TY - JOUR A1 - Resch-Genger, Ute ED - Guhrenz, C. ED - Sayevich, V. ED - Weigert, Florian ED - Hollinger, E. ED - Reichhelm, A. ED - Gaponik, N. ED - Eychmüller, A. T1 - Transfer of Inorganic-Capped Nanocrystals into Aqueous Media N2 - We report on a novel and simple approach to surface ligand design of CdSe-based nanocrystals (NCs) with biocompatible, heterobifunctional polyethylene glycol (PEG) molecules. This method provides high transfer yields of the NCs into aqueous media with preservation of the narrow and symmetric emission bands of the initial organic-capped NCs regardless of their interior crystal structure and surface chemistry. The PEG-functionalized NCs show small sizes, high photoluminescence quantum yields of up to 75%, as well as impressive optical and colloidal stability. This universal approach is applied to different fluorescent nanomaterials (CdSe/CdS, CdSe/CdSCdxZn1-xS, and CdSe/CdS/ZnS), extending the great potential of organic-capped NCs for biological applications. KW - Fluorescence KW - Ligand exchange KW - Quantum dot KW - Surface chemistry KW - Semiconductor nanocrystal KW - Quantum yield KW - Lifetime KW - Dispersibillity KW - Colloid PY - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b02319 VL - 8 IS - 22 SP - 5573 EP - 5578 PB - The Journal of Physical Chemistry Letters AN - OPUS4-43377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian T1 - Theory of the Photoluminescence Quantum Yield and its Measurement for Different Emitters N2 - Mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters are reliable and quantitative photoluminescence measurements. This is of special relevance for all fluorescence applications in the life and material sciences. In the following, proccedures for the determination of this spectroscopic key parameter are presented including material-specific effects related to certain emitters T2 - COST 2017 CY - Turku, Finland DA - 03.04.2017 KW - Instrument calibration KW - Standard KW - Flourescence KW - Reference material KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Photophysics KW - Quantum yield KW - Dye PY - 2017 AN - OPUS4-43175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Kaiser, M. A1 - Resch-Genger, Ute T1 - Theory of quantum yields - Excitation power dependent measurements N2 - Introduction to power dependent QY-measurements and upconversion T2 - Cost-action Training school CY - Turku, Finland DA - 03.04.2017 KW - Quantum yield KW - Upconversion PY - 2017 AN - OPUS4-40011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 U6 - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorris, H.H. A1 - Resch-Genger, Ute T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part II: Bioanalytical applications N2 - In Part II of this Review series on lanthanide-doped photon-upconversion nanoparticles (UCNPs), we present and critically discuss the Performance and suitability of UCNPs as background-free luminescent Reporters in bioimaging and bioanalytical applications. The preparation of a biocompatible nanoparticle surface is an integral step for all life - science-related applications. UCNPs have found their way into a large number of diagnostic platforms, homogeneous and heterogeneous assay formats, and sensor applications. Many bioanalytical detection schemes involve Förster resonance energy transfert (FRET), which is still debated for UCNPs and Needs to be much improved. The Need for dedicated and standardized instruments as well as recent studies on the Dissolution and potential toxicity of UCNPs are addressed. Finally we outline future Trends and challenges in the field of upconversion. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Assay KW - Bioconjugation KW - Imaging KW - FRET KW - Sensor PY - 2017 U6 - https://doi.org/10.1007/s00216-017-0482-8 SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5875 EP - 5890 PB - Springer AN - OPUS4-41706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 U6 - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Particle size dependent optical properties of hexagonal β-NaYF4: 2 % Er3+, 20 % Yb3+ upconversion nanoparticles in cyclohexane and water N2 - Hexagonal NaYF4 doped with 20 % Yb3+ and 2 % Er3+ is an efficient upconversion (UC) phosphor for the conversion of 976 nm excitation light to emission at 845 nm, 800 nm, 655 nm, 540 nm and 410 nm light. The emission behavior of nanoparticles made from this material is strongly influenced by particle size, surface chemistry, and microenvironment. Furthermore their UC emission originates from multiphotonic absorption processes, rendering the resulting luminescence spectra and intensities excitation power density (P) dependent. Therefore the rational design of efficient nm-sized UC particles e.g., for applications in the material and life sciences requires reliable spectroscopic tools for the characterization of the optical properties of these materials like the excitation power density (P)-dependent UC quantum yield (QYUC) in dispersion, which presents a measure for the efficiency of the conversion of absorbed into emitted photons. Up to date the P-dependent absolute measurement of QYUC in aqueous media with an excitation wavelength of 976 nm presents a considerable challenge due to the low absorption coefficients of the UC materials and the absorption of water at this wavelength. T2 - International Conference on Advanced Materials and Nanotechnology CY - Queenstown, New Zealand DA - 12.02.2017 KW - Upconversion KW - Quantum yield KW - Lifetime KW - Water KW - Cyclohexane PY - 2017 AN - OPUS4-40093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 U6 - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Minero, C. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles N2 - Particle aggregation and agglomeration influence the optical properties of materials and therefore theirability to absorb and scatter the incoming radiation, also affecting their photocatalytic activity. Wehave studied the correlation between aggregation and photocatalytic activity for titanium dioxide bymeans of experimental measurements of extinction and photocatalytic activity and calculations of theiroptical properties (extinction, absorption and scattering cross-sections). This approach can be adoptedto quantitatively assess the quantum yields of the heterogeneous photocatalytic systems. The study wasperformed on TiO2PC105 Cristal ACTiVTM, made of aggregated (and agglomerated) primary particles of anatase. The size of the aggregates has been reduced with ultra-sonication. Aqueous suspensions of the obtained materials were characterized by measuring the optical properties (UV–vis extinction), the sizing properties (DLS) and the photocatalytic activity (degradation of phenol under standard con-ditions). The extinction and absorption spectra of the suspensions were derived from the calculatedcoefficients, considering also the size distributions measured with DLS, and revealed that light absorptionis maximized when particle aggregation and agglomeration are avoided, while diffusion of the incomingradiation dominates when large aggregates and agglomerates are present. The present paper represents a valuable approach to the accurate and reproducible measurement of the photocatalytic activity ofTiO2nanoparticles suspensions, thus allowing a more reliable comparison of the properties of different materials. KW - Titanium dioxide KW - Nanoparticles KW - Agglomeration/aggregation KW - Photocatalysis KW - Quantum yield PY - 2017 U6 - https://doi.org/10.1016/j.apcatb.2017.05.046 SN - 0926-3373 SN - 1873-3883 VL - 216 SP - 80 EP - 87 PB - Elsevier B.V. AN - OPUS4-40477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Würth, Christian A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute T1 - Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios N2 - The excitation wavelength (lexc) dependence of the photoluminescence (PL) quantum yield (FPL) and decay behavior (tPL) of a series of CdSe/CdS quantum dot/Quantum rods (QDQRs), consisting of the same spherical CdSe core and rod-shaped CdS shells, with aspect ratios ranging from 2 to 20 was characterized. lexc between 400–565 nm were chosen to cover the first excitonic absorption band of the CdSe core material, the onset of absorption of the CDs shell, and the region of predominant shell absorption. A strong lexc dependence of relative and absolutely measured FPL and tPL was found particularly for the longer QDQRs with higher aspect ratios. This is attributed to combined contributions from a length-dependent shell-to-core exciton localization efficiency, an increasing number of defect states within the shell for the longest QDQRs, and probably also the presence of absorbing, yet non-emitting shell material. Although the FPL values of the QDQRs decrease at shorter wavelength, the extremely high extinction coefficients introduced by the shell outweigh this effect, leading to significantly higher brightness values at wavelengths below the absorption onset of the CdS Shell compared with direct excitation of the CdSe cores. Moreover, our results present also an interesting example for the comparability of absolutely measured FPL using an integrating sphere setup and FPL values measured relative to common FPL standards, and underline the Need for a correction for particle scattering for QDQRs with high aspect ratios. KW - Quantum dot KW - Quantum rod KW - Quantum yield KW - Integrating sphere KW - Decay time PY - 2017 U6 - https://doi.org/10.1039/C7CP02142A SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 19 SP - 12509 EP - 12516 PB - Royal Society of Chemistry (RSC) AN - OPUS4-40814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -