TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Neue Projekte im Bereich Biokorrosion: Spektro-elektrochemische Untersuchungen der Biofilmbildung und MIC auf Metalloberflächen N2 - In this presentation, new projects of FB 6.2 focussing on the Analysis of microbiologically influenced corrosion (MIC) have been summarized. T2 - Sitzung der DECHEMA-GfKORR-Fachgruppe: Mikrobielle Materialzerstörung und Materialschutz CY - DECHEMA Forschungsinstitut, Frankfurt am Main, Germany DA - 30.05.2016 KW - MIC KW - Microbiologically influenced corrosion KW - Local electrochemical methods KW - Spectroelectrochemistry PY - 2016 AN - OPUS4-38200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - In situ imaging of corrosion processes N2 - The presentation summarizes our recent results on the coupled electrochemical methods for high resolution corrosion studies. The combination of Scanning Electrochemical Microscopy (SECM) and multielectrode (MMA) based real-time corrosion monitoring was presented as a new method for achieving high time resolution in local electrochemical analysis. Correlative imaging by means of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) was demonstrated as a tool for the investigation of local corrosion processes initiated by the intermetallic particles (IMPs) on AA2024-T3 aluminium alloy. T2 - BAM-IfW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - MIC KW - Atomic Force Microscopy (AFM) KW - Corrosion monitoring KW - Corrosion PY - 2019 AN - OPUS4-50291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Coupled electrochemical, microscopic and spectroscopic techniques for the analysis of local corrosion and mic processes N2 - Summary of the research topics of the division 6.2 and recent results T2 - HZDR-IRE Institutscolloquium CY - Dresden, Germany DA - 24.09.2019 KW - MIC KW - Localised corrosion KW - Corrosion monitoring KW - Biofilmbildung KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Witt, Julia A1 - Dimper, Matthias A1 - Wagner, R. A1 - Lützenkirchen-Hecht, D. T1 - Changes in passive film chemistry of stainless steels in the presence of iron reducing bacteria N2 - Summary of the results obtained at DELTA-Beamline 8 in 2018. T2 - DELTA User Treffen CY - Dortmund, Germany DA - 28.11.2018 KW - MIC KW - Corrosion KW - XANES PY - 2018 AN - OPUS4-50312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - Combined electrochemical techniques for the investigation of corrosion processes N2 - Short presentation of BAM, a summary of the methods available in FB 6.2 and recent results on MIC and high resolution corrosion studies T2 - Institute Seminar: Jerzy Haber Institute of Catalysis and Surface Chemistry CY - Cracow, Poland DA - 07.11.2018 KW - MIC KW - Corrosion KW - Atomic Force Microscopy (AFM) KW - Combined corrosive and mechanical load PY - 2018 AN - OPUS4-50313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Radnik, Jörg A1 - Unger, Wolfgang T1 - The effect of flavins on the corrosion properties of stainless steels during initial stages of microbiologically influenced corrosion N2 - Microbiologically influenced corrosion (MIC) on steel occurs where the presence and activity of microbes change the localized conditions on the surface of a metal substrate. For instance, metal reducing bacteria (MRB) are capable of utilizing metal compounds in the passive layer on stainless steel as electron acceptors during their metabolism. This weakening of the passive film not only leads to an acceleration of the general corrosion processes, but also increases the susceptibility of stainless steels to pitting corrosion. Even though the electron transfer mechanisms are not yet fully understood, recent research shows that the secretion of electron shuttles like flavins contribute significantly to the extracellular electron transfer (EET). Electron shuttle molecules like riboflavin (RB) or flavin mononucleotide (FMN) are secreted by MRB after the transition from planktonic to sessile mode and exist in the biofilm at low concentrations. Therefore, they are precise early phase indicators of bacterial settlement. This project aims at clarifying the electrochemical interaction mechanisms of MRB with stainless steel surfaces, with a special focus on the role of the extracellular redox molecules. The analysis of corrosion processes as a function of chloride and flavin concentration have been performed by means of electrochemical methods. Due to the differences in their chemical structure, FMN and RB have shown significant differences in terms of their adsorption behavior and the stability of the formed films, which directly influences the electron transfer processes. Therefore, Electrochemical Quartz Crystal Microbalance (eQCM) studies have been performed on sputtered FeCr electrodes to investigate the adsorption/desorption kinetics of flavins. The results of electrochemical studies are complemented by the analysis of the changes in the passive film chemistry and the chemical composition of the adsorbed films by means of Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) and X-ray photoelectron spectroscopy (XPS). Changes in surface morphology have been investigated by means of Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).The presentation will summarize our results on the degradation mechanisms of passive films on stainless steel surfaces in the presence of flavins and provide useful insights from a fundamental aspect for the understanding of the initial stages of microbiologically influenced corrosion. T2 - 17TH EUROPEAN CONFERENCE ON APPLICATIONS OF SURFACE AND INTERFACE ANALYSIS CY - Montpellier, France DA - 24.09.2017 KW - Flavins KW - Microbiologically influenced corrosion KW - Stainless steel KW - MIC PY - 2017 AN - OPUS4-43402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Wagner, Ralph A1 - Schutter, Jan David A1 - Das, Chayanika A1 - Dimper, Matthias A1 - An, Biwen A1 - Koerdt, Andrea A1 - Lützenkirchen-Hecht, Dirk A1 - Özcan Sandikcioglu, Özlem T1 - Effect of cultivation conditions on the electrochemical activity of metal reducing bacteria (mrb) on stainless steel surfaces N2 - Investigation of the electrochemical activity of two cultures grown with and without abundance of Fe(III) and their different ability to reduce and therefore dissolve iron oxides in steel and model iron thin films. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - X-ray spectroscopic techniques KW - Microbiologically influenced corrosion KW - MIC KW - XANES KW - Metal reducing bacteria KW - In situ PY - 2019 AN - OPUS4-49692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of surface topography and chemistry on the attachment of bacteria on solid surfaces N2 - Microbiologically induced corrosion due to bacterial biofilms causes several problems in industrial systems, technical applications and in medicine. Prior to the formation of a biofilm on a substrate, planktonic cells attach on the surface. Hence, the properties of the surface play a key role in biofilm formation and are of great importance for the development of strategies to prevent bacterial attachment and biofilm formation. This project aims at clarifying to which extent surface micro-/nanostructuring and chemical functionalization affects bacterial attachment and whether a synergistic combination of the two can be used to control bacterial adhesion. To answer these questions, model surfaces with regular patterns of 5-10 micrometers in size have been prepared, which provide distinct zones differing in terms of their chemistry or nano-roughness. This was achieved by micro contact printing of self-assembled monolayers with different functional groups and deposition of patterned ZnO nanorod arrays for studying the effect of surface chemistry and morphology, respectively. Typical contrasts studied were combinations of positively/negatively charged, hydrophobic/hydrophilic or flat/rough. The attachment behavior of bacteria on tailored surfaces were studied in a flow chamber as a function of time. The strain Pseudomonas fluorescens SBW25 was chosen as a model organism. DNA-intercalating dyes such as Syto9 have a high affinity to adsorb on ZnO nanorods. To overcome this limitation a genetic modification was performed by introducing a gene which expresses a green fluorescent protein in P. fluorescens SBW25 enabling the quantitative evaluation of the flow chamber studies by means of fluorescence microscopy. Further analysis of the attachment behavior was performed by means of scanning electron microscopy. The presentation will summarize the results of our systematic study on the role of individual parameters on bacterial attachment and highlight synergistic combinations, showing an inhibition or enhancing effect. As the investigations with model substrates enable a precise control of the surface parameters, this approach can be applied to different microorganisms and material systems to achieve a correlative description of bacterial adhesion on solid surfaces. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Microbial KW - Corrosion KW - MIC KW - Nanorods PY - 2019 AN - OPUS4-49730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sameith, Janin T1 - Microbially induced corrosion (MIC) - Bacterial biofilms - the good, the ugly and the bad… N2 - Introduction on BAM developments in the project “Microbially Induced Corrosion” (MIC) for new analytical tool, surface modifications and bacterial biofilm developments in the course of the ICBM-Colloquia at the Institut für Chemie und Biologie des Meeres (ICBM) of the Carl-von-Ossietzky-University in Oldenburg. T2 - ICBM Kolloquium (Carl-von-Ossietzky-Universität) CY - Oldenburg, Germany DA - 25.01.2017 KW - MIC KW - Material PY - 2017 AN - OPUS4-39413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sameith, Janin T1 - BAM strategies for studies on microbial corrosion - Focus area: Materials - Microbially induced corrosion (MIC) N2 - Presentation of the MIC-project (Microbially Induced Corrosion) within the focus area Materials of the BAM. Strategies, developments and innovations in the area of analytical tools, surface modifications, polymer stability and biofilm-enhanced deteriorations of materials in the context of microbially induced corrosion processes. T2 - Gesellschaft für Korrosion e.V Arbeitskreismeeting: Mikrobielle Materialzerstörung CY - Frankfurt; DECHEMA, Germany DA - 09.02.2017 KW - MIC KW - Material KW - Biodetorioration PY - 2017 AN - OPUS4-39415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -