delivering electrical energy. Although the development of these composites is highly challenging, often with conflicting constituent requirements, the STORAGE consortium has had considerable success in the development of these materials for automotive applications. The focus of this paper is structural supercapacitors, the basic architecture of a single cell of which is shown in Fig. 1. This entails two carbon fibre woven lamina (electrodes) which sandwich a glass fibre woven lamina (separator), all of which is embedded within a multifunctional matrix (electrolyte). This architecture has been the focus of the research to date, leading to components such as that shown in Fig.1 having been fabricated. This paper reports on the mechanical properties and microstructures of the different reinforcement and matrix combinations for structural supercapacitors. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Fractography KW - Ionic conductivity KW - Mechanical properties PY - 2013 SP - 2228 EP - 2237 AN - OPUS4-29272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Greenhalgh, E.S. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Jacobsson, P. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Wienrich, Malte A1 - Steinke, J.H.G. T1 - Correlations between mechanical properties and ionic conduction of structural electrolytes with bicontinuous morphologies N2 - Electrolyte systems that can carry mechanical load while allowing for high levels of ionic conductivity are an important prerequisite for structural power storage devices. Introduction of structural power storage into the variety of consumer products will allow saving in weight and volume. Moreover, using a supercapacitor/battery system in hybrid electric vehicles (HEV), the supercapacitor part will extend the battery lifetime by protecting it from the high peak currents. To successfully produce structural power storage requires the development of multifunctional electrolytes where one has to simultaneously maximize mechanical properties and ionic conductivity. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Bicontinuous morphology KW - Epoxy resin KW - Ionic conductivity KW - Mechanical properties PY - 2013 SP - 72 EP - 79 AN - OPUS4-29273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -