TY - JOUR A1 - Müller, Thoralf A1 - Ebell, Gino A1 - Burkert, Andreas T1 - Risiko der Wasserstoffentwicklung an martensitischen Schraubankern unter baupraktischen Bedingungen T1 - Risk of hydrogen evolution on martensitic screw anchors under practical construction conditions N2 - Die vorliegende Untersuchung beschäftigt sich mit der Fragestellung, ob unter praxisrelevanten Bedingungen die Entstehung von Wasserstoff an vollmartensitischen Schraubankern möglich ist. Im Gegensatz zu austenitischen Werkstoffen besteht bei martensitischen Werkstoffen bei Gegenwart von Wasserstoff stets die Möglichkeit einer wasserstoffinduzierten Versprödung des Materials. Hierfür wurde ein in der Praxis häufig anzutreffendes Szenario gewählt, das ein galvanisches Element, bestehend aus nichtrostenden Schraubankern (in diesem Fall martensitischen) und einer verzinkten Ankerplatte an einem Betonkörper, umfasst. Zum Nachweis einer Wasserstoffentwicklung werden der Elementstrom zwischen den Bauteilen sowie das Korrosionspotential erfasst. Die Ergebnisse der Versuche zeigen, dass über eine zeitlich begrenzte Dauer eine starke kathodische Polarisation der martensitischen Schraubanker durch die korrosive Auflösung des Zinks erfolgt. Als Folge kommt es zur Wasserzersetzung im Phasengrenzbereich der Schraubanker und zur Entstehung von atomarem Wasserstoff. Das berechnete Gasvolumen des entstandenen Wasserstoffs an den Stahlankern wurde bestimmt und lag im Mittel bei 11,14 ± 1,94 ml. Eine Diffusion des an der Stahloberfläche adsorbierten Wasserstoffs in den martensitischen Werkstoff ist somit theoretisch möglich und impliziert eine mögliche Gefährdung durch wasserstoffinduzierte Rissbildung und spontanes Versagen unter Belastung. N2 - The present investigation deals with the question of whether the formation of hydrogen is possible on fully martensitic screw anchors under practical conditions. In contrast to austenitic materials, martensitic steels always have the possibility of hydrogen-induced embrittlement of the material in the presence of hydrogen. For this purpose, a scenario was chosen which is frequently encountered in practice and which comprises a galvanic element consisting of stainless screw anchors (in this case martensitic) and a galvanized anchor plate on a concrete body. The element current between the components as well as the corrosion potential are recorded to prove hydrogen development. The results of the tests show that a strong cathodic polarization of the martensitic screw anchors occurs over a limited period due to the corrosive dissolution of the zinc. As a result, water decomposition occurs in the phase boundary area of the screw anchors and atomic hydrogen is formed. The calculated gas volume of the resulting hydrogen at the steel anchors was determined and was 11.14 +/- 1.94 ml on average. Diffusion of the hydrogen adsorbed on the steel surface into the martensitic material is thus theoretically possible and implies a possible risk of hydrogen-induced crack formation and spontaneous failure under load. KW - Martensit KW - Wasserstoff KW - Versprödung KW - Beton KW - Korrosion PY - 2020 U6 - https://doi.org/10.1002/bate.202000017 SN - 0932-8351 SN - 1437-0999 VL - 97 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-50799 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -