TY - CONF A1 - Dinter, Adelina-Elisa T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - ICP-ToF (Flugzeitanalysator, engl. time of flight)-MS ermöglicht den Multielement Fingerabdruck einzelner Zellen (single cell) zu analysieren. Die single cell-ICP-ToF-MS kommt bei dem vorgestellten Poster bei der Analyse von Archaeen, die an mikrobiell beeinflusster Korrosion (engl. microbiologically influenced corrosion, MIC) von Stahl eine Rolle spielen, zum Einsatz. Mittels sc-ICP-ToF-MS wird die mögliche Aufnahme von einzelnen Elementen aus dem jeweiligen Stahl untersucht – die erhaltenen Informationen fließen zukünftig in die Aufklärung zugrunde liegender Mechanismen sowie Entwicklung möglicher Materialschutzkonzepte ein. Die Arbeiten Verknüpfen moderne Methoden der Analytical Sciences mit Materialien. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-52941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - DELTA - Investigation of corrosion and microbially influenced corrosion processes by means of X-Ray absorption spectroscopy N2 - Alloys relevant for corrosion research are inherently complex in chemical composition and microstructure. Their local surface chemistry differs significantly from the bulk composition and their surfaces are subjected to ever changing environmental conditions. Thus, a thorough understanding of the mechanisms leading to material degradation and failure requires a detailed characterisation of the initial and final states as well as an adequate monitoring of the relevant properties as a function of time. Moreover, corrosion products tend to oxidize in contact with the atmosphere. Microbially influenced corrosion (MIC) poses a particular challenge regarding the experimental methods that can be used for the investigations. The use of highly sensitive methods of ultra-high vacuum surface analysis requires the removal of the biofilm, which leads to significant changes in the interfacial chemistry. In recent projects we applied X-ray absorption near edge spectroscopy (XANES) to investigate mechanisms of aqueous corrosion, high temperature corrosion and MIC processes of stainless steel and multi-principal element alloys (MPEAs). By combining in situ XANES studies on model thin films with ex situ XANES analysis of technical samples we aimed to obtain a holistic understanding of degradation processes. In this presentation we will summarize our results on the application of XANES to corrosion and MIC research with two case studies. In the first case study, in situ and ex situ XANES were used for the investigation of aqueous and high-temperature corrosion processes of alloys from FeNiCr-Mn MPEA family to clarify the role of Mn in determining the corrosion resistance and passive film formation. Our results indicate that Mn plays a major role in suppressing Fe oxidation. In the second example we have shown by means of in situ and ex situ XANES analysis that cultivation of metal reducing bacteria (MRB) in abundance of Fe(III) ions leads to a significant increase in electrochemical activity and thus, to an accelerated corrosion of the metallic substrate. This implies that bacterial colonies released from active corrosion sites might show a preconditioning effect and pose a higher corrosion risk. T2 - eMRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Corrosion KW - XANES KW - MIC KW - Multi-principal element alloys PY - 2024 AN - OPUS4-62636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - Euro-MIC COST Action - Closing Workshop Conference CY - Horsens, Denmark DA - 17.09.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids (POM-ILs) as Protective Coatings for CulturalHeritage against Acid Corrosion and Biodeterioration N2 - Corrosion of stone by acid rain anddeterioration from microbial biofilmsare challenges pertinent worldwide forindustrial or residential buildings as wellas cultural heritage artefacts, like statuesor historic buildings. One mitigationoption might be the use of thintransparent films of polyoxometalate-based ionic liquids (POM-ILs). In thisregard, different limestone samples werecoated with hydrophobic, acid resistantPOM-ILs which also have biocidalproperties.1 Exposure of the samples tosimulated acid rain showed negligiblecorrosion compared to the significantdeterioration of unprotected samples(Fig 1. Left). In addition, the biocidalproperties of the POM-ILs suppress theformation of biofilms on coated stoneslabs. The coating is mechanically stableand is not removed even by harshmechanical and chemical treatment.Following studies successfully exploredthe effectiveness of the coating againstlampenflora growing in the PommeryChampagne cellar 2 (Fig 1. Right); andthe long-term performance of POM-ILsunder outdoor environmental conditions3. So, POM-ILs are already proven topossess remarkable anticorrosion andantimicrobial properties against aerobicmicroorganisms and being water-insoluble, they don’t get leached intoaquatic ecosystem, which is extremelybeneficial from an environmentalsustainability and toxicological point ofview. The current project aims tocontinue the journey on protecting thecultural heritage, shifting focus fromstones to metals and employ functionalPOM-IL nanocoatings to prevent MIC(Microbiologically Influenced Corrosion)of cultural heritage artefacts made ofmetal or metal alloy like carbon steel,brass, cast iron or bronze. Performanceof both the coating materials and coatingtechniques via optimization of theadhesion of the nanocoating on themetallic surface on the corrosion rateand corrosion products in the MICcaused by anaerobic microorganismslike methanogenic archaea or SulphateReducing Bacteria (SRB) would betested. The objective is to establishPOM-ILs as efficient environmentallysustainable nanocoating materialsagainst biocorrosion citing the already published success stories; and sketch theongoing endeavours and prospects ofthese very efficient candidates in thecontext of MIC mitigation. T2 - Mitigation of Microbiologically InfluencedCorrosion: Towards Scientific &Industrial Standardization (MIC-STAND) CY - Lisbon, Portugal DA - 24.07.2024 KW - Microbiologically influenced corrosion (MIC) KW - Polyoxometalate Ionic Liquid KW - Nanocoating KW - Cultural heritage PY - 2024 AN - OPUS4-64575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea T1 - Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC) N2 - Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows under certain conditions methanogenic archaea can cause higher corrosion than SRB, specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and that spatial statistical evaluations of MIC can be carried out. KW - Microbiologically influenced corrosion KW - Methanogen KW - Methane KW - Biocorrosion KW - Flow system KW - Modeling KW - Multiport PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506084 DO - https://doi.org/10.3389/fmicb.2020.00527 VL - 11 SP - Article 527 PB - Frontiers in microbiology AN - OPUS4-50608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - 10th International symposium on applied microbiology and molecular biology in oil systems (ISMOS10) CY - Nashville, Tennessee, USA DA - 11.08.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Wurzler, Nina A1 - Terol, E. C. A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Beyond corrosion: Development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion N2 - The development of the microbiologically influenced corrosion ( MIC ) -specific inductively coupled plasma-time of flight-mass spectrometry ( ICP-ToF-MS ) analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis. For this, a MIC-specific staining procedure was developed, which ensures the analysis of intact cells. It allows the analysis of archaea at a single cell level, which is extremely scarce compared to other well-characterized organisms. The detection method revealed elemental selectivity for the corrosive methanogenic strain Methanobacterium -affiliated IM1. Hence, the possible uptake of individual elements from different steel samples was investigated and results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to uptake chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The methods developed and information obtained will be used in the future to elucidate underlying mechanisms, compliment well-developed methods, such as SEM-EDS, and develop novel material protection concepts. KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac083 SN - 1756-591X VL - 14 IS - 11 SP - 1 EP - 15 PB - Oxford University Press CY - Oxford AN - OPUS4-56254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa T1 - Examination of biological samples by means of single-cell ICP-ToF-MS N2 - Up to now, different analytical methods for single cell analysis exist focusing on key features such as size, shape, morphology and elemental composition. The combination of the latest ICP-MS techniques - ICP-ToF-MS - together with the latest developments in the field of sample delivery - micro droplet generator (MDG) – will allow a Deep insight into the composition and size of cells. Microbiologically influenced corrosion (MIC) is an oxidation of metals affected by the presence or activity (or both) of microorganisms e.g. Shewanella Putrefaciens in biofilms on the surface of the corroding material. As this can happen for example in the soil on iron pipes of water pipes, in oil tanks or on steel sheet piling, there is great interest in MIC research, not only from various industrial sectors, but also from the environmental aspect. T2 - SALSA - Make & Measure CY - Online Meeting DA - 15.10.2020 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - MDG ICP-ToF-MS KW - Microdroplet generator PY - 2020 AN - OPUS4-52441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -