TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces T2 - Proceeding 48th Photovoltaic Specialists Conference (PVSC) N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 DO - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Behnke, Thomas A1 - Mathejczyk, J. A1 - Hamann, F. A1 - Alves, F. A1 - Hilger, I. A1 - Resch-Genger, Ute ED - Achilefu, S. ED - Raghavachari, R. T1 - Dye-biomolecule conjugates and NIR-fluorescent particles for targeting of disease-related biomarkers T2 - Proceedings of SPIE - Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications III N2 - Indispensable for fluorescence imaging are highly specific and sensitive molecular probes that absorb and emit in the near infrared (NIR) spectral region and respond to or target molecular species or processes. Here, we present approaches to targeted fluorescent probes for in vivo imaging in the intensity and lifetime domain exploiting NIR dyes. Screening schemes for the fast identification of suitable fluorophores are derived and design criteria for highly emissive optical probes. In addition, as a signal amplification strategy that enables also the use of hydrophobic NIR fluorophores as fluorescent reporters, first steps towards versatile strategies for the preparation of NIR-fluorescent polymeric particles are presented that can be utilized also for the design of targeted and analyte-responsive probes. KW - Fluorescence KW - Fluorescence lifetime imaging KW - Near-infrared KW - NIR KW - Cyanine dye KW - Cancer KW - In vivo imaging KW - Aggregation KW - Nanoparticle PY - 2011 DO - https://doi.org/10.1117/12.876828 SN - 1605-7422 N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7910 SP - 791014-1 EP - 791014-15 AN - OPUS4-24353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -