TY - RPRT A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik für die neue Wasserstoffökonomie – Werkstoffe, Schweißtechnologien, Perspektiven – N2 - Die Studie gibt einen Überblick über die Aspekte der Fügetechnik und ihrer Bedeutung in Wasserstofftechnologien. Dazu werden die Grundlagen der Technologiefelder Wasserstofferzeugung, -speicherung, -transport und -nutzung vorgestellt und der Stand der Technik der fügetechnischen Fertigung von Komponenten in Wasserstofftechnologien zusammengefasst. Dabei werden nicht nur exklusiv Metalle betrachtet. Anhand repräsentativer Beispiele aus der Praxis, Forschung und Entwicklung wird die Bedeutung der Fügetechnik in Wasserstofftechnologien klar herausgestellt und mögliche Perspektiven für die Zukunft abgeleitet. Hier ist ersichtlich, dass Fügetechnologien wesentliche Bedeutung für die erfolgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien haben, von der Erzeugung bis zur Anwendung. Aus gesamtwirtschaftlicher Sicht umfassen die Schwerpunkte bzw. Trends der Fügetechnik dabei: die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie die sichere Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstoffanwendung wird die effiziente massentaugliche Produktion von Brennstoffzellen immer wichtiger. Es ist zudem klar ersichtlich, dass die additive Fertigung bereits jetzt ein hohes Potential für Komponenten von Wasserstofftechnologien besitzen und dieses wachsen wird. Aus den perspektivischen Anwendungen ergeben sich zudem Herausforderungen und Forschungsbedarfe für die notwendigen nationalen und internationalen Regelwerke und technischen Normen. Schwerpunktmäßig sind hierbei die bereits bestehenden Empfehlungen und kodifizierten Regeln vollständig zu adaptieren und in die Aus- und Weiterbildung von fügetechnischem Fachpersonal einzubetten. KW - Fügetechnik KW - Wasserstoff KW - Werkstoffe KW - Prozesse KW - Perspektiven PY - 2021 UR - https://www.dvs-media.eu/de/neuerscheinungen/4425/dvs-studie-zur-fuegetechnik-fuer-die-neue-wasserstoffoekonomie-werkstoffe-schweisstechnologien-perspektiven SN - 978-3-96144-157-0 SN - 978-3-96144-158-7 VL - 373 SP - 1 EP - 59 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-53498 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eliezer, D. A1 - Nissim, Y. A1 - Kannengießer, Thomas T1 - Effects of shielding with various hydrogen-argon mixtures on supermartensitic stainless steel TIG welds N2 - Eine Anzahl verschiedener Effekte ergibt sich aus der Anwesenheit von Wasserstoff während des Schweißens hochlegierter Stähle. Die Betriebsdauer von geschweißten Bauteilen ist außerdem stark von der Anwesenheit von Wasserstoff im Umgebungsmedium und der Anfälligkeit der verschiedenen Schweißnahtgefüge für eine Degradation ihrer Eigenschaften durch Wasserstoff abhängig. Als eine relative neue Werkstoffgeneration finden supermartensitische hoch legierte Stähle (Supermartensitic Stainless Steels - SMSS) zunehmend als Ersatz für teuere Legierungen insbesondere in der Öl- und Gasindustrie Verwendung. Als Konsequenz ihres martensitischen Gefüges sind diese Legierungen anfällig für eine wasserstoffunterstützte Rissbildung (Hydrogen Assisted Cracking - HAC). Der Widerstand von supermartensitischen Stählen gegen wasserstoffunterstützte Spannungsrisskorrosion (Hydrogen Assisted Stress Corrosion Cracking - HASCC) unter Sauergasbedingungen wurde vor allem für industrielle Einsatzzwecke extensiv untersucht. Solche Studien vornehmlich an Grundwerkstoffen basieren überwiegend auf Standard-Prüfverfahren. Dem gegenüber würde das grundsätzliche Verhalten von Wasserstoff in den Gefügen geschweißter supermartensitischer Stähle wenig untersucht. Die zentralen Gründe für die diesem Beitrag zugrunde liegende Studie waren daher, die Effekte des Wasserstoffs auf das Gefüge von Wolfram Inert Gas (WIG)-Schweißungen supermartensitischer Stähle und die entsprechenden Wasserstoff-Trapping-Mechanismen zu untersuchen. Die Wirkungen des Wasserstoffs auf die verschiedenen WIG-geschweißten Gefüge wurden mittels Röntgendiffraktometrie, Lichtmikroskopie und Rasterelektronenmikroskopie untersucht. Eine Anzahl von Verfahren wurde außerdem angewendet, um den absorbierten Wasserstoff quantitativ zu bestimmen. Die Wechselwirkung zwischen Wasserstoff mit den mikrostrukturellen Defekten und die Charakteristika der Wasserstoffdesorption wurden mittels Thermischer Desorptionsspektroskopie (TDS) und Trägergas-Heißextraktionen des Wasserstoffs (LECO Analyse) untersucht. Die Wirkung des Gefüges auf die Absorption und Desorption von Wasserstoff werden im Detail diskutiert. KW - Hydrogen assisted cold cracking KW - Supermartensit KW - XRD KW - TDS PY - 2010 U6 - https://doi.org/10.3139/120.110135 SN - 0025-5300 VL - 52 IS - 5 SP - 306 EP - 315 PB - Hanser CY - München AN - OPUS4-21335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik für die neue Wasserstoffökonomie N2 - Die Herausforderungen für die Fügetechnikbranche, die sich durch die neuen Wasserstoff-Technologiefelder „Erzeugung“, „Speicherung“, „Transport“ und „Nutzung“ ergeben, sind sehr vielfältig. Der DVS-Bericht 373 gibt dazu einen tieferen Einblick. Der hier vorliegende Kurzbericht stellt dazu ausgewählte Praxisbeispiele, zugehörige Herausforderungen und sich ergebende Chancen vor. Fügetechnologien haben dabei wesentliche Bedeutung für das erfolgreiche Umsetzen und Herstellen der benötigten technischen Komponenten, wie anhand der Themenkomplexe „Wasserstoff-Pipelines“ und „additive Fertigung“ betrachtet wird. Zudem ergeben sich Herausforderungen für die notwendigen Regelwerke und Normen, die nahezu vollständig angepasst oder geschaffen werden müssen. KW - Wasserstoff KW - Fügetechnik KW - Studie KW - Werkstoffe KW - Schweißen PY - 2022 UR - https://www.schweissenundschneiden.de/artikel/fuegetechnik-fuer-die-neue-wasserstoffoekonomie SN - 0036-7184 VL - 74 IS - 3 SP - 142 EP - 144 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-54563 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien - Forschungsbedarf für die Branche N2 - Die Studie gibt einen kurzen Überblick über die jetzige Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Forschungsbedarfe für die Branche in den einzelnen Technologiefeldern Wasserstofferzeu-gung, -speicherung, -transport und -nutzung. Fügetechnologien haben dabei wesentliche Bedeutung für die er-folgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien. Die Schwerpunkte bzw. For-schungsbedarfe ergeben sich bspw. durch die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie durch Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstofferzeugung und -anwendung wird z.B. die Entwicklung effiziente Massenproduktionsmethoden von Elektrolyseuren und Brennstoff-zellen einen wichtigen Meilenstein bilden und laserbasierte Fügetechnologien sind hier zum Teil schon etabliert. Die additive Fertigung nimmt dabei eine Querschnittsposition ein und besitzt hohes Anwendungspotential für die Zukunft z.B. für die Fertigung von Komponenten in Gasturbinen. Aus den technischen Fragestellungen und For-schungsbedarfen ergeben sich zudem Herausforderungen für die notwendige Neu- und Weiterentwicklung von technischen Regelwerken und Normen und den Eingang in die Aus- und Weiterbildung von fügetechnischem Fachpersonal. T2 - DVS Congress 2021 CY - Essen, Germany DA - 14.09.2021 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Technologie PY - 2021 AN - OPUS4-53321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik in Wasserstofftechnologien - Forschungsbedarf für die Branche (Kurzversion) N2 - Die Studie gibt einen kurzen Überblick über die jetzige Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Forschungsbedarfe für die Branche in den einzelnen Technologiefeldern Wasserstofferzeugung, -speicherung, -transport und -nutzung. Fügetechnologien haben dabei wesentliche Bedeutung für die erfolgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien. Die Schwerpunkte bzw. Forschungsbedarfe ergeben sich bspw. durch die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie durch Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstofferzeugung und -anwendung wird z.B. die Entwicklung effiziente Massenproduktionsmethoden von Elektrolyseuren und Brennstoffzellen einen wichtigen Meilenstein bilden und laserbasierte Fügetechnologien sind hier zum Teil schon etabliert. Die additive Fertigung nimmt dabei eine Querschnittsposition ein und besitzt hohes Anwendungspotential für die Zukunft z.B. für die Fertigung von Komponenten in Gasturbinen. Aus den technischen Fragestellungen und Forschungsbedarfen ergeben sich zudem Herausforderungen für die notwendige Neu- und Weiterentwicklung von technischen Regelwerken und Normen und den Eingang in die Aus- und Weiterbildung von fügetechnischem Fachpersonal. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Werkstoff KW - Bedarf PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 612 EP - 624 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-53370 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Burger, S. A1 - Zinke, M. A1 - Jüttner, S. T1 - Einfluss der Wärmeführung auf die Wasserstoffkonzentration in geschweißten höherfesten Feinkornbaustählen beim Einsatz modifizierter Sprühlichtbogenprozesse N2 - Um den wachsenden Anforderungen an den stofflichen und konstruktiven Leichtbau sowie den Forderungen nach Ressourceneffizienz Rechnung zu tragen, werden in vielen Industriebranchen zunehmend höherfeste Feinkornbaustähle mit Streckgrenzen über 690 MPa eingesetzt. Allerdings werden mit zunehmender Festigkeit deutlich höhere Anforderungen an deren schweißtechnische Verarbeitung gestellt, da die Sensibilität gegenüber einer Herabsetzung der mechanischen Eigenschaften durch den beim Schweißen aufgenommenen diffusiblen Wasserstoff mit steigender Festigkeit zunehmen kann. In den vergleichenden Untersuchungen von konventionellem Übergangslichtbogen und modifiziertem Sprühlichtbogen bei reduziertem Nahtöffnungswinkel konnte gezeigt werden, dass die Schweißprozessparameter die in das Schweißgut eingebrachte Wasserstoffkonzentration beeinflussen. Grundsätzlich ist den erarbeiteten Ergebnissen zu entnehmen, dass im Schweißgut von Stumpfstoßverbindungen mit reduziertem Nahtöffnungswinkel erhöhte mittlere Wasserstoffkonzentrationen vorliegen. Diese können mit geeigneten Wärmeführungen signifikant reduziert werden. Dabei erwies sich eine Nachwärmprozedur aus der Schweißwärme heraus als zielführend. KW - Hochfester Stahl KW - Schutzgasschweißen KW - Wärmeführung KW - Wasserstoff KW - Rissbildung PY - 2018 VL - 70 IS - 5 SP - 290 EP - 297 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-45109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Kaltrissvermeidung in Schweißverbindungen aus hochfesten Feinkornbaustählen bei engen Nahtspalten und fokussiertem Lichtbogen N2 - Heute werden in Stahlkonstruktionen zunehmend hochfeste Baustähle (Streckgrenze ≥ 960 MPa) eingesetzt. Daher sind auch in Schweißnähten solche hohen Festigkeiten gefordert. Jedoch können hohe Eigenspannungen aufgrund geringerer plastischer Dehnungsreserven in diesen Schweißnähten die Sicherheit der Bauteile vermindern. Diese sind insbesondere im Zusammenhang mit Wasserstoff und Härtegefügen risskritisch. Niedrige Bauteilbeanspruchungen und Kosteneinsparungen lassen sich heutzutage mit modernen fokussierten Lichtbogenvarianten und engeren Nahtspalten erreichen. Die vorliegende Studie zeigt allerdings, dass diese modernen Schweißprozesse und die angepasste Nahtgeometrie höhere Wasserstoffkonzentrationen und signifikant gesteigerte oberflächennahe Zugeigenspannungsniveaus bedingen. Anhand mehrlagiger Schweißversuche an S960QL unter Variation von Wärmeführung, Lichtbogenvariante und Nahtöffnungswinkel wurden die Effekte und Wechselwirkungen unter Zuhilfenahme von Eigenspannungsanalytik mittels Röntgendiffraktometrie und Wasserstoffanalytik mittels Trägergasheißextraktion systematisch untersucht. Das Schweißgefüge führte unter kritischer mechanischer Beanspruchung und erhöhtem Gehalt an diffusiblem Wasserstoff insbesondere bei geringem Nahtöffnungswinkel und fokussiertem Lichtbogen zu einer deutlichen Ausbildung von Mikrorissen. Die Mikrorisse führten teils zu einer makroskopischen Ausprägung. Durch Analysen zur Nachwärmung aus der Schweißwärme heraus konnten suffiziente Wärmeführungsparameter für eine effektive Prävention solcher Risse erarbeitet werden. Die vorliegende Arbeit zeigt anhand des Interaktionssystems bei der wasserstoffunterstützten Kaltrissbildung Gefüge-Beanspruchung-Wasserstoff, welche Wärmeführungs- und Schweißparameter sich für die hochfesten Feinkornbaustähle zur Kaltrissvermeidung eignen. T2 - 3. Niedersächsisches Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 14.02.2019 KW - Hochfeste Feinkornbaustähle KW - Kaltrisse KW - MAG-Schweißen KW - Eigenspannungen KW - Wasserstoff KW - Wärmeführung PY - 2019 SN - 978-3-8440-6471-1 SN - 2364-0804 VL - 7 SP - 377 EP - 389 PB - Shaker Verlag CY - Aachen AN - OPUS4-47497 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Mente, Tobias T1 - Zuverlässige Wasserstoff Bestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Schweißen KW - Forschung KW - ISO 3690 PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 435 EP - 442 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-58309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Burger, S. A1 - Zinke, M. A1 - Jüttner, S. T1 - Ermittlung geeigneter Wärmeführungen zur Vermeidung wasserstoffunterstützter Kaltrisse beim Schweißen höherfester Feinkornbaustähle mit modifiziertem Sprühlichtbogen N2 - Um den wachsenden Anforderungen an den stofflichen und konstruktiven Leichtbau sowie den Forderungen nach Ressourceneffizienz Rechnung zu tragen, werden in vielen Industriebranchen zunehmend höherfeste Feinkornbaustähle mit Streckgrenzen ≥ 690 MPa eingesetzt. Allerdings werden mit zunehmender Festigkeit deutlich höhere Anforderungen an deren schweißtechnische Verarbeitung gestellt. Weil gerade die Sensibilität gegenüber einer Degradation der mechanischen Eigenschaften der höherfesten Feinkornbaustähle durch den beim Schweißen aufgenommenen Wasserstoff mit steigender Festigkeit zunimmt, ist auf eine geeignete Wärmeführung zu achten. Für konventionelle MAG-Schweißprozesse liegen bereits Erfahrungen und Regelwerke zur Wärmeführung und entsprechende Wasserstoffgrenzwerte vor. Moderne Invertertechnik ermöglichte die Entwicklung modifizierter Sprühlichtbögen (mod. SLB). Im Vergleich zu konventionellen Lichtbogenprozessen wird ein äußerst kurzer und richtungsstabiler Lichtbogen, eine höhere Abschmelzleistung, ein größerer Kontaktrohrabstand und ein tieferer Einbrand realisiert. Neben den bekannten Vorteilen lassen außerdem reduzierte mögliche Nahtöffnungswinkel einen anderen Lagenaufbau und unterschiedliche Geometrien der einzelnen Schweißraupen erwarten. Jedoch fehlen hierzu Aussagen über den schweißverfahrensspezifisch eingetragenen Wasserstoff und die damit einhergehende Kaltrissgefahr. Hierzu lagen in der Industrie, besonders bei den KMU, kaum Kenntnisse vor und sollten deshalb als Ziel dieses Forschungsprojektes erarbeitet werden. Die vergleichenden Untersuchungen mit konventionellem Übergangslichtbogen und mod. SLB mit angepasster Nahtkonfiguration erfolgten an freischrumpfenden Stumpfstoßverbindungen sowohl mit Massivdraht als auch Metallpulverfülldraht. Zur Durchführung der Untersuchungen wurde eine Methodik entwickelt, die es ermöglicht, im Schweißgut realer Verbindungsschweißungen die Wasserstoffkonzentration reproduzierbar zu bestimmen. Anhand der Analysen konnte gezeigt werden, dass die Schweißprozessparameter die in das Schweißgut eingebrachte Wasserstoffkonzentration in Einlagenschweißungen beeinflussen. Auch beim Mehrlagenschweißen gestaltet sich der Wasserstoffeintrag abhängig von den Schweißprozessparametern und ist auf den unterschiedlichen Lagenaufbau zurückzuführen. Grundsätzlich ist den erarbeiteten Ergebnissen zu entnehmen, dass im Schweißgut von Stumpfstoßverbindungen mit abgesenktem Nahtöffnungswinkel erhöhte mittlere Wasserstoffkonzentrationen existieren. Außerdem beinhalten Schweißgüter aus Metallpulverfülldraht höhere Wasserstoffmengen als Massivdrahtschweißungen. Geeignete Wärmeführungen führten zu einer signifikanten Reduzierung der Wasserstoffkonzentration bei dem Einsatz der Nahtkonfiguration mit abgesenktem Nahtöffnungswinkel. Dabei erwies sich eine Nachwärmprozedur aus der Schweißwärme heraus als zielführend. Die Vorstellung von Zwischenergebnissen in Normungsgremien erfolgten, um mittelfristig vor allem den KMU eine sichere Verarbeitung höherfester Feinkornbaustähle zu ermöglichen. Die dargestellten Ergebnisse stellen einen wichtigen Beitrag zur sicheren Auslegung von Schweißkonstruktionen aus höherfestem Feinkornbaustahl dar und ermöglichen den KMU die technischen und wirtschaftlichen Vorteile der mod. SLB-Prozesse auszunutzen sowie unter Berücksichtigung der wasserstoffunterstützten Kaltrissbildung kostenintensive Nacharbeiten zu reduzieren. KW - Wasserstoff KW - MAG-Schweißen KW - Höherfester Feinkornbaustahl KW - Schweißprozessparameter KW - Wärmeführung KW - Kaltrissprüfung PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-425946 SP - 1 EP - 94 AN - OPUS4-42594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -