TY - JOUR A1 - Mitu, M. A1 - Razus, D. A1 - Schröder, Volkmar T1 - Laminar burning velocities of hydrogen-blended methane-air and natural gas-air mixtures, calculated from the early stage of p(t) records in a spherical vessel JF - Energies N2 - The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore, their explosion characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have significant importance from a safety point of view. At the same time, the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study, an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH, follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of heat release, and the concentration of active radical species in the flame front and contribute, thus, to LBV variation. KW - Hydrogen KW - Methane KW - Natural gas KW - Laminar burning velocity (LBV) KW - Closed vessel combustion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569083 DO - https://doi.org/10.3390/en14227556 SN - 1996-1073 VL - 14 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimental Study on the ignition of hydrogen containing atmospheres by mechanical impacts N2 - In this presentation the results of the Project HySpark are shown. Mechanical impacts are among the important possible ignition sources to be considered in explosion protection. Hydrogen is particularly prone to be ignited by mechanical impacts compared to natural gas. The effectivity of mechanical impacts as ignition source is dependent from different parameters. In this work the effectivity of impacts as an ignition source for hydrogen containing atmospheres was studied experimentally depending on the inhomogeneous material pairing of the impact. Moreover it was studied, how the effectivity of mechanical impacts as ignition source changes when hydrogen is added to natural gas. T2 - International Conference on Hydrogen Safety (ICHS) 2023 CY - Quebec City, Canada DA - 19.09.2023 KW - Explosion protection KW - Ignition sources KW - Natural gas KW - Safety KW - Mechanical sparks PY - 2023 AN - OPUS4-58514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -