TY - CONF A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Particle size dependent optical properties of hexagonal β-NaYF4: 2 % Er3+, 20 % Yb3+ upconversion nanoparticles in cyclohexane and water N2 - Hexagonal NaYF4 doped with 20 % Yb3+ and 2 % Er3+ is an efficient upconversion (UC) phosphor for the conversion of 976 nm excitation light to emission at 845 nm, 800 nm, 655 nm, 540 nm and 410 nm light. The emission behavior of nanoparticles made from this material is strongly influenced by particle size, surface chemistry, and microenvironment. Furthermore their UC emission originates from multiphotonic absorption processes, rendering the resulting luminescence spectra and intensities excitation power density (P) dependent. Therefore the rational design of efficient nm-sized UC particles e.g., for applications in the material and life sciences requires reliable spectroscopic tools for the characterization of the optical properties of these materials like the excitation power density (P)-dependent UC quantum yield (QYUC) in dispersion, which presents a measure for the efficiency of the conversion of absorbed into emitted photons. Up to date the P-dependent absolute measurement of QYUC in aqueous media with an excitation wavelength of 976 nm presents a considerable challenge due to the low absorption coefficients of the UC materials and the absorption of water at this wavelength. T2 - International Conference on Advanced Materials and Nanotechnology CY - Queenstown, New Zealand DA - 12.02.2017 KW - Upconversion KW - Quantum yield KW - Lifetime KW - Water KW - Cyclohexane PY - 2017 AN - OPUS4-40093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Florian A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Power dependent optical properties of hexagonal β-NaYF4: x % Er3+, 20 % Yb3+ core/ core-shell upconversion nanoparticles in cyclohexane and water N2 - Lanthanide doped photon upconverting nanophosphors (UCNPs) have the unique capability to produce narrow band, multi-color emission in the UV/vis/NIR upon multiphotonic absorption of infrared light, which makes them promising reporters for diagnostic, bioanalytical, and biological applications. This minimizes background signals, which normally occur due to autofluorescence from auxochromes, in biological matrices and enables deep penetration depths in biological applications. Moreover, UCNPs show long luminescence lifetimes in the μs range favorable for time gated emission in conjunction with a high photostability and chemical inertness and they do not blink. One of the most efficient upconversion (UC) phosphors for conversion of 976 nm to 655 nm and 545 nm light presents the hexagonal NaYF4-host crystal doped with 20 % Yb3+ used as sensitizer to absorb infrared light and 2 % Er3+ acting as activator mainly responsible for light emission. The high transparency in the relevant spectral windows of this host together with its low phonon frequencies ensure relatively high luminescence efficiencies. Although UCNPs are ideal candidates for many chemical and biological sensing and imaging applications, compared to other well-known chromophores like organic dyes or QDs, they suffer from a comparatively low brightness due to the low absorption cross sections of the parity forbidden f-f-transitions and low photoluminescence quantum yields (QYUC) particularly in the case of small nanoparticles with sizes of < 50 nm. The rational design of more efficient UCNPs requires an improved understanding of the nonradiative decay pathways in these materials that are influenced by particle architecture including dopant ion concentration and homogeneity of dopant distribution within UCNPs, size/surface-to-volume ratio, surface chemistry, and microenvironment. A promising approach to overcome the low efficiency of UCNPs is to use plasmonic interactions between a noble metal (Ag or Au) structure in the proximity of UCNPs and the incident light. This interaction leads to a modification of the spectroscopic properties due to local field enhancements and can involve an increase of the photoluminescence. In this respect, we study the interactions of UCNPs with metal structures (clusters and shells) by varying shape and size. Here, first results derived from integrating sphere spectroscopy and time-resolved fluorescence measurements are presented. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Er(III) KW - Yb(III) KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -