TY - THES A1 - Kromm, Arne T1 - Umwandlungsverhalten und Eigenspannungen beim Schweißen neuartiger LTT-Zusatzwerkstoffe N2 - Die Erkenntnis, dass die Phasenumwandlung bei der Schweißeigenspannungsentstehung hochfester Stähle eine bedeutende Rolle spielt, gibt es bereits seit langer Zeit. Bisher existierten jedoch keine Ansätze, diesen Effekt praktisch zur Schweißeigen- spannungskontrolle zu nutzen. Neuartige Low Transformation Temperature (LTT) Legierungen bieten aufgrund ihrer charakteristischen chemischen Zusammensetzung die Möglichkeit, hochfeste Stähle auf deren Festigkeitsniveau zu fügen. Die martensitische Phasenumwandlung soll zudem eine gezielte Einstellung der Schweißeigenspannungen erlauben. Die im Schrifttum vorliegenden Untersuchungen zu diesem Thema sind zwar zahlreich, bieten jedoch nur wenige Erkenntnisse zur Wechselwirkung zwischen der Phasenumwandlung und den resultierenden Schweißeigenspannungen. Zur Klärung dieser Fragestellung wurde basierend auf Literaturauswertungen eine Matrix von LTT-Legierungen verwirklicht, welche hinsichtlich des Gefüges, der mechanischen Eigenschaften und der Umwandlungstemperaturen charakterisiert wurden. Weiterhin konnten im Rahmen dieser Arbeit erstmals In-situ-Beugungsexperimente während des Schweißens unter Anwendung energiedispersiver Methoden realisiert werden. Die Neukonzeption und Verwirklichung einer Schweißvorrichtung speziell für den Einsatz an Synchrotronstrahllinien ermöglichte die bislang einzigartige In-situ-Analyse der Umwandlungsvorgänge während des Schweißens mit LTT-Legierungen. Im Zuge dieser Experimente konnte neben den im Schweißgut vorherrschenden Umwandlungstemperaturen zusätzlich die Umwandlungskinetik dieser Legierungen ermittelt werden. Die Auswirkungen des Umwandlungsverhaltens wurden anhand der Eigenspannungsverteilungen in der Oberfläche variierender Probengeometrien analysiert. Die Ergebnisse verdeutlichen einerseits, dass die mittels der LTT-Legierungen angestrebte Eigenspannungskontrolle tatsächlich möglich ist. Dies zeigt sich insbesondere dann, wenn eine weitgehend freie Schrumpfung der Naht vorliegt. Mit zunehmender Schrumpfbehinderung ergibt sich jedoch eine Verschiebung des Eigenspannungsniveaus in den Zugbereich. Dies ist bei den hier betrachteten Legierungen vornehmlich in Nahtquerrichtung ausgeprägt. Dagegen ist das Eigenspannungsniveau in Nahtlängsrichtung nahezu unabhängig von den Schrumpfbedingungen. Anhand von Eigenspannungstiefengradienten ließ sich feststellen, dass sich die zusätzliche Schrumpfbehinderung in einer Parallelverschiebung des Eigenspannungsniveaus im Schweißgut äußert. Die Anwendung energiedispersiver Beugungsmethoden erlaubte zudem erstmals die Eigenspannungsermittlung in der parallel zum Martensit vorliegenden austenitischen Phase der LTT-Legierungen. Ergebnisse, die unter Laborbedingungen gewonnen werden, bedürfen zumeist der Überprüfung unter realen Fertigungsbedingungen. Zu diesem Zweck wurde ein Bauteilschweißversuch in einer speziellen Großprüfanalage durchgeführt. Unter konstruktiver Schrumpfbehinderung gelang es, die lastabbauende Wirkung eines spezifischen LTT-Schweißzusatzes anhand einer ausgeprägten Spannungsreduktion während des Schweißens zu belegen. Insgesamt wurde der Nachweis erbracht, dass das Konzept der Low Transformation Temperature (LTT) Legierungen zielführend ist und die nachgewiesene Austenit-Martensitumwandlung einen signifikanten Effekt auf das Eigenspannungsniveau ausübt. N2 - It has long been recognized that phase transformation plays a prominent part in the Evolution of welding residual stresses in high-strength steel. But thus far, no approaches have been available to practically utilize this effect for welding residual stress control. Innovative Low Transformation Temperature (LTT) alloys featuring a characteristic chemical composition open up the possibility for joining high strength steels on their own strength level. Furthermore, martensitic phase transformation is supposed to permit deliberate adjustment of the welding residual stresses. Even though numerous investigations can be found in the literature on this issue, they provide only little insight into the interaction between Phase transformation and resulting welding residual stresses. In order to clarify the problem presented, a matrix of LTT alloys was defined based on evaluated literature. The alloys were characterized with respect to their microstructure, mechanical properties and transformation temperature. Furthermore, it was possible within the scope of this study to realize in-situ experiments during welding using energy-dispersive diffraction methods. The new design and implementation of a welding setup specifically for use at synchrotron beamlines enabled the in-situ diffraction analysis of Transformation processes. In the course of these experiments it could be managed to determine the Transformation temperatures prevailing in the LTT weld metal. In addition the Transformation kinetics of these alloys could be analyzed. The effects of the transformation behavior were analyzed based on the residual stress distributions at the surface of varying specimen geometries. The results illustrate on the one hand that the desired residual stress control by using LTT alloys is actually feasible. This is particularly found in cases with largely free shrinkage of the weld. With increasing shrinkage restraint, however, a shift of the residual stress level into the area of tension is seen to occur. This is observed for the considered alloys to be particularly pronounced in transverse direction of the weld. By contrast, the residual stress level in longitudinal weld direction is nearly independent of the shrinkage conditions. With the help of residual stress depth gradients it could be established that the additional shrinkage restraint manifests itself in a parallel shift of the residual stress level in the weld metal. Application of energy-dispersive diffraction methods additionally allowed it for the first time to determine residual stresses in the austenitic phase of the LTT alloy which is present parallel to martensite. Results gained under laboratory conditions mostly need to be verified under real fabrication conditions. For this purpose, a component weld test was performed in a special large-scale testing facility. Under structural shrinkage restraint, the load relieving effect of a specific LTT welding filler material could be proven by means of a pronounced stress reduction during welding. Overall, evidence was furnished that the concept of Low Transformation Temperature (LTT) alloys is successful and that the proven austenite-martensite transformation exerts a significant effect on the residual stress level. T3 - BAM Dissertationsreihe - 72 KW - residual stresses KW - Synchrotron diffraction KW - phase transformation KW - martensite KW - Eigenspannungen KW - LTT-Zusatzwerkstoff KW - Martensit KW - Phasenumwandlung KW - Synchrotronbeugung KW - LTT filler material PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-861 SN - 978-3-9813853-9-7 SN - 1613-4249 VL - 72 SP - 1 EP - 223 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-86 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -