TY - THES A1 - Ehlert, Christopher T1 - Simulationen von Röntgenabsorptionsprozessen zur Charakterisierung von Systemen in kondensierter Phase N2 - Diese Doktorarbeit ist das Resultat einer intensiven und fruchtbaren Zusammenarbeit zwischen dem Fachbereich 6.1 (Oberflächenanalytik und Grenzflächenchemie) der Bundesanstalt für Materialforschung und -prüfung (BAM) sowie der Arbeitsgruppe Theoretische Chemie von Professor Saalfrank an der Universität Potsdam. Zusammen haben wir die Strukturaufklärung von Systemen in kondensierter Phase unter Verwendung der Röntgenabsorptionsspektroskopie betrieben. Von Seiten der BAM wurden experimentelle Röntgenabsorptionsspektren hoher Auflösung an modernen Synchrotroneinrichtungen (BESSY II, Berlin) aufgenommen. Die Theoretische Chemie liefert, unter Verwendung quantenchemischer Methoden, die Möglichkeit die Spektren zu simulieren. Bei der Röntgenabsorption wird ein Photon hoher Energie von einem molekularen System absorbiert und in einen angeregten Zustand versetzt. Die Intensität der Absorption ist stark abhängig von der eingestrahlten Photonenenergie. Das resultierende Absorptionsspektrum enthält eine Vielzahl von Informationen. Meine Aufgabe bestand darin, die untersuchten Systeme am Computer zu modellieren. KW - XPS KW - NEXAFS KW - Spektrensimulation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-104844 SP - 1 EP - 142 PB - Universität Potsdam CY - Potsdam AN - OPUS4-39562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Traulsen, Christoph T1 - Programmierbare supramolekulare (Komposit-)Multischichten auf Gold- und Siliziumoberflächen N2 - The present doctoral thesis focuses on the deposition of programmable supramolecular multilayers and composite-multilayers on gold and silicon substrates using a layer-by-layer selfassembly approach which is based on coordination chemistry. For this purpose, a variety of pyridine- and terpyridine-terminated self-assembled monolayers has been developed and deposited on gold and silicon substrates. Multitechnique analysis was carried out using X-ray photoelectron spectroscopy (XPS), (angle-dependent) near-edge Xray-absorption fine-structure spectroscopy (NEXAFS spectroscopy), time-of-flight secondaryion mass spectrometry (ToF-SIMS), transmissions UV/Vis spectroscopy as well as atomic force microscopy (AFM). By optimization of the deposition procedure, highly-ordered monomolecular and binary monolayers were deposited. As a proof of principle, transition metal-ions and appropriately labeled test-ligands were deposited on top of the functional monolayers. Furthermore, monolayers of terpyridine-terminated tetralactam macrocycles and the corresponding ether rotaxanes have been immobilized using coordination chemistry. In order to enhance the macrocycle surface coverage, the deposition procedure has been optimized as well. Multilayers consisting of diterpyridine-terminated tetralactam macrocycles have been deposited using either Fe(II) or alternatingly Fe(II) and Ni(II) metal-ions. The surface analysis proved a regular layer growth and a remarkable orientation of the macrocycles within the layer stacks. The applicability of the deposition procedure was expanded to a programmable layer stack by implementing pyridine-terminated macrocycles. The monodentate ligands led to an additional coordination sphere and thus to the application of a different transition metal-ion. The macrocycles and metal-ions were programmed according to the deposition sequence applied. The corresponding layer stack exhibited a linear dichroism of the π*-resonance corresponding to a preferential orientation of the macrocycles. Furthermore, the concept was extended to the deposition of composite multilayers consisting of pyridine-functionalized macrocycles and gold-nanoparticles which were synthesized during this thesis as well. Finally, reversible on-surface host-guest complex formation N2 - Die vorliegende Dissertation befasst sich mit der Herstellung von programmierbaren, supramolekularen Multischichten und Komposit-Multischichten auf Gold- und Siliziumoberflächen durch Anwendung eines koordinationschemischen Schicht-auf-Schicht-Selbstorganisationsverfahrens und den damit verbundenen Synthesen, Beschichtungen und Analysen. Um dieses Ziel zu erreichen, wurde zunächst eine Vielzahl von pyridin- und terpyridinterminierten selbstorganisierten Monoschichten (SAM) hergestellt und auf Gold- und Siliziumoberflächen abgeschieden. Die Abscheideprozedur wurde optimiert wobei zur Analytik der Oberflächen Röntgenphotoelektronenspektroskopie (XPS), winkelabhängiger kantennaher Röntgenabsorptionsfeinstrukturspektroskopie (NEXAFS-Spektroskopie), Flugzeit-Sekundärionen-Massenspektrometrie (ToF-SIMS), Transmissions-UV/Vis-Spektroskopie sowie Rasterkraftmikroskopie (AFM) eingesetzt wurde. Es konnte gezeigt werden, dass sich hochgeordnete monomolekulare und gemischte Monoschichten erzeugen lassen. Die terminalen funktionellen Gruppen dieser SAMs konnten als Ligand zur Komplexbildung mit Übergangsmetallionen verwendet werden. Diese koordinative Haftschicht wurde zur Verknüpfung zunächst von Testliganden und später von terpyridin-terminierten Tetralactam-Makrozyklen (TLM) und darauf basierenden Etherrotaxanen verwendet. Hierbei wurden ebenfalls die Beschichtungsbedingungen optimiert, um einen vollständigen Bedeckungsgrad zu erreichen. Unter Verwendung dieser Bedingungen wurden anschließend Multischichten aus TLMs und Fe(II)-Ionen sowie alternierend Fe(II) und Ni(II) abgeschieden. Die Analyse der hergestellten Multischichten zeigte reproduzierbar ein regelmäßiges, kontrollierbares Wachstum und eine Vorzugsorientierung. Durch den Einsatz von pyridin- und terpyridin-terminierten TLMs mit variierenden Metallionen konnte gezeigt werden, dass es möglich ist, die Abfolge verschiedener Schichten der Multischicht gezielt festzulegen. Im weiteren Verlauf der Arbeit wurden pyridin-terminierte Goldnanopartikel hergestellt und in die Multischichten integriert, um so Komposit-Multischichten herzustellen. Letztlich konnte gezeigt werden, dass die erzeugten Multischichten genutzt werden können, um über nicht-kovalente Wechselwirkungen reversibel Gastmoleküle zu binden und freizusetzten. KW - Layer-by-layer deposition KW - XPS KW - NEXAFS KW - ToF SIMS KW - Progammable rotaxane stacks PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000096664-6 SP - 1 EP - 141 PB - Freie Universität CY - Berlin AN - OPUS4-39615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lange, Nele T1 - Selektive chemische Modifikation von Siliziumnitrid-Oberflächen für neuartige biosensorische Applikationen N2 - Biosensoren gewinnen in den letzten Jahren zunehmend an Bedeutung. So erfolgt die Identifizierung des Analyten mit Biosensoren deutlich schneller und unkomplizierter als mit herkömmlichen analytischen Methoden. Aufgrund des Schlüssel-Schloss-Prinzips ist zudem die Detektion von Biosensoren äußerst selektiv. Die Herstellung dieser Sensoren erfolgt häufig trotz der Unzuverlässigkeit der Silanchemie über die Silanisierung der Si-H- bzw. Si-OH-Bindungen an der Silizium-Oberfläche. Die Abhängigkeit von Temperatur- und pH-Wert, sowie die Veränderung der Filmdicke bei nur kleinen Schwankungen des Wassergehalts während der Umsetzung werden oft vernachlässigt. Seltener wird die Si-NHx-Bindung genutzt, um dünne organische Filme zu erzeugen. Im Rahmen dieser Arbeit wurde eine neue Funktionalisierungsstrategie entwickelt, die die Silanchemie vermeidet. Die Idee basiert auf der Herstellung einer Azid-terminierten Oberfläche erzeugt aus Oberflächenaminen des materialintrinsischen Stickstoffs von Siliziumnitrid (Si3N4). Diese Azidgruppen bildeten die Grundlage für die Click-Chemie mit geeigneten Alkin-terminierten (Bio)molekülen und die anschließende Immobilisierung von ausgewählten Analyten. Die Funktionalisierungsstrategie umfasst die Erzeugung von NHx-terminierten Si3N4-Oberflächen durch Flusssäureätzung gefolgt von deren Umwandlung in Azidgruppen durch verschiedene Methoden. Im Anschluss wurden Alkine durch die Kupfer-katalysierte Azid-Alkin-Cycloaddition (CuAAC, Click-Chemie) an die Azid-terminierte Oberfläche immobilisiert. Der Erfolg der einzelnen Reaktionsschritte wurde durch oberflächenanalytische Methoden, durch XPS, NEXAFS und ToF-SIMS, überprüft. Die Charakterisierung der gebildeten Triazolringe erfolgte anhand des N 1s-XP-Spektrums sowie der NEXAFS C K-Kante. Die CF3-Gruppe wurde anhand der C 1s und F 1s-XP-Spektren, sowie der NEXAFS F K-Kante identifiziert. ToF-SIMS Untersuchungen bestätigten ebenfalls die Bindung des Alkins an die Si3N4-Oberfläche. Im weiteren Verlauf der Arbeit wurde die direkte Anbindung eines Biomoleküls an die Si3N4 Oberfläche getestet. Hierfür wurde das Biotin/Streptavidin-System durch eine Click-Reaktion an der Oberfläche verankert. Die erfolgreiche Biotin/Streptavidin-Interaktion wurde ebenfalls mit XPS, NEXAFS und ToF-SIMS nachgewiesen. Der Erfolg der Click-Reaktionen war sowohl bei der Methodenentwicklung als auch bei der Immobilisierung des Modellfilms vom genutzten Lösungsmittel abhängig. Neben der direkten Immobilisierung von (Bio)molekülen an die Si3N4-Oberfläche durch die Click-Chemie gelang es auch einen Kupfer(II)trifluormethoxyphenanthrolin-Komplex als künstliche Nuklease über Amid-Kopplung an die Si-NHx-Oberfläche zu binden. Hierbei diente ein OCF3-Substituent des Kupfer(II)trifluormethoxyphenanthrolin-Komplexes als XPS-Sonde. Die Identifizierung des Komplexes erfolgte anhand der OCF3-Komponente im C 1s- und F 1s-XP-Spektrum und der NEXAFS F K-Kante, sowie des Cu 2p-XP-Spektrums. Die ToF-SIMS-Massenspektren bestätigten ebenfalls die Bindung des Komplexes. Die Kupfermenge wurde mit der Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) zu 0.08 µg/cm2 bestimmt, was 87 x 1012 Kupferatome pro cm2 entspricht. Nach der Verifizierung des immobilisierten Komplexes erfolgte die Untersuchung der Spaltaktivität der auf der Si3N4-Oberfläche gebundenen künstlichen Nuklease gegenüber Plasmid-DNA. Hierbei wurde eine Zunahme der Spaltaktivität mit zunehmender DNA-Inkubationszeit festgestellt. Weiterhin ist bemerkenswert, dass der verwendete Kupfer(II)trifluormethoxyphenanthrolin-Komplex erst auf der Oberfläche seine Spaltaktivität entfaltet. Kontrollproben in Lösung zeigten im Gegensatz zu dem immobilisierten Komplex keine Spaltaktivität. KW - Surface Chemistry KW - Silicon Nitride KW - Click Chemistry KW - DNA Cleavage KW - XPS KW - NEXAFS KW - ToF-SIMS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000105216-6 SP - 1 EP - 240 PB - Freie Universität CY - Berlin AN - OPUS4-42790 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -