TY - CHAP A1 - An, Biwen Annie A1 - Voordouw, G. ED - An, Biwen Annie T1 - Chapter 4. Microbial Communities Involved in High Salinity Souring in Shale Oil Fields N2 - This book chapter provides an overview of the negative impacts of halophilic microorganisms in oil and gas operations. The chapter used a Canadian shale oil reservoir as an case study example to show the high souring and corrosion potential of halophilic microorganisms. KW - Corrosion KW - Halophilic KW - Microorganism KW - Microbial community modelling KW - Oil and gas reservoir KW - Shale KW - Geological formation KW - Oilfield PY - 2019 SN - 13 978-1-138-05775-3 SP - 57 EP - 69 PB - CRC Press CY - Boca Raton ET - 1. AN - OPUS4-49599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Gurtler, V. ED - Trevors, J. T. T1 - Territories of rock-inhabiting fungi: Survival on and alteration of solid air-exposed surfaces N2 - Subaerial biofilms that are omnipresent at the interface between all solid substrates and the atmosphere are composed of a unique and widespread group of ascomycetes called rock-inhabiting fungi or microcolonial fungi (MCF), typically in communities with other microorganisms. While subaerial biofilms in toto have important roles in mineral weathering and biodeterioration of materials, methodological approaches to subaerial biofilm communities are diverse and frequently focussed on MCF. Here, we review the historical development of the research methods applied in the field and consider perspectives to increase our understanding of the biofilm-induced changes of solid substrate surfaces. KW - Biologically induced mineral weathering KW - Geobiology KW - Microcolonial fungi KW - Subaerial biofilm KW - Symbiosis PY - 2018 UR - https://linkinghub.elsevier.com/retrieve/pii/S0580951718300047 SN - 9780128146040 U6 - https://doi.org/10.1016/bs.mim.2018.06.001 VL - 45 SP - Chapter 6, 145 EP - 169 PB - Elsevier AN - OPUS4-47181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Krebber, Katerina ED - Harun, S.W. ED - Arof, H. T1 - Smart technical textiles based on fiber optic sensors N2 - Smart technical textiles are by definition textiles that can interact with their environment. They can sense and react to environmental conditions and external stimuli from mechanical, thermal, chemical or other sources. Such textiles are multifunctional or even “intelligent” which is fulfilled by a number of sensors incorporated in the textiles. The embedded sensors are sensitive to various parameters such as temperature, strain, chemical, biological and other substances. PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-289397 SN - 978-953-51-1148-1 IS - Section 3 / Chapter 12 SP - 319 EP - 344 PB - InTech AN - OPUS4-28939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Troitzsch, J. ED - Antonatus, E. T1 - The Burning of Plastics N2 - The burning of a polymer is a physico–chemical process strongly influenced by the coupling of a chemical reaction – oxidation of fuel – in the gas phase with a chemical decomposition reaction – pyrolysis – in the condensed phase via heat and mass transfer. The heat and mass flux control the intensity of fire and the ablation of fuel. Indeed, the temperature profile as a function of time may be one of the most important responses of a specimen to understand its burning behavior. Further, several physical phenomena, such as the heat absorption of the materials, thermal conductivity, and also melt flow and dripping, play a major role in determining ignition, flammability, and fire behavior. The burning of a polymer is very complex. The various phenomena interact with each other, e. g., pyrolysis also influences the viscosity of the melt, and, thus, whether dripping or charring results in a protective layer, increasing the shielding effect of the residual protective layer. Only a detailed and comprehensive description opens the door to a well-founded understanding of the burning behavior of polymeric materials. KW - Fire behaviour KW - Plastics KW - Pyrolysis KW - Decomposition KW - Ignition KW - Smoldering KW - Flame spread KW - Steady burning KW - Fire load KW - Fire resistance PY - 2021 SN - 978-1-56990-762-7 SP - 23 EP - 52 PB - Hanser CY - Munich ET - 4th Edition AN - OPUS4-52684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Wagner, Sabine A1 - Rurack, Knut ED - Tiwari, Ashutosh ED - Uzun, Lokman T1 - Fluorescent Molecularly Imprinted Polymers N2 - An ideal sensor system is a combination of a selective receptor, an effective transducer, and a sensitive detector. To utilize molecularly imprinted polymers (MIPs) as responsive recognition phases in sensors, the employment of fluorescent molecules or nanoparticles (NPs) that show prominent changes in their spectroscopic properties after binding of the target molecule in the MIP’s cavity is particularly attractive. Such fluorescent MIPs (fMIPs) act through target-induced quenching, enhancement, or spectral shifts of the fluorescence. This contribution introduces different strategies of incorporation of fluorescent dyes, probes, and NPs into fMIPs. In addition, various sensing mechanisms are reviewed, and depending on the application of the sensor, the different deployable formats, their advantages, drawbacks, and impact will be presented and discussed. KW - Dyes KW - Fluorescence KW - Molecular imprinted polymers KW - Quantum dots KW - Sensors PY - 2017 SN - 978-1-119-33629-7 SP - 89 EP - 128 PB - Scrivener Publishing, WILEY CY - Beverly, MA ET - 1 AN - OPUS4-38798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Bender, B. ED - Göhlich, D. T1 - Korrosion und Korrosionsschutz N2 - Das Kapitel beginnt mit einer kurzen Einführung über die Korrosion (Wechselwirkung zwischen einem Metall, einer korrosiven Umgebung und der der jeweiligen Konstruktion). Im zweiten Abschnitt werden die wichtigsten Formen der wässrigen elektrochemischen Korrosion (Flächenkorrosion, galvanische, selektive und interkristalline Korrosion sowie Loch- und Spaltkorrosion) betrachtet. Darüber hinaus wird die elektrochemische Korrosion unter mechanischer Belastung betrachtet (Spannungsrisskorrosion, wasserstoffunterstützte Rissbildung, Korrosionsermüdung), sowie Sonderformen der Korrosion (Erosion, Fretting und mikrobiologisch induzierte Korrosion). Der dritte Abschnitt befasst sich mit der chemischen und Hochtemperaturkorrosion (Oxidation, Aufkohlung, Hochtemperatur-Wasserstoffangriff, Aufschwefelung, Nitrierung, Halogenierung). Zusätzlich enthält das Kapitel Maßnahmen zur Vermeidung der Korrosion. KW - Korrosion KW - Korrosionsschutz KW - Spannungsrisskorrosion KW - Wasserstoff KW - Loch- u. Spaltkorrosion PY - 2021 SN - 978-3-662-59710-1 U6 - https://doi.org/10.1007/978-3-662-59711-8_34 VL - 1 SP - 691 EP - 725 PB - Springer-Verlag GmbH, ein Teil von Springer Nature CY - Berlin ET - 26 AN - OPUS4-52156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kunte, Hans-Jörg A1 - Schwarz, T. A1 - Galinski, E. A. ED - Lee, N. M. T1 - The compatible solute ectoine: protection mechanisms, strain development, and industrial production N2 - Bacteria, Archaea, and Eukarya can adapt to saline environments by accumulating compatible solutes in order to maintain an osmotic equilibrium. Compatible solutes are of diverse chemical structure (sugars, polyols, amino acid derivatives) and are beneficial for bacterial cells not only as osmoregulatory solutes but also as protectants of proteins by mitigating detrimental effects of freezing, drying, and high temperatures. The aspartate derivative ectoine is a widespread compatible solute in Bacteria and possesses additional protective properties compared with other compatible solutes and stabilizes even whole cells against stresses such as ultraviolet radiation or cytotoxins. Here, it is our intention to go beyond a simple description of effects, but to depict the molecular interaction of ectoine with biomolecules, such as proteins, membranes, and DNA and explain the underlying principles. The stabilizing properties of ectoine attracted industry, which saw the potential to market ectoine as a novel active component in health care products and cosmetics. In joint efforts of industry and research, a large-scale fermentation procedure has been developed with the halophilic bacterium Halomonas elongata used as a producer strain. The development and application of ectoine-excreting mutants from H. elongata (“leaky” mutants) allow for the annual production of ectoine on a scale of tons. The details of the strain development and fermentation processes will be introduced. KW - Ectoine KW - Biotechnology KW - Compatible solute KW - Preferential exclusion KW - Osmophobic effect PY - 2020 SN - 978-3-11-042773-8 SP - 121 EP - 136 PB - De Gruyter AN - OPUS4-51472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 U6 - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -