TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. T1 - Qualifizierung der Schweißstruktursimulation für die wirtschaftliche Bearbeitung additiver fertigungstechnischer Fragestellungen am Beispiel des Laserpulverauftragschweißens T2 - Forschungsvereinigung Stahlanwendung e. V. N2 - Additive Fertigungsverfahren, speziell das selektive Laserschmelzen sowie das Laserpulverauftragsschweißen, ermöglichen eine enorme Steigerung der Flexibilität und erlauben Kleinserienteile mit hoher Genauigkeit und geringen Kosten herzustellen. Für den erfolgreichen wirtschaftlichen Einsatz dieser neuartigen Fertigungsverfahren spielt die Einhaltung des First-time-right-Prinzips eine entscheidende Rolle: Bauteile sollten bereits im ersten Versuch allen Anforderungen genügen. Aufgrund der jungen Geschichte dieses Fertigungszweigs und der damit einhergehenden fehlenden Erfahrungen und Richtlinien ist diese elementare Forderung heute nur in wenigen Fällen realisierbar. Die geforderten Qualitätsstandards können aktuell nur über experimentelle Iterationsschleifen eingehalten werden, sodass das große Potential einer flexiblen und schnellen Fertigung in erheblichem Maß reduziert wird. Die Komplexität der gefertigten Bauteile und die des Prozesses an sich lassen eine erfahrungsbasierte Vorhersage der Verzüge und Eigenspannungen kaum zu. Zudem werden auch in Zukunft Richtlinien und Normen nicht das komplette Anwendungsspektrum abbilden können. Die eigenspannungsbedingten Verzüge spielen demnach eine bedeutende Rolle und stellen zusammen mit dem Erreichen der Maßhaltigkeit eine entscheidende technologische Herausforderung beim Einsatz additiver Fertigungsverfahren dar. Die numerische Simulation ermöglicht die Vorhersage von Bauteilverzügen und –spannungen und kann durch virtuelle Abprüfung von Herstellstrategien die Anzahl von Experimente reduzieren. Bisherige numerische Betrachtungen von zusatzwerkstoffbasierten Verfahren, zu denen unter anderem das Laserpulverauftragschweißen (LPA) gehört, beschränkten sich primär auf akademische Beispiele mit geringer Komplexität. Für die Simulation von konkreten Anwendungsfällen auf Bauteilebene liegen bisher keine validierten, numerischen Methoden und Ansätze vor, die eine wirtschaftliche Anwendung der Schweißsimulation ermöglichen. Dieses Projekt wird Simulationsmodelle zur numerischen Betrachtung komplexer additiv gefertigter Bauteile entwickeln. Dafür wird der Prozess in vereinfachten Simulationen nachgebildet und anhand von Experimenten validiert. Anschließend werden Methoden zur automatisierten Pfadgenerierung für komplexe Bauteile erprobt und in der Simulation implementiert. Schließlich werden zur Reduktion der Rechenzeit verschiedene Methoden zur Vereinfachung evaluiert und verglichen. Das Ziel ist die Steigerung der Verlässlichkeit in der Simulation, um prädiktive Aussagen über die Qualität additiv gefertigter Bauteile zu ermöglichen. KW - Schweißstruktursimulation KW - LPA KW - Additive Manufacturing PY - 2019 SN - 978-3-96780-042-5 SP - 1 EP - 106 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - Schweißen ist ein industriell relevantes Fertigungsverfahren mit einer branchenübergreifenden Bedeutung. Die Umweltwirkungen von Schweißverfahren sind jedoch bisher unbekannt und werden im Entstehungsprozess eines Produktes entlang seiner Fertigungskette daher meist nicht berücksichtigt. Ferner ist der Schweißprozess durch einen hohen Verbrauch an Energie sowie Ressourcen gekennzeichnet. Zahlreiche Arbeiten zeigen, dass der Bedarf einer Ökobilanzierung enorm ist. Ursächlich für die bisher mangelhafte Etablierung der Ökobilanzierung von Schweißverfahren und damit Motivation für die Forschungsarbeiten ist die Unkenntnis relevanter Einflussgrößen und damit verbunden ein nicht abschätzbarer Aufwand bei der Durchführung sowie Implementierung einer Ökobilanz im fertigungstechnischen Kontext. Demgegenüber ist die Ökobilanzierung in anderen Branchen ein oft genutztes Werkzeug zur Ableitung von Umweltwirkungen. Aufgrund der aktuellen Diskussionen bezüglich des Übergangs hin zu einer klimaneutralen Produktion erfährt auch die Analyse und Optimierung der Umweltwirkungen schweißtechnischer Fertigungsverfahren derzeit eine gesteigerte Aufmerksamkeit. Für Unternehmen stellt die Verfügbarkeit umweltverträglicher Produkte bzw. Prozesse eine gewisse Werbewirksamkeit dar, wie dies im Bereich der Schweißstromquellentechnik aktuell zu beobachten ist. Gleichzeitig wird das Thema des „green welding“ auch bezogen auf die gesamte Fertigungskette immer häufiger diskutiert. Dies zeigt sich durch eine in den letzten Jahren deutlich gestiegene Publikationsaktivität. Neben Analysen zu den Einflussfaktoren auf die Nachhaltigkeit in schweißtechnischen Produktionsumgebungen stehen vor allem auch konkrete Implementierungen in der Fertigung bzw. der Produktentstehung im Fokus. Die grundlegende Vorgehensweise einer Ökobilanzierung (Life-Cycle-Assessment bzw. Abk. LCA) ist als standardisierte Methode in geltenden Normen] sowie in entsprechender Fachliteratur beschrieben. Kernelement der Ökobilanzierung ist die Sachbilanzierung, d.h. die Erfassung der relevanten Inputs sowie Outputs bezogen auf das System „Schweißprozess“. Aus dem entlang der schweißtechnischen Fertigungskette akkumulierten Ressourcenverbrauch während des Schweißens (z.B. Zusatzwerkstoff, elektrische Energie, Schutzgas, etc.) und Abfallprodukten bzw. Emissionen wird die Umweltwirkung entsprechend verschiedener Kategorien, z.B. dem CO2-Äquivalent, gemäß der World Steel Association abgeleitet. In der schweißtechnischen Community ist es bekannt, dass die Umweltwirkung von Schweißprozessen qualitativ direkt aus dem Ressourcenverbrauch abgeleitet werden kann. Der Einfluss der verschiedenen Input- sowie Outflüsse auf ausgewählte Wirkkategorien ist jedoch nicht ad-hoc quantifizierbar. Die Forschungsarbeiten haben gezeigt, dass der Materialverbrauch (z.B. Grund-/Zusatzwerkstoff, etc.), der Energieverbrauch (z.B. Wirkleistung sämtlicher elektrischer Verbraucher während der Prozesszeit), Gasverbrauch (Prozess-, Schutzgas oder Druckluft) sowie Hilfsmittel (z.B. Schutzgläser) signifikante Inputgrößen darstellen, deren Berücksichtigung im Rahmen einer Prozessökobilanz ausreichend ist. Eine wesentliche Forderung des projektbegleitenden Ausschusses war, Methoden für eine direkte Implementierung, um somit Nachnutzung der Ergebnisse zu entwickeln. Um die Ökobilanzierung als festen Bestandteil in die schweißtechnische Dokumentation einfließen zu lassen, sind die notwendigen Arbeitsschritte zu automatisieren. Daher wurden im Rahmen der Forschungsarbeiten sämtliche zu berücksichtigenden Größen durch ein an der Forschungsstelle entwickelten Schweißdatenmanagements digital erfasst sowie archiviert und in eine Umweltwirkung durch Zugriff auf entsprechende Open-Source Datenbanken „übersetzt“. Das Datenmanagement ermöglicht die eindeutige Zuordnung der Umweltwirkung eines geschweißten Bauteiles ohne Dokumentationsaufwand für den Anwender. Dadurch werden insbesondere KMU in die Lage versetzt, den Anforderungen bezüglich der Bewertung der Ökoeffizienz von Fertigungsverfahren gerecht zu werden und somit auf die nationalen sowie internationalen klimapolitischen Rahmenbedingungen vorbereitet zu sein. Die Analysen eines breiten Spektrums an Schweißverfahren haben gezeigt, dass eine Verringerung der Umweltwirkungen von Schweißverfahren demnach nur primär durch eine Reduktion des Zusatzwerkstoff- sowie Energieverbrauches zu realisieren ist. Hierbei zeigen Verfahren mit niedrigem Werkstoffeinsatz, im Extremfall autogene Verfahren, die geringsten Umweltwirkungen. Im Produktentstehungsprozess ist es daher notwendig, unter Berücksichtigung der Schweißbarkeit die ökologischen Verfahrenscharakteristika hinsichtlich konstruktiver, fertigungstechnischer sowie werkstoffspezifischer Randbedingungen zu bewerten, um die vorgeschriebenen Produkteigenschaften zu gewährleisten und die Umweltbelastung zu minimieren. Damit der Workflow, der bei der Ökobilanzierung zu durchlaufen ist, vereinheitlicht und für jeden verständlich ist, fließen die Forschungsergebnisse direkt in die DIN SPEC 35235 „Nachhaltigkeit in der Schweißtechnik – Ökobilanzierung von Schweißverfahren“ ein. Dies ist die Grundlage, um die Vergleichbarkeit von Ökobilanzen in der Schweißtechnik zu gewährleisten und so deren Akzeptanz in der Industrie zu erhöhen. Damit ist ein optimaler Transfer der Forschungsergebnisse in die Industrie gewährleistet. KW - Schweißverfahren KW - Ökobilanzierung PY - 2020 SP - 1 EP - 38 PB - DVS Media CY - Düsselorf AN - OPUS4-51856 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. A1 - Javaheri, E. T1 - Qualifizierung der instrumentierten Eindringprüfung zur Kennwertermittlung für hochfeste Stähle mit Schweißungen T2 - Forschungsvereinigung Stahlanwendung e. V. N2 - Der Einsatz von hochfesten Stählen im Karosseriebereich des Automobilbaus hat während der letzten Jahre stark zugenommen. Hierzu zählen Dual- und Komplexphasenstähle, welche durch Kombination unterschiedlicher Gefügebestandteile auch deren Vorteile kombinieren, sowie TRIP (TRansformation Induced Plasticity) und Mangan-Bor Stähle, welche sehr gute Umformeigenschaften mit hohen Festigkeiten durch Martensitbildung bei der Umformung kombinieren. TWIP (Twinning Induced Plasticity) Stähle erreichen ähnliche Effekte durch forcierte Zwillingsbildung. Die Ursachen für den Einsatz dieser Stähle liegen in dem Potential dieser Materialien zur Gewichts- und Kostenreduzierung, bei gleichzeitiger Erhöhung der Fahrgastsicherheit. Auf Grund der prinzipiell gegebenen Schweißeignung dieser Stähle, werden die klassischen Fügeverfahren im Karosseriebau wie das kostengünstige und effektive Widerstandspunktschweißen, das Metall-Schutzgas (MSG)-Schweißen oder das Laserschweißen angewendet. Allerdings treten teilweise Herausforderungen, beispielsweise durch Gefügeveränderungen in den Fügestellen auf, die zu ungewollten Aufhärtungen oder Erweichungen führen. In diesem Projekt wird ein Verfahren entwickelt, mit welchem die lokalen Werkstoffeigenschaften von im Automobilbau typischen Werkstoffen und deren Fügestellen bestimmt werden können. Relevante Kennwerte sind in erster Linie das SpannungsDehnungs-Verhalten der verschiedenen Zonen einer Schweißverbindung; relevante Zonen wiederum sind neben dem Grundwerkstoff die Wärmeeinflusszone und das Schweißgut. Zu diesem Zweck wird das Verfahren der instrumentierten Eindringprüfung für den Einsatz bei hochfesten Stählen weiterentwickelt. Zunächst werden hierzu Zugversuche an einfachen Grundwerkstoffgeometrien durchgeführt. Im Anschluss wird die optische Dehnungsfeldmessung an stark taillierten, geschweißten Zugversuchsproben durchgeführt. Die Taillierung dient dem Zweck, die WEZ auch mittels WPS über den gesamten Querschnitt der Probe erzeugen zu können, bzw. im Versuch auch Dehnungen in den relevanten Bereichen herbeizuführen. Das im Projekt angewendete Auswerteverfahren, welches auf nichtlinearen Regressionsmodellen in Form von künstlichen, neuronalen Netzwerken beruht, ermöglicht die Vorhersage des Festigkeitsverhaltens des Werkstoffes anhand der gemessenen Krafteindringwegdaten. KW - Eindringprüfung KW - Hochfester Stahl KW - Prüfverfahren PY - 2020 SN - 978-3-946885-98-6 SP - 1 EP - 164 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -