TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - Forschungsprogramm 2009 - 2010 N2 - In den Zeiten der Globalisierung und der beschleunigten technologischen Entwicklungen lassen sich in den Industrieländern nur mit einer entsprechenden Innovationsdynamik und -dichte die Herausforderungen im Hinblick auf Wachstum, Beschäftigung und Strukturwandel erfüllen. Grundvoraussetzung hierfür ist eine leistungsfähige Forschung. Um die Forschungsinfrastruktur in der Bundesrepublik zu erhalten und global wettbewerbsfähig zu bleiben, sind verstärkte Investitionen des Staates und der Wirtschaft notwendig. Mit den Investitionen im Rahmen der Hightech-Strategie hat die Bundesregierung einen wichtigen Schritt zur Förderung des wissenschaftlich-technischen Fortschritts in Deutschland getan. Die Investitionen in die Forschungsinfrastruktur des Landes sind nun von den Forschungseinrichtungen und Universitäten effektiv und effizient zu nutzen. Für einen möglichst wirksamen Einsatz der Forschungsetats sind Forschungsprogramme sowohl für die Forschungseinrichtung als auch für die Mittelgeber ein wichtiges Instrument im Hinblick auf die Darstellung der Aktivitäten. Dies gilt insbesondere für die Ressortforschungseinrichtungen des Bundes, zu denen die Bundesanstalt für Materialforschung und -prüfung (BAM) zählt. Diese Einrichtungen verfügen über einen klaren Auftrag und ihre Forschung ist mit der Wahrnehmung öffentlicher Aufgaben verbunden. Forschungsprogramme dienen daher besonders in diesen Einrichtungen dazu, Perspektiven im Bereich ihres Aufgabenfeldes sowie ihre Forschungsaktivitäten transparent darzustellen und politisch vertretbar zu machen. Das vorliegende Forschungsprogramm der BAM gibt einen Überblick über die in den nächsten Jahren aktuellen Forschungsthemen und die hierfür erforderlichen Ressourcen und Rahmenbedingungen. PY - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-578814 SP - 1 EP - 38 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-57881 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - Forschungsprogramm 2015 - 2017 N2 - Globalisierung und die beschleunigte technologische Entwicklung bringen heute für die Industrieländer Herausforderungen im Hinblick auf Wachstum, Beschäftigung und Strukturwandel mit sich, denen nur mit einer entsprechenden Innovationsdynamik und -dichte begegnet werden kann. Grundvoraussetzung hierfür ist eine leistungsfähige Forschung und Entwicklung ebenso wie Wissens- und Technologietransfer zur Umsetzung von Forschungsergebnissen in marktfähige Produkte und Dienstleistungen. Europa hat sich im Rahmen des Lissabon-Prozesses zum Ziel gesetzt, den Anteil der Forschungsausgaben am Bruttoinlandsprodukt auf 3 % zu steigern. Um die Forschungsinfrastruktur in der Bundesrepublik zu stärken und global wettbewerbsfähig zu bleiben, hat die Bundesregierung mit der Hightech-Strategie einen weiteren wichtigen Schritt zur Förderung des wissenschaftlich-technischen Fortschritts in Deutschland getan. Forschungsprogramme sind sowohl für Forschungseinrichtungen als auch für Mittelgeber ein wichtiges Instrument für die Darstellung und Steuerung ihrer Aktivitäten. Dies gilt auch für die Bundeseinrichtungen mit Forschungs- und Entwicklungsaufgaben, zu denen die Bundesanstalt für Materialforschung und -prüfung (BAM) zählt. Die BAM verfügt über einen klaren gesetzlichen Auftrag für die Sicherheit in Technik und Chemie. Ihre Forschung ist mit der Wahrnehmung öffentlicher Aufgaben verbunden. Das Forschungsprogramm zeigt Perspektiven im Bereich ihres Aufgabenfeldes sowie ihrer damit verbundenen Forschungsaktivitäten transparent und politisch nutzbar auf und dient darüber hinaus der Koordinierung der Ressortforschung. Das Forschungsprogramm der BAM wird alle zwei Jahre aktualisiert. Es gibt einen Überblick über die aktuellen und zukünftigen Forschungsthemen und die hierfür erforderlichen Rahmenbedingungen. PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-421401 SP - 1 EP - 40 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-42140 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - Forschungsprogramm 2022 - 2024 N2 - Der Koalitionsvertrag der Bundesregierung betont in seiner Präambel zur Zukunft Deutschlands in Bezug auf die notwendige Modernisierung, dass „dieser Fortschritt auch mit einem Sicherheitsversprechen einhergehen muss“. Die Bundesanstalt für Materialforschung und -prüfung (BAM) stellt mit ihrem Auftrag „Sicherheit in Technik und Chemie“ und ihrer über 150-jährigen Kompetenz sicher, dass ein nachhaltiger technischer Fortschritt von einem Sicherheitsversprechen für die Bürger*innen begleitet ist. Durch ihre Interdisziplinarität, die thematische Breite, die langjährige Erfahrung und die unabhängige Rolle als Ressortforschungseinrichtung ist die BAM in einer herausragenden Lage, als zentraler Akteur die Entwicklung unterschiedlichster Technologien unter Berücksichtigung sicherheitstechnischer Aspekte voranzubringen, das Vertrauen der Gesellschaft in diese Technologien sicherzustellen und dadurch die Basis für erfolgreiche Innovationen zu schaffen. Der Fokus ihrer Arbeit liegt auf den fünf Themenfeldern Energie, Infrastruktur, Umwelt, Material und Analytical Sciences. Wichtige Themen betreffen dabei sowohl die Energiewende (Wasserstoff, elektrische Energiespeicher, Windenergie) als auch Bereiche der Technologiesouveränität wie die additive Fertigung, zuverlässige Materialdaten, Zustandsüberwachung und Kreislaufwirtschaft. Die Digitalisierung und den digitalen Wandel unterstützt die BAM in Bezug auf technologieübergreifende Rahmenbedingungen besonders in der Initiative Qualitätsinfrastruktur-Digital (QI-Digital), in der gemeinsam mit weiteren zentralen Akteuren der deutschen QI Lösungen für die Qualitätssicherung in einer digitalisierten Welt entwickelt werden. Grundvoraussetzung für sichere Technologien und Innovationen ist eine leistungsfähige Forschung und Entwicklung ebenso wie Wissens- und Technologietransfer zur Umsetzung von Forschungsergebnissen in marktfähige Produkte und Dienstleistungen. Dafür bildet die Arbeit der BAM eine wichtige Basis. Ihre Forschung ist mit der Wahrnehmung öffentlicher Aufgaben verbunden. Das Forschungsprogramm zeigt Perspektiven im Bereich ihres Aufgabenfeldes sowie ihrer damit verbundenen Forschungsaktivitäten transparent und politisch nutzbar auf und dient darüber hinaus der Koordinierung der Ressortforschung. Das Forschungsprogramm der BAM wird alle zwei Jahre aktualisiert. Es gibt einen Überblick über die aktuellen und zukünftigen Forschungsthemen und die hierfür erforderlichen Rahmenbedingungen. PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572758 SP - 1 EP - 40 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-57275 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bruhn, D. A1 - Köhler, S. A1 - Regenspurg, S. A1 - Schumann, F. A1 - Bäßler, Ralph A1 - Dunkelberg, E. A1 - Huenges, E. A1 - Frick, M. A1 - Hirschl, B. A1 - Sass, I. T1 - Positionspapier Wärmeversorgung in Berlin und Brandenburg durch GeoEnergie - Empfehlungen der GeoEnergie Allianz Berlin Brandenburg zu Forschung und Umsetzung N2 - Das gesellschaftliche Ziel der Defossilisierung der Energieversorgung erfordert eine disruptive Veränderung der Wärmebereitstellung. In Berlin und in den größten Brandenburger Städten Potsdam und Cottbus werden noch über 80 % der Nutzwärme über fossile Energieträger bereitgestellt. Die notwendigen Veränderungen erfordern Lösungen, die den tiefen Untergrund der Region nutzen. Allein die Nutzung der tiefen Geothermie kann mindestens 25% des Wärmebedarfs in Deutschland decken. Die Infrastruktur zur Verteilung dieser erneuerbaren Wärme ist bereichsweise vorhanden. Sie muss allerdings lokal und in ländlichen Gebieten weiter ausgebaut werden. Für die Sektoren Strom und Verkehr steht zwar Energie insbesondere aus Sonne und Wind bereit, aber wegen des zeitlich variablen Angebots besteht ein erheblicher Bedarf an großtechnischen Speichern für Strom und Wärme oder auch für Energieträger (z. B. Wasserstoff). Die saisonale oder temporale Überproduktion an Strom und Wärme aus erneuerbaren Energien zwingt dazu, eine urbane Speicherinfrastruktur aufzubauen, um eine grundlastfähige und bedarfsgerechte Lieferung zu realisieren. Hinzu kommt die Aufgabe das Treibhausgas Kohlendioxid aus der Atmosphäre zu reduzieren und unterirdisch dauerhaft zu lagern. Auch hier werden Speichertechnologien und ‐räume benötigt. Die nachhaltige energetische Nutzung des unterirdischen Raumes ist geeignet, entscheidende Beiträge zu einer zukünftigen Energiewirtschaft ohne fossile Brennstoffe zu leisten. Diese große interdisziplinäre Aufgabe erfordert die Zusammenarbeit vieler Fach‐, und Forschungseinrichtungen, die im Raum Berlin‐ Brandenburg vorhanden sind und in einer regionalen Forschungsallianz gebündelt werden sollen. Für die Region Berlin‐Brandenburg ergibt sich daraus die Chance, eine Schlüsselrolle in der Grundlagen‐ und angewandter Forschung zur Transformation des Energiesystems zu übernehmen und weltweit als Vorbild zu dienen. Im vorliegenden Papier werden die Formen einer nachhaltigen Geoenergienutzung, das geologische Potenzial der Region Berlin Brandenburg und dessen bisherige geoenergetische Nutzung dargestellt. Aus diesem Wissen wird der Ist‐Zustand hinsichtlich des energiewirtschaftlichen Potenzials und der sich daraus ergebenden Nutzungsoptionen abgeleitet, um darauf aufbauend Maßnahmen darzustellen, mit denen spürbare Beiträge zur Dekarbonisierung erreicht werden können. Daraus ergeben sich Handlungsempfehlungen für die Region, verbunden mit einem möglichen Beitrag der GEB² zum Risikomanagement, Investitionen in Schlüsseltechnologien, der Aus‐ und Weiterbildung, sowie der Akzeptanzerhöhung für geoenergetische Projekte. T2 - Gründungsveranstaltung der GeoEnergie Allianz Berlin Brandenburg CY - Berlin, Germany DA - 24.11.2023 KW - Geoenergie KW - Geothermie KW - Nachhaltigkeit PY - 2023 SP - 1 EP - 18 CY - Berlin & Potsdam AN - OPUS4-58924 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hübert, Thomas T1 - H2Sense - Cost-effective and reliable Hydrogen Sensors for Facilitating the Safe Use of Hydrogen N2 - The H2SENSE (Cost-effective and reliable hydrogen sensors for facilitating the safe use of hydrogen) project promoted hydrogen primarily, but not exclusively, for its use as an alternative fuel. It brought together different stakeholders including sensor manufacturers, end-users, certification bodies and independent evaluators to ensure the optimum use of low-cost and reliable hydrogen sensors. Project partners analysed sensor performance in real-life applications in industrial environments and identified increased requirements for sensors and for regulations, codes and standards. H2SENSE also facilitated the safe use and implementation of hydrogen as an alternative fuel by ensuring the correct use of effective hydrogen detection devices. European scientists worked together with colleagues from the National Renewable Energy Laboratory (NREL) in Colorado, USA. They pooled their knowledge of developments in hydrogen sensor technology as well as deployment and commercialisation strategies. These benefits will be continued through trans-Atlantic inter-laboratory sensor testing programmes in which EU and US laboratories perform complementary tests and exchange results. KW - Sensors KW - Hydrogen KW - Renewable energy PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-387484 SP - 1 EP - 3 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN T1 - Forschungsprogramm 2019 - 2021 N2 - Die voranschreitende Digitalisierung, die Globalisierung sowie die daraus resultierende beschleunigte technologische Entwicklung bringen heute für die Industrieländer Herausforderungen im Hinblick auf Wachstum, Beschäftigung und Strukturwandel mit sich, denen nur mit einer entsprechenden Innovationsdynamik und -dichte begegnet werden kann. Grundvoraussetzung hierfür ist eine leistungsfähige Forschung und Entwicklung ebenso wie Wissens- und Technologietransfer zur Umsetzung von Forschungsergebnissen in marktfähige Produkte und Dienstleistungen. Europa hat sich im Rahmen des Lissabon-Prozesses zum Ziel gesetzt, den Anteil der Forschungsausgaben am Bruttoinlandsprodukt auf 3 % zu steigern. Um die Forschungsinfrastruktur in der Bundesrepublik zu stärken und global wettbewerbsfähig zu bleiben, hat die Bundesregierung mit der Hightech-Strategie 2025 einen weiteren wichtigen Schritt zur Förderung des wissenschaftlich-technischen Fortschritts in Deutschland getan. Forschungsprogramme sind sowohl für Forschungseinrichtungen als auch für Mittelgeber ein wichtiges Instrument für die Darstellung und Steuerung ihrer Aktivitäten. Dies gilt auch für die Bundeseinrichtungen mit Forschungs- und Entwicklungsaufgaben, zu denen die Bundesanstalt für Materialforschung und -prüfung (BAM) zählt. Die BAM verfügt über einen klaren gesetzlichen Auftrag für die Sicherheit in Technik und Chemie. Ihre Forschung ist mit der Wahrnehmung öffentlicher Aufgaben verbunden. Das Forschungsprogramm zeigt Perspektiven im Bereich ihres Aufgabenfeldes sowie ihrer damit verbundenen Forschungsaktivitäten transparent und politisch nutzbar auf und dient darüber hinaus der Koordinierung der Ressortforschung. Das Forschungsprogramm der BAM wird alle zwei Jahre aktualisiert. Es gibt einen Überblick über die aktuellen und zukünftigen Forschungsthemen und die hierfür erforderlichen Rahmenbedingungen. PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-577499 SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-57749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ebell, Gino A1 - Mayer, T. F. T1 - Korrosions- und Verbundverhalten bei beschichteten Fugenblechen N2 - Wechselwirkung von feuerverzinkten Fugenblechen und Beton bei Einsatz in WU-Bauwerken. Mögliche Wasserstoffentwicklung an feuerverzinkten Fugenblechen durch Einwirkung hochalkalischer Medien wie Beton kann durch ausreichend großflächigen, kathodisch wirksamen, Betonstahl unterbunden werden. KW - Korrosion KW - Feuerverzinkter Stahl KW - Korrosionsschutz PY - 2023 SP - 1 EP - 6 CY - online DBV AN - OPUS4-57488 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beckmann, M. A1 - Danz, P. A1 - Deike, R. A1 - Dornack, C. A1 - Gehrmann, H.-J. A1 - Gleis, M. A1 - Hölemann, K. A1 - Karpf, R. A1 - Pieper, C. A1 - Quicker, P. A1 - von Raven, R. A1 - Seifert, H. A1 - Simon, Franz-Georg T1 - Positionspapier - Abfallverbrennung in der Zukunft N2 - Die Autoren zeigen dazu die gesetzlichen und energiepolitischen Rahmenbedingungen und Perspektiven auf, widmen sich in aktuellen Beiträgen zur Verfahrenstechnik der thermischen Abfallbehandlung sowohl den thermischen Hauptverfahren als auch der Abgasreinigung und gehen auf das Thema Wertstoffrückgewinnung ein. Ihr Fazit: Durch Anstrengungen, das stoffliche Recycling weiter zu optimieren, können künftig weitere Kreisläufe von Produkten und Materialien hochwertig geschlossen werden. Für manche Abfallströme wird dies aber aus verschiedenen Gründen nicht möglich sein – hier bleibt die thermische Abfallbehandlung unverzichtbar. KW - Rostasche KW - Abfallverbrennung PY - 2022 UR - https://dechema.de/Medien/Studien+und+Positionspapiere/2022+03+Abfallverbrennung.html SP - 1 EP - 52 PB - DECHEMA CY - Frankfurt/M. AN - OPUS4-54510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Giese, Marcel T1 - Experimentelle Charakterisierung der WIG-Schweißeignung einer Hoch- und Mediumentropie-Legierung N2 - Equiatomic multi-element systems with defined entropy are a relatively new mate-rial concept for alloy production. These alloys consist of at least five elements in equiatomic distribution in the case of high entropy alloys (HEA) and three to four elements in equiatomic distribution in the case of medium entropy alloys (MEA). Previous studies on these alloys have focused primarily on their production, micro-structure and the resulting material properties. Meanwhile, the focus here is on the processing of the alloys and their influence on future applications. Up to now, there has been insufficient knowledge of the materials and processes involved in weld-ing. In this work, therefore, the weldability of a CoCrFeMnNi-HEA and a CoCrNi-MEA by means of a TIG welding process was investigated as a basic system. To this end, the welding parameters were first determined on a reference alloy (Ni-based: 2.4858) and transferred to the welding of the CoCrFeMnNi-HEA and CoCrNi-MEA. Weldability was assessed by testing the absence of defects and microstructures obtained. The weld metal exhibited the dendritic microstructure typical of TIG, with microsegregations forming as interdendritic phases. Increased hardness was de-tected in the weld metal compared to the base metal. In the heat-affected zone, there was little grain growth and, in both alloys, the formation of hot cracks after welding. The cause of the cracks was to be found in the specimen preparation, which had an influence on the subsequent processing. After elimination of this in-fluence, no welding process-related imperfections were found in the CoCrFeMnNi-HEA and CoCrNi-MEA. In summary, both materials show good fusion weldability by TIG welding. The re-sults of this work thus contribute to the understanding of the weldability of HEA and in particular for CoCrNi-MEA, which was considered in this depth for the first time. KW - WIG-Schweißen KW - Hochentropielegierung KW - Mediumentropielegierung PY - 2021 SP - 1 EP - 79 CY - Otto von Guericke Universität AN - OPUS4-53644 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -