TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Villajos Collado, José Antonio A1 - Myxa, Anett A1 - Beyer, Sebastian A1 - Falkenhagen, Jana A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Covalently Fluorophore-Functionalized ZIF‑8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers N2 - We present the optical sensing of phthalate Esters (PAEs), a group of endocrine-disrupting chemicals. The sensing takes place as changes in the fluorescence emission intensity of aminopyrene covalently bound to the organic ligands of the metal−organic framework compound ZIF-8. In the presence of PAEs, a quenching of the fluorescence emission is observed. We evaluated strategies to engineer colloidal size distribution of the sensing particles to optimize the sensory response to PAEs. A thorough characterization of the modified ZIF-8 nanoparticles included powder X-ray diffractometry, transmission electron microscopy, high-performance liquid chromatography, and photophysical characterization. The presented capability of the fluorophore-functionalized ZIF-8 to sense PAEs complements established methods such as chromatography-based procedures, which cannot be used on-site and paves the way for future developments such as hand-held quick sensing devices. KW - Sensing KW - MOF PY - 2019 DO - https://doi.org/10.1021/acsomega.9b01051 VL - 4 IS - 17 SP - 17090 EP - 17097 PB - ACS AN - OPUS4-49562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the Depths of Copolymer Microstructure N2 - For different kinds of polymers it will be shown how it could be realized to obtain information on small, sometimes isomeric topological heterogeneities by coupling UPLC / ESI-TOF-MS and LC /MALDI-TOF-MS. T2 - DSM, Fall Meeting CY - Breda, The Netherlands DA - 07.11.2019 KW - Microstructure KW - LC-MS KW - Copolymer PY - 2019 AN - OPUS4-49587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Markwart, J.C. A1 - Wurm, F.R. A1 - Schartel, Bernhard T1 - Hyperbranched Polymeric Flame Retardants N2 - Most synthetic polymers have a high fire load, and as a result, they require flame retardants (FRs) to ensure their safe use. Phosphorus plays an important role in flame retardancy and has the potential to replace halogenated variants, which are assumed to be harmful to the environment and health. Among phosphorus-based FRs, there exists a trend towards polymeric, high molar mass molecules with complex molecular architectures. In this project, we synthesized a novel series of so-called phosphorus-based hyperbranched polymeric FRs and investigated their use as multifunctional additives to high-performance polymers, i.e. epoxy resins. By cleverly designing the chemical structure to contain varying amounts of P-O and P-N bonds, new insight into the chemical mechanism of flame retardancy was gained, and by comparing the hyperbranched polymers to their monomeric counterparts, a greater understanding of the role of complex architecture was won. This talk aims at presenting some of these results and proposes chemical mechanisms that illustrate what role these novel hyperbranched flame retardants play in molecular firefighting. T2 - AMI Fire Resistance in Plastics 2019 CY - Cologne, Germany DA - 03.12.2019 KW - Epoxy resin KW - Flame retardant KW - Hyperbranched polymers KW - Phosphoester KW - Phosphoramidate KW - Phosphoramide KW - Phosphorodiamidate KW - Pyrolysis PY - 2019 AN - OPUS4-50034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic Operation Performance of 9-12% Cr Ferritic-Martensitic Steels. Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model N2 - The current trend towards cyclic, “flexible” operation of fossil-fueled power plants constitutes a major issue regarding lifetime and operational safety of the respective installations and their components, as was outlined in our complementary contribution (Part 1). The present contribution reports on the investigation of the microstructure evolution in cyclically loaded ferritic-martensitic steels and its representation in a physically-based micromechanical model. For this purpose, specimens of P92 steel grade from the mechanical test programme outlined in our companion contribution (Part 1) were analyzed by scanning electron microscopy (SEM), including backscattered diffraction (EBSD) mapping, and transmission electron microscopy (TEM). A novel method was implemented to improve angular resolution of EBSD scans. Additionally, a correlative microscopy approach was developed and used to correlate EBSD and TEM measurements on the same locations of thick regions of electron transparent specimens. By applying these techniques, a detailed quantitative microstructure description of the as-received material condition, namely in terms of subgrain morphology and dislocation density/distributions, was established. Comparisons of as-received and cyclically loaded conditions from tests interrupted at different stages of lifetime indicate a rapid redistribution of in-grain dislocations with a strong interaction between mobile dislocations and low angle grain boundaries (LABs). The proposed micromechanical model is formulated in a viscoplastic self-consistent (VPSC) scheme, which is a mean-field approach that allows us to include the crystal details at the level of slip systems while avoiding the considerable computational costs of full-field approaches (such as the classical crystal plasticity finite element analysis). Being physically-based, the model uses dislocation densities and includes the interaction between dislocations, e.g. annihilation of mobile dislocations, and evolution of microstructure, e.g. the grain coarsening. Particularly, the constitutive laws for dislocation evolution and interaction between dislocations and low angle boundaries are calibrated based on two-dimensional discrete dislocation dynamic (2D DDD) simulations, which are performed at a micro-/meso-scale. The results of the beforementioned EBSD experiments are considered as a direct input, involving e.g. the amount of geometrically necessary dislocations, average misorientations and grain characteristics. T2 - 45th MPA-Seminar 2019 CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered martensite ferritic steel KW - Dislocation KW - Electron backscattered diffraction (EBSD) KW - Transmission electron microscopy (TEM) KW - Microstructure KW - Physically based material model PY - 2019 AN - OPUS4-49346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Sonntag, Nadja A1 - Nolze, Gert A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Jürgens, Maria T1 - Cyclic mechanical performance and microstructure evolution of P92 under LCF and TMF conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing contribution of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In this contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of fatigue and creep/relaxation periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain). Temperature intervals of TMF tests were chosen as either 300-620°C or 500-620°C, resembling so-called warm or hot start conditions of a power plant. The test results will be presented and discussed with a focus on the impact of hold periods during testing (combined creep/relaxation-fatigue conditions) on mechanical softening, lifetime and formation of cracks. The findings will be complemented by results on the modification of the hierarchical ferritic-martensitic microstructure under different loading scenarios. T2 - 4th International Workshop on Thermo-Mechanical Fatigue 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Power plant KW - Tempered martensite ferritic steels KW - Thermo-Mechanical Fatigue KW - Microstructure modification KW - EBSD PY - 2019 AN - OPUS4-50053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - Bubbles and Collapses: Fire Phenomena of Polyurethane Foams N2 - This work investigates the fire phenomena of rigid polyurethane foams (RPUFs) in detail. To elucidate structure-property relationships, systematically varied sets of materials were prepared covering polyurethane, polyisocyanurate-polyurethane and flame retarded polyurethane foams. Advanced cone calorimeter investigations provide insight into the fire behavior under forced flaming conditions. Thermocouples inside specimens give information about the temperature gradient during combustion. Furthermore, fire phenomena were characterized using cross sections of quenched samples and the scanning electron microscope. By using a Multi methodological approach and systematically varied sets of foam materials, new insights into the burning of RPUFs were won. For the flame retarded foams, the dominant flame retardant mode of action changed with density. PIR foams exhibited a cellular structure in the residue leading to the superior fire performance compared to polyurethane foams. The understanding of fire phenomena contributes to future development of tailored flame retardant strategies for RPUFs. T2 - AOFSM’3, 3rd Asia-Oceania Symposium for Fire Safety Materials Science and Engineering CY - Shanghai, China DA - 24.10.2019 KW - PU-Foam KW - Fire behaviour PY - 2019 AN - OPUS4-49457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, I. A1 - Kebelmann, Katharina A1 - Risse, S. A1 - Dieguez-Alonso, A. A1 - Schartel, Bernhard A1 - Strecker, C. A1 - Behrendt, F. T1 - Hydroliquefaction of Two Kraft Lignins in a Semibatch Setup under Process Conditions Applicable for Large-Scale Biofuel Production N2 - Hydroliquefaction is a possible pathway to produce liquid transportation fuels from solid feedstocks like coal or biomass. Though much effort has been put into the investigation of maximizing the oil yield using expensive catalysts and pasting oils in batch setups, little is known about how to commercialize the process. This work aims at the demonstration of lignin hydroliquefaction under conditions interesting for commercial operation. The results from hydroliquefaction experiments of two different lignin types using a cheap iron-based catalyst and anthracene oil as the pasting oil in a semibatch system are presented here. Oil yields of above 50% are reached without observing coke formation. Extensive analyses of the feedstocks and product oils were performed. The process supplies high-quality oil, while differences in the decomposition path of both lignin types are observed. An high heating value of 39 400 J/g and H/C and O/C ratios of up to 1.6 and 0.1, respectively, are detected for the produced bio-oils. KW - Lignin KW - Hydroliquefaction KW - Biofuel PY - 2019 DO - https://doi.org/10.1021/acs.energyfuels.9b02572 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 11 SP - 11057 EP - 11066 PB - ACS AN - OPUS4-50102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -