TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Krentel, Daniel A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Storm, Sven-Uwe A1 - Tschirschwitz, Rico T1 - Auswirkungen von Behälterversagen bei alternativen PKW-Antrieben - Teil 2: UAV-basierte Fernerkundung von Gaswolken JF - Technische Sicherheit N2 - Verkehrsunfälle unter Beteiligung von Fahrzeugen mit alternativen Kraftstoffen wie LPG („Autogas“, Liquefied Petroleum Gas), CNG (Compressed Natural Gas, komprimiertes Erdgas) oder CGH2 (Compressed Gas Hydrogen, komprimierter Wasserstoff), bergen neue, komplexe Risiken für Passagiere, Einsatzkräfte und deren Umfeld. Im Rahmen des Projektes „CoFi-ABV“ beschäftigt sich die Bundesanstalt für Materialforschung und -prüfung (BAM) unter Berücksichtigung komplexer Brand- und Explosionsszenarien mit einer ganzheitlichen Betrachtung der Auswirkungen des unfallbedingten Versagens von Gasbehältern für alternative Kraftstoffe. Ein wichtiger Teil des Forschungsvorhabens umfasst Entwicklung, Aufbau und Validierung einer unbemannten Flugplattform (Unmanned Aerial Vehicle, UAV) zur Ferndetektion von Gaswolken. Für das sogenannte gassensitive Mini-UAV wird ein robuster Open-Path-Gasdetektor auf einer Sensorbewegungsplattform in Form eines modifizierten Kamera-Gimbals, integriert. Ziel ist es, ein leistungsfähiges und robustes Werkzeug zu entwickeln, welches Einsatzkräften im Falle eines Unfalls als Hilfe zur Abschätzung der Gefahr durch Gaswolken, ihrer Ausbreitung und der notwendigen Absperrbereiche zur Verfügung steht. Dieser Artikel ist der zweite der Reihe und legt, nach Projektvorstellung im ersten Teil, nun den Schwerpunkt auf das gassensitive Mini-UAV. KW - UAV KW - Fernerkundung KW - Open-Path-Gasdetektor KW - Alternative Antriebe/Kraftstoffe KW - Behälterversagen PY - 2016 SN - 2191-0073 VL - 6 IS - 11/12 SP - 23 EP - 28 PB - Springer-VDI-Verlag CY - Düsseldorf AN - OPUS4-38517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Auswirkungen von unfallbedingtem Behälterversagen bei alternativen Pkw-Antrieben - Teil 1: Problemstellung, Stand der Technik und Voruntersuchungen JF - Technische Sicherheit N2 - Flüssige und komprimierte Gase sind in Deutschland, Europa und der Welt vielfältig als alternative Kraftstoffe im Einsatz. Diese werden unter teilweise hohem Druck in robusten Behältern an Bord gespeichert. Ein Versagen des Treibstoffbehälters im Schadensfall sollen verschiedene Sicherheitseinrichtungen, auch bei einem eventuell unfallbedingt auftretenden Fahrzeugbrand, verhindern. Sind diese Sicherheitseinrichtungen unfallbedingt beschädigt oder liegen die Belastungen dieser Einrichtung außerhalb ihres Auslegungsbereichs, ist ein Versagen des Behälters dennoch möglich. Dadurch kann es zur Bildung eines explosionsfähigen Brennstoff-Luft-Gemischs mit den entsprechenden Folgen für Fahrgäste, Einsatzkräfte und Umfeld kommen. Die Bundesanstalt für Materialforschung und -prüfung (BAM) untersucht im Forschungsprojekt "CoFi-ABV" mit umfangreichen zerstörenden Versuchsreihen im Realmaßstab die Folgen des unfallbedingten Versagens von Behältern für alternative Kraftstoffe und Maßnahmen zur Reduktion dieser Folgen im Rahmen einer ganzheitlichen Auswirkungsbetrachtung. Dieser Beitrag ist der Start einer Reihe und soll die Problemstellung sowie die Projektinhalte umfassend erläutern. KW - Alternative Antriebe KW - Alternative Kraftstoffe KW - Behälterversagen KW - Fahrzeugbrand PY - 2016 SN - 2191-0073 VL - 6 IS - 9 SP - 39 EP - 46 PB - Springer-VDI-Verlag CY - Düsseldorf AN - OPUS4-37360 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Günzel, Stephan A1 - Holtappels, Kai A1 - Mair, Georg A1 - Maiwald, Michael A1 - Orellana Pérez, Teresa A1 - Sobol, Oded A1 - Tiebe, Carlo T1 - Challenges for hydrogen technologies - Activities of H2Safety@BAM N2 - In this presentation the drivers for the rise of hydrogen technologies are outlined and main challenges for the market ramp-up are shown. Finally, the activities and capabilities of the competence center H2Safety@BAM are characterized and some of the current projects at BAM adressing the main challenges for hydrogen technologies are presented focussing on the hydrogen transport and infrastructure. T2 - Wasserstoff-Dialog - Stakeholder-Konferenz des Wasserstoff-Kompass CY - Berlin, Germany DA - 10.10.2022 KW - Hydrogen strategy KW - ModuH2Pipe KW - Hydrogen transport KW - Hydrogen infrastructure KW - Liquid hydrogen (LH2) PY - 2022 AN - OPUS4-57065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Entzündung von wasserstoffhaltigen Atmosphären durch mechanisch erzeugte Funken („HySpark“) N2 - Im Zuge der Energiewende finden Wasserstofftechnologien in der industriellen Praxis und im öffentlichen Raum immer mehr Anwendung. Beim Einsatz von Wasserstoff als Ersatz für andere fossile Energieträger wie Erdgas müssen u.a. Explosionsschutzmaßnahmen überprüft und angepasst werden. Eine Art von Explosionsschutzmaßnahmen ist die Vermeidung von Zündquellen. Gemäß den einschlägigen Regelwerken ist die Bildung von Funken oder heißen Aufschlagstellen beim mechanischen Schlag eine mögliche Zündquelle, die vor allem beim Wasserstoff berücksichtigt werden muss. Die Zündwirksamkeit ist dabei u.a. stark von der Werkstoffpaarung und der kinetischen Schlagenergie abhängig. Der Einsatz von funkenarmen Werkzeugen aus schwer oxidierbaren Nicht-Eisen-Metallen in explosionsgefährdeten Bereichen kann z.B. eine Maßnahme sein, um diese Zündquelle zu vermeiden und wird als solche in den Regelwerken benannt. Es gibt aber kaum Quellen, die dabei helfen die Zündwirksamkeit bei Schlägen mit heterogenen Materialpaarungen einzuschätzen. In dieser Arbeit wurde zu diesem Zweck die Zündwirksamkeit von mechanischen Schlägen mit unterschiedlichen, auch nicht-metallischen Schlagpartnern in wasserstoffhaltigen Atmosphären systematisch untersucht. KW - Explosionsschutz KW - Zündquelle KW - ATEX KW - Erdgas KW - Mechanischer Schlag PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579869 DO - https://doi.org/10.26272/opus4-57986 SP - 1 EP - 28 AN - OPUS4-57986 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Entzündung von wasserstoffhaltigen Atmosphären durch mechanische Schlagvorgänge N2 - In dem hier vorgestellten Projekt wurde die Wirksamkeit mechanischer Schläge als Zündquelle für wasserstoffhaltige Atmosphären in Abhängigkeit von der inhomogenen Materialpaarung systematisch untersucht. Dabei wurden praxisrelevante Materialien wie Edelstahl, niedrig legierter Stahl, Beton und Nichteisenmetalle betrachtet. Es wurde festgestellt, dass eine Zündung vermieden werden kann, wenn Nichteisenmetalle in Kombination mit verschiedenen metallischen Werkstoffen verwendet werden. In Kombination mit Beton muss die kinetische Schlagenergie auch mit Nichteisenmetallen weiter begrenzt werden, um eine wirksame Entzündung zu vermeiden. Außerdem wurde untersucht, wie sich die Beimischung von Wasserstoff zu Erdgas auf die Wirksamkeit mechanischer Stöße als Zündquelle auswirkt. Bei Beimischungen von bis zu 25 % Wasserstoff und sogar mehr konnte kein Einfluss festgestellt werden. Die Ergebnisse sind vor allem relevant im Zusammenhang mit der Umwidmung des Erdgasnetzes oder der Beimischung von Wasserstoff im Erdgasnetzes. T2 - Energy Saxony Arbeitskreistreffen "Wasserstoff in Industrie und Gewerbe" CY - Glaubitz, Germany DA - 30.11.2023 KW - Explosionsschutz KW - Explosionszonen KW - Wasserstofftransport in Pipelines KW - Zündquellen KW - Schlagfunken KW - Erdgas PY - 2023 AN - OPUS4-58981 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimental Study on the ignition of hydrogen containing atmospheres by mechanical impacts T2 - Proceedings of the International Conference on Hydrogen Safety 2023 N2 - Mechanical friction, impact or abrasion is one of the ignition sources that must be avoided in hazardous zones with explosive atmospheres. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere, the properties of the material pairing, the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel, low alloy steel, concrete, and non-iron-metals. It was found that ignition can be avoided, if non-iron metals are used in combination with different metallic materials, but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover, the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. T2 - International Conference on Hydrogen Safety (ICHS) 2023 CY - Quebec City, Canada DA - 19.09.2023 KW - Explosion protection KW - Hydrogen transport in pipelines KW - ATEX KW - Hazardous areas KW - Mechanical sparks KW - Ignition source PY - 2023 SN - 979-12-210-4274-0 SP - 82 EP - 93 AN - OPUS4-58515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Askar, Enis T1 - Experimentelle Bestimmung und Berechnung sicherheitstechnischer Kenngrößen ethylenoxidhaltiger Gasphasen N2 - Ethylenoxid ist vor allem aufgrund seiner hohen Reaktivität ein wichtiges organisches Zwischenprodukt der chemischen Industrie und in vielen Fällen bisher unersetzbar. Da es auch in Abwesenheit jeglicher Reaktionspartner explosionsartig zerfallen kann, ist der Umgang mit ethylenoxidhaltigen Gemischen jedoch nur mit besonderen sicherheitstechnischen Maßnahmen möglich. Für die sicherheitstechnische Beurteilung der Lagerung, des Transports sowie der Verarbeitung von ethylenoxidhaltigen Gasgemischen und die Ableitung angemessener sicherheitstechnischer Maßnahmen ist die Kenntnis der sicherheitstechnischen Eigenschaften von ethylenoxidhaltigen Gasgemischen unbedingt erforderlich. In der Vergangenheit wurden sicherheitstechnische Kenngrößen von Ethylenoxid immer wieder vereinzelt nur für bestimmte Prozessbedingungen und zum Teil mit unterschiedlichen Methoden durchgeführt. Insbesondere beschränken sich die bisher veröffentlichten Untersuchungen fast ausschließlich auf atmosphärische und nur leicht erhöhte Drücke, obwohl höhere Ausgangsdrücke für industrielle Prozesse mit Ethylenoxid durchaus relevant sind. Die Anwendbarkeit vorhandener Berechnungsmodelle, durch die der experimentelle Aufwand bei der Bestimmung sicherheitstechnischer Kenngrößen erheblich reduziert werden könnte, wurde bei chemisch instabilen Gasen, wie Ethylenoxid bisher kaum untersucht. Für eine umfangreichere Validierung der Berechnungsmethoden ist die in der Literatur verfügbare Datenbasis an sicherheitstechnischen Kenngrößen von Ethylenoxid nicht ausreichend. In dieser Arbeit werden sicherheitstechnische Kenngrößen ethylenoxidhaltiger Gasgemische systematisch in Abhängigkeit verschiedener Einflussgrößen, mit einheitlichen Bestimmungsmethoden und auch bei höheren Betriebsbedingungen untersucht und Methoden für die Berechnung der in dieser Arbeit ermittelten Kenngrößen entwickelt bzw. weiterentwickelt. Durch die Bestimmung der Explosionsbereiche ternärer Gemische aus Ethylenoxid, einem Inertgas und Luft und der Stabilitätsgrenzkonzentrationen binärer Gemische aus Ethylenoxid und einem Inertgas wird zunächst ausführlich untersucht, in welchen Stoffmengenverhältnissen ethylenoxidhaltige Gemische überhaupt explosionsfähig sind. Die Kenntnis dieser Kenngrößen ist zur Ableitung sogenannter primärer Explosionsschutzmaßnahmen zur Vermeidung explosionsfähiger Gemische, z.B. durch Inertisierung, erforderlich. Insbesondere werden die Einflüsse von Ausgangstemperatur und Ausgangsdruck auf die Explosionsgrenzen systematisch untersucht. Dabei werden vor allem auch die praxisrelevanten höheren Betriebsdrücke berücksichtigt. Gerade für Explosionsgrenzen im Bereich der Zerfallsreaktion kann ein enormer Einfluss des Drucks festgestellt werden. Für die Berechnung der Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid wird das halbempirische Modell der konstanten Flammentemperaturen weiterentwickelt. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid werden unter der modifizierten Annahme, dass das Profil der berechneten Flammentemperaturen entlang der Explosionsgrenzkurve für verschiedene Systeme unabhängig von Ausgangsdruck, Ausgangstemperatur und Art des Inertgases konstant ist, rechnerisch bestimmt. Dazu wird ein spezielles Rechenprogramm entwickelt, dass die Berechnung der Explosionsgrenzen für ein beliebiges Gemisch aus Brenngas, Inertgas und Luft bei beliebiger Ausgangstemperatur und beliebigem Ausgangsdruck ermöglicht, wenn der gesamte Explosionsbereich für ein einzelnes System aus Brenngas, Inertgas und Luft bekannt ist. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid können mit diesem Rechenprogramm mit einer durchschnittlichen Abweichung von weniger als 2 Mol-% berechnet werden. Durch die Bestimmung von Zündtemperaturen für den Zerfall von Ethylenoxid und von definierten Gemischen aus Ethylenoxid und einem Inertgas wird schließlich untersucht, bei welchen Temperaturen ein explosionsartiger Zerfall von Ethylenoxid durch eine heiße Oberfläche in einem geschlossenen System initiiert werden kann. Die Abhängigkeit vom Druck, vom Behältervolumen und vom Stoffmengenanteil an EO werden bei den Untersuchungen berücksichtigt. Anders als die nach standardisierten Verfahren bestimmte Zündtemperatur von Gasen, die in offenen Systemen und ausschließlich für Gemische mit Luft ermittelt wird, kann durch die Bestimmung der bisher nicht standardisierten Zündtemperatur für den Zerfall festgestellt werden, bei welcher Oberflächentemperatur es innerhalb eines geschlossenen Systems bei höheren Drücken und in Abwesenheit von Luft zu einem explosionsartigen Zerfall von chemisch instabilen Gasen kommen kann. Es zeigt sich, dass die Zündtemperatur des Zerfalls von Ethylenoxid bei höheren Drücken auch niedriger sein kann als die nach den Standardverfahren für offene Systeme bestimmte Zündtemperatur von Ethylenoxid. Außerdem zeigt sich, dass der Einfluss von Inertgasen auf die Zündtemperatur für den Zerfall von Ethylenoxid stark von der Art des Inertgases abhängig ist. Die Zündtemperaturen für den Zerfall von Ethylenoxid werden mit verschiedenen Modellen mit unterschiedlichem Grad an Vereinfachungen berechnet. Dabei wird rechnerisch die Wandtemperatur bestimmt, bei der es zu einem thermischen Durchgehen der Reaktion („Runaway“) kommt. Es zeigt sich, dass hinsichtlich der Genauigkeit und des Rechenaufwands eine transiente 0-dimensionale numerische Simulation besonders gut für die rechnerische Bestimmung der Zündtemperatur für den Zerfall von Ethylenoxid in Abhängigkeit des Drucks und des Behältervolumens geeignet ist. Temperaturgradienten innerhalb des Behälters werden bei diesem Modell vernachlässigt und die Wärmeabfuhr wird ausschließlich durch die Temperaturdifferenz zwischen Wand und Reaktionsmasse, die Wärmeaustauschfläche und den inneren Wärmeübergangskoeffizienten bestimmt, der nach einem empirischen Ansatz für den Wärmeübergang an senkrechten Platten bei natürlicher Konvektion berechnet wird. Die Berücksichtigung von lokalen Abhängigkeiten innerhalb des Behälters durch ein 2-dimensionales Modell bringt trotz höheren Rechenaufwands keine weiteren ersichtlichen Vorteile. T3 - BAM Dissertationsreihe - 80 KW - Explosion KW - Entzündung KW - Stabilitätsgrenze KW - Chemisch instabile Gase KW - Zerfall PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-789 SN - 978-3-9814634-2-2 SN - 1613-4249 VL - 80 SP - 1 EP - 148 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-78 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimentelle Untersuchung von Zündwahrscheinlichkeiten bei mechanischen Schlagvorgängen in wasserstoffhaltigen Atmosphären N2 - Im Projekt HySpark wird die Wirksamkeit mechanischer Schlagvorgänge beim Aufprall von unterschiedlichen Werkstoffen als Zündquelle für wasserstoffhaltige Atmosphären experimentell untersucht. Zum Einen wird die Zündwirksamkeit bei Wasserstoff/Luft-Gemischen in Abhängigkeit der Werkstoffpaarung untersucht. Dabei konnte v.a. festgestellt werden, dass bei Schlagvorgängen von Nicht-Eisen-Metallen mit verschiedenen Stahlsorten die wirksame Zündung vermieden werden kann. Jedoch können bei Schlagvorgängen mit Estrichbeton hohe Zündwahrscheinlichkeiten beobachtet werden. Zum anderen wird der Einfluss von Wasserstoffbeimischungen im Erdgasnetz auf die Zündwirksamkeit von mechanischen Schlägen untersucht. Bei Anteilen bis 25% Wasserstoff konnte bei den Versuchen kein Erhöhung der Zündwahrscheinlichkeit festgestellt werden. T2 - H2-Kolloquium des Kompetenzzentrums „H2Safety@BAM” CY - Online meeting DA - 04.07.2022 KW - Explosionsschutz KW - Zündquellen KW - Schlagfunken KW - Erdgas PY - 2022 AN - OPUS4-55224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - Flamox-Gas Mixtures - Herstellbarkeit und Füllung N2 - Im Vortrag wird auf die sicherheitstechnische Beurteilung in Hinblick auf den Explosionsschutz bei der Herstellung und Füllung von Gasgemischen mit brennbaren und mit oxidierenden Komponenten eingegangen. Anhand von Beispielen werden u.a. Vorgehensweisen und Berechnungsmethoden beschrieben, anhand derer beurteilt werden kann, ob Gasgemische überhaupt sicher hergestellt werden können und in welcher Reihenfolge die Komponenten zur sicheren Herstellung der Gemische gefüllt werden sollten. T2 - Workshop der Linde AG CY - Unterschleißheim, Germany DA - 14.04.2016 KW - Explosionsschutz KW - Herstellung von Gasgemischen KW - Spezialgase KW - Sicherheit KW - Gefahrstoffe PY - 2016 AN - OPUS4-38004 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Gasgemische mit geringen Anteilen an Brenngasen in Distickstoffoxid / Sicherheitstechnische Beurteilung von Gasgemischen mit brennbaren und oxidierenden Bestandteilen N2 - Im Vortrag werden zum einen sicherheitstechnische Aspekte bei der Herstellung von Gasgemischen aus geringen Anteilen an Lachgas und brennbaren Gasen diskutiert. Zum anderen werden allgemein Vorgehensweisen und Berechnungsmethoden zur sicherheitstechnischen Beurteilung der Herstellung von Gasgemischen mit brennbaren und oxidierenden Komponenten vorgestellt. T2 - 17. Sitzung der Expertengruppe Spezialgase des IGV CY - Berlin, Germany DA - 11.02.2016 KW - Explosionsschutz KW - Herstellung von Gasgemischen KW - Chemisch instabile Gase KW - Spezialgase PY - 2016 AN - OPUS4-38008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -