TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire Arc Additive Manufacturing von einer neuartigen, höherfesten Al-Mg-Si Legierungen T2 - DVS-Berichte N2 - Der Einsatz von Aluminiumlegierungen als Konstruktionswerkstoff hat in den letzten Jahrzehnten aufgrund seines überlegenen Festigkeits-/ Gewichtsverhältnisses zugenommen. Dabei spielen höherfeste aushärtbare Al-Mg-Si-Legierungen eine wichtige Rolle. Dieser Beitrag konzentriert sich auf die additive Fertigung von Prinzipbauteilen aus einer Al-Mg-Si-Aluminiumlegierung mittels Wire + Arc Additive Manufacturing. Werkstoffe dieses Legierungssystems weisen eine ausgeprägte Heißrissanfälligkeit auf, weshalb das artgleiche Fügen dieser Materialien, mittels Metallschutzgasschweißen, heutzutage immer noch eine Herausforderung darstellt. Kommerzielle Al-Mg-Si-Schweißdrähte sind am Markt nicht verfügbar. In dieser Arbeit wird die Anwendbarkeit eines neuartigen Al-Mg-Si-Schweißdrahtes mit zusätzlichen kornfeinenden Elementen für die additive Fertigung mittels MSG-Verfahren gezeigt. Dazu wird der Zusammenhang von verwendeten Prozessparametern und der resultierenden Bauteilqualität untersucht, wobei die Größe und Verteilung von Poren sowie die Kornmorphologie analysiert werden. Darüber hinaus wird der Einfluss einer T6 Wärmenachbehandlung auf die mechanischen Eigenschaften des Werkstoffes untersucht und ein Vergleich zum entsprechenden Referenzmaterial (Knetlegierung) gezogen. T2 - 40. Assistentenseminar Fügetechnik CY - Braulage, Germany DA - 25.09.2019 KW - WAAM KW - Al-Mg-Si PY - 2020 SN - 978-3-96144-071-9 VL - 357 SP - 68 EP - 77 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. A1 - Javaheri, E. T1 - Qualifizierung der instrumentierten Eindringprüfung zur Kennwertermittlung für hochfeste Stähle mit Schweißungen T2 - Forschungsvereinigung Stahlanwendung e. V. N2 - Der Einsatz von hochfesten Stählen im Karosseriebereich des Automobilbaus hat während der letzten Jahre stark zugenommen. Hierzu zählen Dual- und Komplexphasenstähle, welche durch Kombination unterschiedlicher Gefügebestandteile auch deren Vorteile kombinieren, sowie TRIP (TRansformation Induced Plasticity) und Mangan-Bor Stähle, welche sehr gute Umformeigenschaften mit hohen Festigkeiten durch Martensitbildung bei der Umformung kombinieren. TWIP (Twinning Induced Plasticity) Stähle erreichen ähnliche Effekte durch forcierte Zwillingsbildung. Die Ursachen für den Einsatz dieser Stähle liegen in dem Potential dieser Materialien zur Gewichts- und Kostenreduzierung, bei gleichzeitiger Erhöhung der Fahrgastsicherheit. Auf Grund der prinzipiell gegebenen Schweißeignung dieser Stähle, werden die klassischen Fügeverfahren im Karosseriebau wie das kostengünstige und effektive Widerstandspunktschweißen, das Metall-Schutzgas (MSG)-Schweißen oder das Laserschweißen angewendet. Allerdings treten teilweise Herausforderungen, beispielsweise durch Gefügeveränderungen in den Fügestellen auf, die zu ungewollten Aufhärtungen oder Erweichungen führen. In diesem Projekt wird ein Verfahren entwickelt, mit welchem die lokalen Werkstoffeigenschaften von im Automobilbau typischen Werkstoffen und deren Fügestellen bestimmt werden können. Relevante Kennwerte sind in erster Linie das SpannungsDehnungs-Verhalten der verschiedenen Zonen einer Schweißverbindung; relevante Zonen wiederum sind neben dem Grundwerkstoff die Wärmeeinflusszone und das Schweißgut. Zu diesem Zweck wird das Verfahren der instrumentierten Eindringprüfung für den Einsatz bei hochfesten Stählen weiterentwickelt. Zunächst werden hierzu Zugversuche an einfachen Grundwerkstoffgeometrien durchgeführt. Im Anschluss wird die optische Dehnungsfeldmessung an stark taillierten, geschweißten Zugversuchsproben durchgeführt. Die Taillierung dient dem Zweck, die WEZ auch mittels WPS über den gesamten Querschnitt der Probe erzeugen zu können, bzw. im Versuch auch Dehnungen in den relevanten Bereichen herbeizuführen. Das im Projekt angewendete Auswerteverfahren, welches auf nichtlinearen Regressionsmodellen in Form von künstlichen, neuronalen Netzwerken beruht, ermöglicht die Vorhersage des Festigkeitsverhaltens des Werkstoffes anhand der gemessenen Krafteindringwegdaten. KW - Eindringprüfung KW - Hochfester Stahl KW - Prüfverfahren PY - 2020 SN - 978-3-946885-98-6 SP - 1 EP - 164 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - Kleinere und mittlere Unternehmen agieren heutzutage in einem globalen Umfeld, wodurch diese zu Elementen einer komplexen Wertschöpfungskette werden. Der zunehmende Anstieg der Preise für industriell essenzielle Ressour-cen, wie Primärenergie und Rohstoffe, sowie sich ausweitende klimapolitische Restriktion führen zur Notwendigkeit, die Wettbewerbsfähigkeit durch innovative und ökoeffiziente Fertigungsprozesse langfristig zu sichern. Rahmenbe-dingungen zu schaffen, welche die Positionierung nachhaltiger Produkte und Prozesse innerhalb globaler Wert-schöpfungsketten ermöglicht, ist daher ein wesentliches Ziel der deutschen Industriepolitik [1, 2]. Im Rahmen dieses Beitrages werden aktuelle Forschungsarbeiten zur Bewertung der Umweltwirkungen der schweiß-technischen Fertigungskette anhand ausgewählter Schmelzschweißverfahren unter Berücksichtigung vor- sowie nachgelagerter Fertigungsschritte dargestellt. Das hierzu notwendige Element zur Analyse der Fertigungsprozesse ist die Ökobilanzierung - eine weit verbreitete und standardisierte Methode zur Abschätzung der Umweltwirkungen eines Produktes oder Prozesses. Hierbei stellt die Sachbilanzierung, d.h. die Ermittlung sämtlicher relevanter Ener-gie- und Ressourcenverbräuche während der schweißtechnischen Fertigung, aufgrund des hohen Dokumentations-aufwandes sowie Ableitung assoziierter Wirkkategorien das größte Hindernis für eine Etablierung und Akzeptanz der Ökobilanzierung in der Praxis dar. Gleichwohl wird seitens Unternehmen, welche als Zulieferer von OEM’s agieren, die Dokumentation des fertigungsspezifischen CO2-Verbrauches gefordert. Ein weiterer Aspekt der Arbeiten beinhaltet folglich Methoden zur automatisierten Erfassung von schweißtechnischen Produktionsdaten sowie deren Nachverfolgbarkeit aufzuzeigen. Anhand unterschiedlicher Schweißverfahren werden die aus den Produktionsdaten abgeleiteten Energie- und Ressourcenverbräuche automatisiert in den relevanten Umweltwirkungen überführt. Die analysierten Schweißprozesse umfassen dabei ein breites für kmU relevantes Spektrum. Durch die softwareseitige Bereitstellung der aufgestellten Umweltprofile ist der Anwender in der Lage, Schweißprozesse unter ökologischen Aspekten zu bewerten und die effizienteste Variante zu identifizieren. T2 - DVS Congress 2020 CY - Online meeting DA - 14.09.2020 KW - Ökobilanzierung KW - Schweißverfahren PY - 2020 AN - OPUS4-51854 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - Schweißen ist ein industriell relevantes Fertigungsverfahren mit einer branchenübergreifenden Bedeutung. Die Umweltwirkungen von Schweißverfahren sind jedoch bisher unbekannt und werden im Entstehungsprozess eines Produktes entlang seiner Fertigungskette daher meist nicht berücksichtigt. Ferner ist der Schweißprozess durch einen hohen Verbrauch an Energie sowie Ressourcen gekennzeichnet. Zahlreiche Arbeiten zeigen, dass der Bedarf einer Ökobilanzierung enorm ist. Ursächlich für die bisher mangelhafte Etablierung der Ökobilanzierung von Schweißverfahren und damit Motivation für die Forschungsarbeiten ist die Unkenntnis relevanter Einflussgrößen und damit verbunden ein nicht abschätzbarer Aufwand bei der Durchführung sowie Implementierung einer Ökobilanz im fertigungstechnischen Kontext. Demgegenüber ist die Ökobilanzierung in anderen Branchen ein oft genutztes Werkzeug zur Ableitung von Umweltwirkungen. Aufgrund der aktuellen Diskussionen bezüglich des Übergangs hin zu einer klimaneutralen Produktion erfährt auch die Analyse und Optimierung der Umweltwirkungen schweißtechnischer Fertigungsverfahren derzeit eine gesteigerte Aufmerksamkeit. Für Unternehmen stellt die Verfügbarkeit umweltverträglicher Produkte bzw. Prozesse eine gewisse Werbewirksamkeit dar, wie dies im Bereich der Schweißstromquellentechnik aktuell zu beobachten ist. Gleichzeitig wird das Thema des „green welding“ auch bezogen auf die gesamte Fertigungskette immer häufiger diskutiert. Dies zeigt sich durch eine in den letzten Jahren deutlich gestiegene Publikationsaktivität. Neben Analysen zu den Einflussfaktoren auf die Nachhaltigkeit in schweißtechnischen Produktionsumgebungen stehen vor allem auch konkrete Implementierungen in der Fertigung bzw. der Produktentstehung im Fokus. Die grundlegende Vorgehensweise einer Ökobilanzierung (Life-Cycle-Assessment bzw. Abk. LCA) ist als standardisierte Methode in geltenden Normen] sowie in entsprechender Fachliteratur beschrieben. Kernelement der Ökobilanzierung ist die Sachbilanzierung, d.h. die Erfassung der relevanten Inputs sowie Outputs bezogen auf das System „Schweißprozess“. Aus dem entlang der schweißtechnischen Fertigungskette akkumulierten Ressourcenverbrauch während des Schweißens (z.B. Zusatzwerkstoff, elektrische Energie, Schutzgas, etc.) und Abfallprodukten bzw. Emissionen wird die Umweltwirkung entsprechend verschiedener Kategorien, z.B. dem CO2-Äquivalent, gemäß der World Steel Association abgeleitet. In der schweißtechnischen Community ist es bekannt, dass die Umweltwirkung von Schweißprozessen qualitativ direkt aus dem Ressourcenverbrauch abgeleitet werden kann. Der Einfluss der verschiedenen Input- sowie Outflüsse auf ausgewählte Wirkkategorien ist jedoch nicht ad-hoc quantifizierbar. Die Forschungsarbeiten haben gezeigt, dass der Materialverbrauch (z.B. Grund-/Zusatzwerkstoff, etc.), der Energieverbrauch (z.B. Wirkleistung sämtlicher elektrischer Verbraucher während der Prozesszeit), Gasverbrauch (Prozess-, Schutzgas oder Druckluft) sowie Hilfsmittel (z.B. Schutzgläser) signifikante Inputgrößen darstellen, deren Berücksichtigung im Rahmen einer Prozessökobilanz ausreichend ist. Eine wesentliche Forderung des projektbegleitenden Ausschusses war, Methoden für eine direkte Implementierung, um somit Nachnutzung der Ergebnisse zu entwickeln. Um die Ökobilanzierung als festen Bestandteil in die schweißtechnische Dokumentation einfließen zu lassen, sind die notwendigen Arbeitsschritte zu automatisieren. Daher wurden im Rahmen der Forschungsarbeiten sämtliche zu berücksichtigenden Größen durch ein an der Forschungsstelle entwickelten Schweißdatenmanagements digital erfasst sowie archiviert und in eine Umweltwirkung durch Zugriff auf entsprechende Open-Source Datenbanken „übersetzt“. Das Datenmanagement ermöglicht die eindeutige Zuordnung der Umweltwirkung eines geschweißten Bauteiles ohne Dokumentationsaufwand für den Anwender. Dadurch werden insbesondere KMU in die Lage versetzt, den Anforderungen bezüglich der Bewertung der Ökoeffizienz von Fertigungsverfahren gerecht zu werden und somit auf die nationalen sowie internationalen klimapolitischen Rahmenbedingungen vorbereitet zu sein. Die Analysen eines breiten Spektrums an Schweißverfahren haben gezeigt, dass eine Verringerung der Umweltwirkungen von Schweißverfahren demnach nur primär durch eine Reduktion des Zusatzwerkstoff- sowie Energieverbrauches zu realisieren ist. Hierbei zeigen Verfahren mit niedrigem Werkstoffeinsatz, im Extremfall autogene Verfahren, die geringsten Umweltwirkungen. Im Produktentstehungsprozess ist es daher notwendig, unter Berücksichtigung der Schweißbarkeit die ökologischen Verfahrenscharakteristika hinsichtlich konstruktiver, fertigungstechnischer sowie werkstoffspezifischer Randbedingungen zu bewerten, um die vorgeschriebenen Produkteigenschaften zu gewährleisten und die Umweltbelastung zu minimieren. Damit der Workflow, der bei der Ökobilanzierung zu durchlaufen ist, vereinheitlicht und für jeden verständlich ist, fließen die Forschungsergebnisse direkt in die DIN SPEC 35235 „Nachhaltigkeit in der Schweißtechnik – Ökobilanzierung von Schweißverfahren“ ein. Dies ist die Grundlage, um die Vergleichbarkeit von Ökobilanzen in der Schweißtechnik zu gewährleisten und so deren Akzeptanz in der Industrie zu erhöhen. Damit ist ein optimaler Transfer der Forschungsergebnisse in die Industrie gewährleistet. KW - Schweißverfahren KW - Ökobilanzierung PY - 2020 SP - 1 EP - 38 PB - DVS Media CY - Düsselorf AN - OPUS4-51856 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion JF - Additive manufacturing N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503300 DO - https://doi.org/10.1016/j.addma.2020.101080 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Einfluss der Zwischenlagenzeit und der Bauteilhöhe auf die resultierenden Eigenschaften laserstrahlgeschmolzener austenitischer Stahlbauteile N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - DGM Fachtagung "Werkstoffe und Additive Fertigung" CY - Online meeting DA - 13.05.2020 KW - Laser Powder Bed Fusion KW - Additive Fertigung KW - Zwischenlagenzeit KW - In-situ Monitoring PY - 2020 AN - OPUS4-50788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg T2 - Additiv gefertigte Bauteile und Strukturen N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online Meeting DA - 04.11.2020 KW - Wärmebehandlung KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Ringversuch PY - 2020 SN - 2509-8772 VL - 405 SP - 93 EP - 104 AN - OPUS4-51657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion JF - Materials Science & Engineering A N2 - AlSi10Mg is one of the most applied alloys for laser powder bed fusion (LPBF) technology, due to its great possibilities for implementing new lightweight concepts such as in automotive industries. For the component design it is necessary to know about the mechanical properties and the mechanical behaviour. The many published strength properties of LPBF processed AlSi10Mg show significant differences up to approximately 225 MPa in ultimate tensile strength (UTS) and 195 MPa in yield strength (YS). To understand these varying properties, a ring trial was carried out manufacturing specimens on 6 LPBF machines with different parameters and build-up strategies. They were studied in the as-built (AB) condition and after heat treatment at 300 °C for 30 min, respectively. For examining the mechanical properties, tensile tests and hardness measurements were carried out. The microstructure was characterized by optical light microscopy (OM), field emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The identified differences in strength properties were discussed based on the 4 strengthening mechanism known for metallic materials and at the background of material defects. It was found that the size of the typical sub-cell structure of LPBF AlSi10Mg affected substantially the mechanical properties in the AB condition, in which with decreasing sub-cell size strength increased. If heat treatment was applied, the strength properties decreased and did not differ anymore. Since annealing led to coarsened sub-cells, whereas the grains itself did not change in size, the influence of sub-cell structure on strength was further confirmed. In addition, acicular precipitates in the AB condition were observed at specimens from one LPBF machine showing the lowest tensile elongation. KW - Laser powder bed fusion KW - AlSi10Mg KW - Mechanical properties KW - Microstructure PY - 2020 DO - https://doi.org/10.1016/j.msea.2020.138976 VL - 776 SP - Paper 138976, 12 PB - Elsevier B.V. AN - OPUS4-50316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Duktilität KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Festigkeit PY - 2020 AN - OPUS4-51656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -