TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Rabe, Torsten A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Prüf- und Messverfahren mit verschiedenen Sensortechnologien und Ultraschallwellen N2 - Der Vortrag zum Mess- und Prüfverfahren mit verschiedenen Sensortechnologien und Ultraschallwellen beinhaltet die Themen: Metrologie zur Wasserstoffspeicherung - Euramet-Vorhaben "MefHySto", Erkennung von freigesetztem Wasserstoff sowie die Bestimmung des Wasserstoff-Luftverhälntisses mit Gassensoren, zerstörungsfreie Fehlstellenerkennung mit integriertem Zustandsüberwachungssystem basierend auf geführten Ultraschallwellen zur Lebensdauerüberwachung von Composite-Behältern (Wasserstoffspeicher) sowie faseroptische Sensorik zur Schadenfrüherkennung von Wasserstoffspeichern aufgrund erkennbarer Dehnungsänderungen an Druckbehältern. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 28.09.2021 KW - Leckdetektion KW - Metrologie zur Wasserstoffspeicherung KW - Gassensorik KW - Structural Health Monitoring (SHM) KW - Geführte Ultraschallwellen KW - Faseroptische Sensorik KW - Zerstörungsfreie Prüfung PY - 2021 AN - OPUS4-54136 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Schukar, Marcus A1 - Strohhäcker, J. A1 - Bresch, Sophie T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Der Beitrag behandelt verschiedene Themen aus dem H2Safety@BAM-Kompetenzfeld Sensorik, Analytik und zertifizierte Referenzmaterialien (SensRef) mit Schwerpunkt auf Mess- und Prüfverfahren, die verschiedene Analyseverfahren, Sensortechnologien und Ultraschallwellen nutzen. Ein Teil davon ist das Euramet-Vorhaben "MefHySto" zur Metrologie der Wasserstoffspeicherung. Des Weiteren werden Verfahren zur Erkennung von freigesetztem Wasserstoff und zur Bestimmung des Wasserstoff-Luftverhältnisses mithilfe von Gassensoren behandelt. Ein weiterer Aspekt ist die zerstörungsfreie Fehlstellenerkennung mit einem integrierten Zustandsüberwachungssystem, das auf geführten Ultraschallwellen basiert und zur Überwachung der Lebensdauer von Composite-Behältern (Wasserstoffspeicher) dient. Zudem wird die Anwendung faseroptischer Sensorik zur Schadenfrüherkennung an Wasserstoffspeichern diskutiert. Dabei werden erkennbare Dehnungsänderungen an Druckbehältern als Indikatoren genutzt. T2 - DVGW-Kongress "H2 Sicherheit" CY - Online meeting DA - 15.03.2023 KW - Faseroptische Sensorik KW - Gassensorik KW - Geführte Ultraschallwellen KW - Leckdetektion KW - Metrologie zur Wasserstoffspeicherung KW - Structural Health Monitoring (SHM) KW - Zerstörungsfreie Prüfung KW - SensRef KW - H2Safety@BAM PY - 2023 AN - OPUS4-57529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Bresch, Sophie A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Der Beitrag beinhaltet Themen vom H2Safety@BAM-Kompetenzfeld Sensorik, Analytik und zertifizierte Referenzmaterialien (SensRef) mit Fokus auf Mess- und Prüfverfahren mit verschiedenen Sensortechnologien und Ultraschallwellen: Metrologie zur Wasserstoffspeicherung - Euramet-Vorhaben "MefHySto", Erkennung von freigesetztem Wasserstoff sowie die Bestimmung des Wasserstoff-Luftverhälntisses mit Gassensoren, zerstörungsfreie Fehlstellenerkennung mit integriertem Zustandsüberwachungssystem basierend auf geführten Ultraschallwellen zur Lebensdauerüberwachung von Composite-Behältern (Wasserstoffspeicher) sowie faseroptische Sensorik zur Schadenfrüherkennung von Wasserstoffspeichern aufgrund erkennbarer Dehnungsänderungen an Druckbehältern. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 23.11.2022 KW - H2Safety@BAM KW - SensRef KW - Faseroptische Sensorik KW - Gassensorik KW - Geführte Ultraschallwellen KW - Leckdetektion KW - Metrologie zur Wasserstoffspeicherung KW - Zerstörungsfreie Prüfung KW - Structural Health Monitoring (SHM) PY - 2022 AN - OPUS4-56683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Schubert, Lars A1 - Tschöke, Kilian T1 - Fehlerwechselwirkung in Verbundwerkstoffen mit Geführten Wellen N2 - Der praktische Einsatz von SHM-Verfahren mit geführten Ultraschallwellen basiert auf einem fundierten Verständnis der speziellen physikalischen Zusammenhänge der Wellenausbreitung. Das umfasst nicht nur das multimodale Verhalten, welches von den Dispersionsdiagrammen repräsentiert wird, sondern auch die Vorhersage der Interaktion zwischen verschiedenen Wellenmoden und den zu erwartenden Fehlstellen. Ziel des Workshops ist es, das Verständnis der Ausbreitung geführter Wellen zu verbessern und die vielfältigen Anwendungsmöglichkeiten, die sich aus der multimodalen Wellenausbreitung ergeben, an praktischen Beispielen zu demonstrieren. Die vorgestellten Szenarien beschränken sich dabei nicht nur auf eine Anregung grundlegender Dehnungs- und Biegewellen, sondern beziehen auch geführte Wellenmoden höherer Ordnung zur Verbesserung der Aussagekraft des Prüfergebnisses mit ein. Nach einer theoretischen Einführung werden ausgewählte Demonstratoren, vorrangig mit Bezug zum Automobilbau, vorgestellt. Diese schließen Fragestellungen der Integration der Sensorik in gekrümmte Faserverbundbauteile ebenso mit ein, wie die Überwachung von Metall-Faserverbund-Komposit-Materialien, die in Drucktanks zum Einsatz kommen. T2 - 3. Anwenderseminar Zustandsüberwachung mit geführten Wellen CY - Karlsruhe, Germany DA - 27.03.2019 KW - Wasserstoffspeicher KW - Geführte Ultraschallwellen KW - Kohlenstofffaserverstärkter Kunststoff KW - Faserverbundwerkstoff PY - 2019 AN - OPUS4-48383 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Analyse geführter Wellenausbreitung in einem MehrschichtVerbund: Simulation mit SBFEM N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die vielversprechende Ergebnisse bei der Modellierung geführter Ultraschallwellen zeigt. Effizienz und niedriger Rechenaufwand der Methode werden durch Diskretisierung des Randes der Rechendomäne erreicht, während für die Domäne selbst die analytische Lösung verwendet wird. Mittels der SBFEM können verschiedene Arten von Fehlern können modelliert werden, z. Risse, Poren, Delamination, Korrosion, die in eine Struktur aus anisotropen und isotropen Materialien integriert sind. In diesem Beitrag wird das SBFEM verwendet, um die Ausbreitung von geführten Wellen in einer Struktur zu analysieren, die aus einem isotropen Metall besteht, das an anisotropes Kohlefaserverstärktes Material gebunden ist. Das Verfahren ermöglicht die Identifizierung geeigneter Wellentypen (Modi) und die Analyse ihrer Interaktion mit verschiedenen Defekten. Die erzielten Ergebnisse werden zur Entwicklung eines Zustandsüberwachungssystems für Composite-Druckbehälter verwendet, die in der Automobil- und Luftfahrtindustrie benutzt werden. T2 - Doktorandenseminar – Ultraschallmesstechnik CY - Gohrish, Germany DA - 28.10.2018 KW - Composite-Druckbehälter KW - Geführte Ultraschallwellen KW - SBFEM KW - Faserverbundwerkstoff KW - Wasserstoffspeicher PY - 2018 AN - OPUS4-46417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Brence, Blaž A1 - Prager, Jens T1 - Untersuchung der Ausbreitung von geführten Ultraschallwellen in Wasserstoffdruckbehältern zur Zustandsüberwachung T2 - Fortschritte der Akustik - DAGA 2023 N2 - Die zunehmende Bedeutung von Wasserstoff als emissionsfreier Energieträger der Zukunft lässt die Anforderungen an eine technisch einwandfreie und sichere Wasserstoffspeicherung steigen. Im Mobilitätssektor kommen dabei vorwiegend Kohlefaserverbundbehälter zur Speicherung von gasförmigem Wasserstoff im Hochdruckbereich zum Einsatz, die sich durch ihre Leichtbauweise bei gleichzeitig hoher Speicherkapazität auszeichnen. Materialfehler oder -ermüdung können jedoch zum Ausfall bis hin zum kritischen Versagensfall führen. Ein sicherer Betrieb der Behälter erfordert daher ein innovatives und zuverlässiges Konzept, um deren Integrität zu gewährleisten und folgenschwere Zwischenfälle zu vermeiden. Die Strukturüberwachung mittels geführter Ultraschallwellen ist dafür einer der prominentesten Ansätze, da sich die Wellen über große Entfernungen in der Struktur ausbreiten können und zudem sehr empfindlich auf kleinste Materialdefekte reagieren. In diesem Beitrag wird der Aufbau eines Sensornetzwerks zur Schadenserkennung und -lokalisierung vorgestellt, das auf den Prinzipien der Ausbreitung geführter Ultraschallwellen in Druckbehältern aus Verbundwerkstoffen basiert. Dazu werden in einem ersten Schritt das dispersive und multimodale Ausbreitungsverhalten analysiert und dominante Wellenmoden identifiziert. Basierend auf der Analyse werden Dämpfungsverhalten und Empfindlichkeit gegenüber künstlichen Defekten bestimmt. Unter Verwendung der ermittelten Informationen wird ein Sensornetzwerk bestehend aus piezoelektrischen Flächenwandlern entworfen, welches den zu untersuchenden Bereich vollständig abdecken soll. Das Ergebnis wird anschließend durch Aufbringen künstlicher Defekte experimentell evaluiert und präsentiert. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - Geführte Ultraschallwellen KW - Zustandsüberwachung KW - Wasserstoffdruckbehälter KW - Sensornetzwerk KW - Structural Health Monitoring PY - 2023 UR - https://pub.dega-akustik.de/DAGA_2023 SN - 978-3-939296-21-8 SP - 1598 EP - 1601 CY - Berlin AN - OPUS4-58022 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Brence, Blaž A1 - Prager, Jens T1 - Optimierung eines Sensornetzwerkes basierend auf geführten Wellen zur Zustandsüberwachung von Wasserstoffdruckbehältern N2 - Wasserstoff als flexibel einsetzbarer und leicht transportierbarer Energieträger bildet eine Schlüsselkomponente auf dem Weg zu einer klimaneutralen Energiewende. Zur Speicherung von gasförmigem Wasserstoff kommen bei stationären und auch mobilen Anwendungen meist Druckbehälter aus Verbundwerkstoffen zum Einsatz. Dabei ist für den Betrieb der Behälter die Gewährleistung der Sicherheit von großer Relevanz. Structural Health Monitoring (SHM) bietet einen innovativen Ansatz, um sowohl die Sicherheit als auch die Zuverlässigkeit der Druckbehälter zu gewährleisten und kritische Versagensfälle zu vermeiden. Zur kontinuierlichen Überwachung und Bewertung des Zustands eines Wasserstoffdruckbehälters wird in dem vorliegenden Beitrag eine aktive Methode präsentiert, die auf geführten Ultraschallwellen basiert. Dabei kommt das Pitch-Catch Verfahren zwischen Sender und Empfängern zur Überwachung der strukturellen Integrität zum Einsatz. Auf Grundlage des untersuchten Wellenausbreitungsverhaltens im Druckbehälter sowie der Geometrieeigenschaften wird ein Sensornetzwerk aus piezoelektrischen Flächenwandlern (PZT) zur Abdeckung des zu überwachenden Bereichs entworfen. Ziel ist es mit Hilfe eines Optimierungsalgorithmus eine größtmögliche Abdeckung bei gleichzeitiger Minimierung der Anzahl der Sensoren zu erreichen. Zudem soll eine gleichmäßige und platzsparende Verteilung im Vordergrund stehen, so dass zukünftig weitere Messmethoden auf dem Druckbehälter angewendet werden können (z. B. durch akustische oder faseroptische Sensoren). Das für die Anwendung optimierte Sensornetzwerk wird anschließend hinsichtlich der Robustheit bei der Schadenserkennung und -lokalisierung durch Aufbringen von künstlichen Schäden evaluiert. Die Ergebnisse zeigen, dass die künstlichen Schäden am Wasserstoffdruckbehälter nachgewiesen werden können. T2 - DACH-Jahrestagung CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Geführte Ultraschallwellen KW - Zustandsüberwachung KW - Wasserstoffdruckbehälter KW - Sensornetzwerk KW - Structural Health Monitoring PY - 2023 AN - OPUS4-58027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -