TY - CONF A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Genath, A. A1 - Einspanier, R. T1 - Monitoring der Ameisensäurekonzentration in Bienenstock-Luft N2 - Die Varroose gilt weltweit als eine der bedeutendsten Erkrankungen der westlichen Honigbiene, Apis mellifera. Verursacht wird sie durch den Ektoparasiten Varroa destructor, der durch Saugen der Hämolymphe und Virenübertragung sowohl die Bienenbrut als auch die adulten Individuen schädigt. Ohne imkerliche Unterstützung gehen betroffene Bienenvölker in der Regel innerhalb von drei Jahren ein. Als bewährte, häufige Behandlung wird flächendeckend 60%ige Ameisensäure (AS) -im Bienenstock appliziert über verschiedene Verdampfungssysteme- eingesetzt. Sie wirkt als einziger zugelassener Wirkstoff gegen die Varroamilbe auch in die verdeckelte Brut hinein und birgt kein Risiko der Resistenzentwicklung. Allerdings ist das therapeutische Fenster, der Bereich zwischen Milbenabtötung und Bienenschädigung, relativ schmal und die tatsächliche AS-Konzentration im Bienenstock stark abhängig von äußeren Einflussfaktoren, wie Temperatur oder Applikationsart. Eine Bestimmung der exakten AS-Konzentration im Bienenstock ist also notwendig, um einerseits das Wirkungsoptimum zu bestimmen und andererseits bei Übersteigen der Maximalkonzentrationen mit Folge-Schädigung der Bienen, ein rechtzeitiges Eingreifen der Imker zu ermöglichen. Die Entwicklung eines Detektors zur Bestimmung der tatsächlichen AS-Konzentration in der Bienenstockluft würde einen großen Fortschritt in den Bereichen der Bienenforschung, der Varroa-Behandlung in der Imkerei, sowie einer gesundheitlich bedenklichen AS-Exposition für den Imker bedeuten. Langfristiges Ziel dieses Projekts ist es, ein mobiles, einfach handhabbares Gerät zur Detektion der AS-Konzentration in der Bienenstock-Luft während einer AS-Behandlung zu entwickeln. Grundlage hierfür bietet ein kommerziell verfügbares Multigassensorsystem (PEN3, AIRSENSE Analytics GmbH, Schwerin). Ziel der beschriebenen Vorversuche ist die generelle Eignungsprüfung des Multigassensorsystems PEN3 zur Detektion der hohen AS-Konzentration in Gasgemischen unter Bedingungen wie sie im Bienenstock während einer AS-Behandlung herrschen. Als Messplatz zur Detektion von AS in Luft wurden zwei Systeme vorbereitet: A) Eine Plexiglasbox mit einem Volumen von ca.1,9 l diente als Prüfkammer, wurde von einem Gasstrom befeuchteter synthetischer Luft durchströmt (50 mL min-1, 100 mL min-1 oder 300 mL min-1) und zur Temperierung auf 25 °C auf einer Heizmatte bzw. auf 35 °C in einem Ofen platziert. AS-Wasser-Gemische verschiedener Volumenverhältnisse (0-100%) wurden in einer Glasschale (Oberfläche Flüssigphase 9,6 cm2) in der Prüfkammer vorgelegt. B) In einer durch eine Heizmatte auf 25 °C temperierten, zwei-zargigen Segeberger Beute wurden vier Messpunkte angebracht (davon drei in der oberen und einer in der unteren Etage) und 60%ige AS über einen Nassenheider-Verdampfer vertikal vorgelegt. Zur Detektion des AS-Luft-Gemischs wurde das PEN3 Multigassensorsystem genutzt. Das zu untersuchende Gasgemisch wurde über die internen zehn Metalloxid-Halbleiterdetektoren (1-10) der PEN3 geleitet. Das so generierte Messsignal beschreibt ein Widerstandsverhältnis zwischen dem Widerstandwert zum Zeitpunkt der Messung (R) und dem elektrischen Widerstand bei der Nullluft-Messung (R0), wobei hier befeuchtete synthetische Luft mit einer reltativen Feuchte von 49 % ± 4 % oder Raumluft genutzt wurde. Gase unterschiedlicher Zusammensetzung können anhand der dargestellten Signalmuster verschiedener Sensoren voneinander unterschieden werden. In beiden Messsystemen wiesen die Sensorelemente 1, 6, 7, 8 und 9 gesteigerte Sensitivitäten beim Vorliegen von Ameisensäure im Gasgemisch auf. Die größten Widerstandsverhältnisse zeigten dabei die Sensorelemente 6, 8 und 9, sodass hier von der höchsten Empfindlichkeit für AS auszugehen ist. Basierend auf den erhobenen Messdatensätzen wurden Hauptkomponenten- (PCA) und lineare Diskriminanzanalysen (LDA) zur Dimensionsreduktion durchgeführt, um charakteristische Muster aus den Messsignalen zu extrahieren. Die PCA- und LDA-Plots für die jeweils bedeutsamsten Komponenten PC 1 und PC 2 bzw. LD 1 und LD 2 eines Versuchslaufs in der Plexiglasbox (A) bei einer Temperatur von 35°C, einem Volumenstrom von 300 mL min-1 und variablen Ameisensäure-Wasser-Volumenverhältnissen von 0 % bis 100 %. Deutlich erkennbar sind die Abhängigkeiten der Komponenten PC 1 und LD 1 (Abszissen) vom vorgelegten AS-Wasser-Volumenverhältnis. Unsere Ergebnisse zeigen, dass das Multigassensorsystem zur Bestimmung von AS in Luft unter ähnlichen Bedingungen wie bei einer AS-Behandlung im Bienenstock angewandt werden kann. Die Versuche zeigen, dass die im PEN3 eingesetzten Metalloxid-Sensoren bzw. Metalloxidsensor-Arrays zur Detektion von AS in Luft auch bei höheren Konzentrationen als beispielsweise der MAK-Wert von 5 µmol/mol zur Überwachung des AS-Gehaltes in Bienenstöcken angewandt werden können. Aufgrund der Möglichkeit der quasi Echtzeit-Messdatengenerierung, der geringen Kosten kommerziell verfügbarer Sensorelemente, der Portabilität und der Möglichkeit zur Miniaturisierung zeichnen sich solche Messsysteme zukünftig durch eine besondere Praxisnähe aus. Diese Erkenntnisse sind Grundlage für eine Verbesserung des Detektionsverfahrens und zur Vorhersage über die Effizienz und Effektivität der Varroha-Milbenbehandlung. T2 - Tierbiochemisches Seminar CY - Freie Universität Berlin, Germany DA - 24.05.2019 KW - Ameisensäure KW - Methansäure KW - Multigassensor KW - Sensorik KW - Biene KW - Imker PY - 2019 AN - OPUS4-48076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -