TY - CONF A1 - Waske, Anja T1 - A unique Authenticator for additively manufactured parts N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - DGM Additive Berlin 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Fertigung KW - Authentifizierung KW - Mikrostruktur PY - 2024 AN - OPUS4-60957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Fundamentals of quantitative temperature determination during laser powder bed fusion of metals (PBF-LB/M) via hyperspectral thermography N2 - Additive manufacturing (AM, also known as 3D printing) of metals is becoming increasingly important in industrial applications. Reasons for this include the ability to realize complex component designs and the use of novel materials. This distinguishes AM from conventional manufacturing methods such as subtractive manufacturing (turning, milling, etc.). The most widely used AM process for metals is laser powder bed fusion (PBF-LB/M, also known as selective laser melting SLM). Currently, it has the highest degree of industrialization and the largest number of machines in use. In PBF-LB/M, the feedstock is present as metal powder in an inert gas atmosphere inside a process chamber where a laser melts it locally. By repeatedly lowering the build platform, applying a new layer of powder, and then selectively melting it with the laser, a component is built up layer by layer. The local temperature distributions that occur during this process determine not only the properties of the finished component, but also the possible formation of defects such as pores and cracks. Due to the high relevance of the thermal history for precise geometries and defect formation, a temporally and spatially resolved measurement of quantitative (or real/actual) temperatures would be optimal. Quantitative values would ensure comparability and repeatability of the AM process which would also positively affect the quality and safety of the manufactured component. Furthermore, it would also contribute to the validation of simulations and to a deeper understanding of the manufacturing process itself. At present, however, only qualitative monitoring of the thermal radiation is performed (e.g., by monitoring the melt pool using a photodiode), and safety-relevant components must be inspected ex situ afterwards which is time-consuming and costly. A reason for the lack of quantitative temperature data from the process are the challenging conditions of the PBF-LB/M process with high scanning speeds and a small laser spot diameter. Furthermore, the emissivity of the surface changes at high dynamics (temporally/spatially) as well as with temperature and wavelength. This specifically makes contactless temperature determination based on emitted infrared radiation challenging for PBF-LB/M. Although classical thermography offers very good qualitative insights, it is not sufficient for a reliable quantitative temperature determination without a complex temperature calibration including image segmentation and assignment of previously determined emissivities. For this reason, this publication presents the hyperspectral thermography approach for the PBF-LB/M process: The emitted infrared radiation is measured simultaneously at many adjacent wavelengths. In this study, this is realized via a fast hyperspectral line camera that operates in the short-wave infrared range. The thermal radiation of a line on the target is spectrally dispersed and detected to measure the radiant exitance along that line. If the melt pool of the PBF-LB/M process moves through this line at a sufficient frame rate, a spatial reconstruction of an effective melt pool is possible. One approach to determine the desired emissivities and the quantitative temperature from this hyperspectral data are temperature-emissivity separation (TES) methods. A major problem is that n spectral measurements are available, but n+1 parameters are required for each image pixel (n emissivity values + one temperature value). TES methods offer the possibility to approximate this mathematically underconstrained problem in a reliable and traceable way by analytically parameterizing the spectral emissivity with a few degrees of freedom. Using this approach, setup and method are applied to a research machine for PBF-LB/M, called SAMMIE (Sensor-based Additive Manufacturing Machine). First results under AM process conditions are shown which form the basis for the determination of quantitative temperatures in the PBFLB/M process. This marks an important contribution to improving the comparability and repeatability of production, validating simulations, and understanding the process itself. When fully developed and validated, the presented method can also provide reference measurements to evaluate and optimize other, more practical monitoring methods, such as melt pool monitoring or optical tomography. In the long run, this will help to increase confidence in the safety of AM products. T2 - QIRT 2024 CY - Zagreb, Croatia DA - 01.07.2024 KW - Additive Manufacturing KW - Additive Fertigung KW - Real Temperature KW - Melt Pool KW - Emissivity PY - 2024 AN - OPUS4-60762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion N2 - This contribution presents the results of an experimental study on the creep behavior of an austenitic 316L stainless steel produced by laser powder bed fusion (PBF-LB/M/316L) with an emphasis on understanding the effects of microstructure on the creep mechanisms. Hot tensile tests and constant force creep tests at 600 °C and 650 °C, X-ray computed tomography, as well as optical and electron microscopy were performed. The produced PBF-LB/M/316L exhibits a low void population (< 0.01 %) resulting from the manufacturing parameters used and which allowed us to understand the effects of other microstructural aspects on creep behavior, e.g., grain morphology and dislocation substructure. A hot‑rolled variant of 316L was also tested as a reference. T2 - International Materials Science and Engineering Congress - MSE 2024 CY - Darmstadt, Germany DA - 24.09.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - Mikrostrukturentwicklung KW - Kriechen KW - Kriechschädigung PY - 2024 AN - OPUS4-61169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20240207-173356-002 DO - https://doi.org/10.25643/dbt.59550 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -