TY - CONF A1 - Zscherpel, Uwe A1 - Lübbehüsen, J. T1 - Computer Tomography used for inspection of critical Zones in AM parts N2 - Overview on CT for AM, starting from the CT principle, the added value of CT in Additive Manufacturing (AM), examples of CT results on AM workpieces and conclusions. T2 - IIW Annual Assembly 2018, joint seminar on AM CY - Bali, Indonesia DA - 15.07.2018 KW - Computed Tomographie KW - Additive Manufacturing KW - Added Value PY - 2018 AN - OPUS4-47357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Considerations on spent fuel behavior for transport after extended storage N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behavior of high burn-up spent fuel assemblies (> approx. 50 GWd/tHM, value averaged over the fuel assembly) under transport conditions is analyzed with regard to the assumptions which are used in the Containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. Additionally, the gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated. Considerations and knowledge gaps for the transport after extended interim storage are issues of growing interest. In this context, practical approaches are discussed based on the experience of BAM within the safety assessment of packages approved for transport of spent nuclear fuel. KW - Transport packages for radioactive material KW - Spent nuclear fuel PY - 2018 VL - 83 IS - 6 SP - 488 EP - 494 PB - Hanser AN - OPUS4-47359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472699 DO - https://doi.org/10.3390/mps1040036 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Menneken, Martina A1 - Falk, Florian T1 - High temperature oxidation/sulfidation meets X-ray absorption near edge structure spectroscopy (XANES) N2 - Ferritic-martensitic alloys with 12-16 % Cr in weight are subject to devices for various energy systems, such as coal power plants and waste incineration plants. These materials are exposed to a highly corrosive environment which lead to a degradation of the material. Especially the simultaneous oxidation and sulfidation is thereby of special interest. Proper spatially resolved measurements that determine not only chemical compositions but phases are rare. However, precise phase identification and quantification of corrosion products within the multi-phase corrosion scales is a key aspect to understand diffusion paths of metal ions and gas ions/molecules. This study investigated Fe-Cr model alloys with Cr contents from 0 to 13 % in weight in 0.5 % SO2 and 99.5 % Ar atmosphere to aim in a fundamental and systematic analysis. Samples were aged at 650 °C for time scales from 12 h to 250 h. The results presented here correspond to depth dependent phase identification of oxide and sulphide phases in the corrosion scales by using X-ray absorption near edge spectroscopy (XANES). Per sample a series of ca. 20 spots (1-5 µm spot size) from scale-gas to scale-metal interface were measured. XANES spectroscopy was performed at the Fe-K edge (7.11 keV) on polished cross sections. The collected spectra were fitted to a combination of reference materials to quantify the present phases at different positions within the scale.The phase distribution differs with Cr content and the Cr diffusion through pure Fe-oxide and mixed Fe-Cr-oxide phases is discussed. T2 - EFC Workshop "High Temperature Corrosion" CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - High temperature corrosion KW - XANES PY - 2018 AN - OPUS4-47277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Menneken, Martina A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, Christiane T1 - Orientation dependent corrosion N2 - Ferritic-martensitic Fe-Cr alloys are widely utilised as materials for high temperature applications such as super heater tubes in coal, biomass or co-fired power plants. Various corrosive gases are produced in combustion processes, but especially SO2 is known to cause catastrophic application failure. In order to understand the effect of orientation and grain size of the alloy on the initial corrosion processes we analysed metal coupons of Fe-Cr- alloys (2-13 wt. % Cr) by electron backscattered diffraction (EBSD) before and after exposure to SO2 containing atmospheres in 650°C for short time spans (2 min – 12 h). An infra red heated furnace with integrated water-cooling was used for the ageing procedures to conduct short time experiments and to keep the reaction products in a ‘frozen’ state. EBSD characterization of oxides formed on the surface of the alloys showed a topotactic relationship between grain orientation of the alloys and the oxides. With increasing scale thickness this relation diminishes possibly due to lattice strain. There appears to be no correlation between oxide growth and absolute, initial orientation, grain size, or the quality of polishing. An initially topotactic relationship between scale and steel had been already described for the formation of magnetite in hot steam environments, indicating that the initial corrosion mechanisms are mainly depending on the presence of Oxygen, and not changed by the presence of Sulphur. However, Sulphur is incorporated into the oxide scale in the low Cr alloy, and mainly observable in the inner corrosion zone for the higher alloyed material. Furthermore, oxides formed directly on grain boundaries in higher Cr alloyed materials are enriched in Cr compared to oxides on grain faces. T2 - EFC Workshop Dechema CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Crystal Orientation KW - High Temperature Corrosion PY - 2018 AN - OPUS4-47279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dreyer, Christian A1 - Kahle, Olaf A1 - Wegener, M. A1 - Prager, Jens T1 - Composite mit strukturintegrierter Sensorik N2 - Der Vortrag gibt einen Überblick über aktuelle Möglichkeiten zur Integration von sensorischen Funktionen in Leichtbauwerkstoffe, mit Fokus auf Faserverbundkunststoffe (FVK). Neben den unterschiedlichen Arten der eingesetzten Sensoren werden auch deren Arbeitsweisen, Anwendungsbereiche und Anwendungsbreiten erläutert. Es erfolgt eine Diskussion der Auswirkungen der Integration von Sensoren in die Bauteilstruktur und daraus abgeleitet eine Betrachtung der Vor- und Nachteile der einzelnen Methoden. Das lernen die Teilnehmer im Vortrag: Integration von Sensoren in Faserverbundstrukturen Anwendungen von Sensorik Auswirkungen der Funktionsintegration auf die Composite T2 - 3. Anwendertreff Leichtbau CY - Würzburg, Germany DA - 04.12.2018 KW - Zerstörungsfreie Prüfung KW - Ultraschallprüfung KW - Faserverbundwerkstoffe PY - 2018 AN - OPUS4-47313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Schnell, A. A1 - Ihlenfeldt, Toni A1 - Vöge, M. ED - Martins, I. M. ED - Ulsen, C. ED - Villagran, Y. T1 - Lightweight concrete with recycling aggregates made from masonry rubble and rubble-clay mixtures N2 - Structural lightweight concrete is a construction material composed primarily of lightweight aggregates (LWA), cement and water. Most LWA are produced by thermal treatment of natural raw materials such as clay and shale today. In addition to the high energy costs thereby incurred, the availability of suitable raw materials is limited. An alternative is the use of recycling LWA made from mineral construction and demolition waste. Recycling LWA made from masonry rubble and rubble-clay mixtures were studied in two different research projects. The technology pursues the idea of feedstock recycling, which means the recycling is based on the chemical and mineralogical composition of the masonry rubble and clay. The recycling LWA are produced in a multistage manufacturing process by thermal hardening in laboratory and pilot scale. Their particle bulk densities and particle strengths vary between 600 and 2000 kg/m³ and 1.5 and 13 MPa, respectively. Their equivalence to traditional LWA was proven in comprehensive tests of the aggregates themselves as well as the mortars and concretes made therefrom. Our contribution reports on the results of the characterization of the recycling aggregates compared to expanded clays and the studies on LWA concretes. T2 - IV International Conference Progress of Recycling in the Built Environment CY - Lisbon, Portugal DA - 11.10.2018 KW - Lightweight aggregates (LWA) KW - Recycling aggregates KW - Lightweight concrete KW - Masonry rubble KW - Recycling PY - 2018 SN - 978-2-35158-208-4 VL - 2018/PRO 124 SP - 323 EP - 331 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan A1 - Sklorz, Christian T1 - Development of a Single Walled Tank under Cryogenic Conditions made of Composite N2 - The use of glass-fiber reinforced plastic (GRP) can reduce the weight of tanks significantly. By replacing steel with GRP in tanks for gases (propane, etc.) a weight reduction of up to 50 % was reached. In this project not only the material should be optimized, but also the design. Previous tanks consist of a double-walled structure with an insulation layer between the two shells (e.g. vacuum). Goal of this project is to realize a single-walled construction of GRP with an insulation layer on the outside. To determine the temperature dependent material values, two different experiments are performed: In the first experiment, temperature dependent material properties of liquid nitrogen found in literature research are validated in a simple setup. The level of liquid nitrogen in a small jar is measured over the experiment time. Numerical simulation shows the change of nitrogen level with sufficient precision. In the second experiment, a liquid nitrogen is applied on one side of a GRP plate. Temperature is measured with thermocouples on top and bottom of the GRP plate, as well as in the middle of the plate. By use of numerical simulation, temperature dependent thermal conductivity is determined. In the third experiment, a test stand is designed to examine different insulation materials. In this test stand, the insulation material can easily be changed. A numerical simulation, in which the determined material data is used, is performed as well for this test stand. The experiments show, that GRP can be used in cryogenic environments. Multiphase simulations are a suitable tool to describe the energy absorption of thermal energy due to thermal phase change. Results on different insulation materials will follow. T2 - IMECE 2018 CY - Pittsburgh, PA, USA DA - 09.11.2018 KW - Lightweight design KW - Thermal properties of GRP KW - Liquid nitrogen KW - LNG PY - 2018 UR - http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleID=2722335 SN - 978-0-7918-5214-9 DO - https://doi.org/10.1115/IMECE2018-86365 VL - 9 SP - V009T12A019 PB - ASME AN - OPUS4-47321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O.I. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Ebell, Gino A1 - Kühne, Hans-Carsten A1 - Mietz, Jürgen T1 - Steel reinforcement corrosion in alkali-activated fly ash mortars N2 - Corrosion of steel rebars in concrete presents one of the main deterioration mechanisms limiting service life of the reinforced structures. The corrosion is accompanied by an expansion of the corrosion products causing high pressures, concrete cracking and finally spalling of a cover layer. Critical chloride concentration, loss of alkalinity and modeling of the steel corrosion are in researchers' spotlight for decades, however reinforcement corrosion in alkali activated materials is insufficiently described and understood yet. In this work, the steel reinforcement corrosion in alkali-activated fly ash mortars is investigated in terms of electrochemical behaviour of the reinforced mortars exposed to aggressive environments such as leaching, carbonation and chloride ingress. A selected geopolymer mixture based on hard coal fly ash activated with sodium hydroxide and sodium silicate solutions is used for the steel reinforcement-corrosion experiments. The formation of passive layer on the steel rebars is observed after approx. two weeks of hardening at laboratory temperature. However, alternative heat-treatment at 80°C for several hours leads to immediate formation of the passive layer as well as to a faster strength gain (80 MPa after 24h at 80°C). Chloride-induced corrosion, leaching and carbonation resistance of the alkali activated fly ash-based concrete is studied, where leaching in deionized water or carbonation under natural conditions (~0.04 % CO2) for 300 days did not lead to corrosion of the embedded steel. On the other hand, accelerated carbonation under 100 % CO2 atmosphere lead to depassivation within two weeks. T2 - Alkali Activated Materials and Geopolymers CY - Tomar, Portugal DA - 27.05.2018 KW - Alkali-activation KW - Reinforcement corrosion KW - Carbonation KW - Chloride attack KW - Leaching PY - 2018 AN - OPUS4-47446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Mühler, T. A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - Additive manufacturing of geopolymers by local laser curing N2 - For the additive manufacturing of large components typically powder-based methods are used. A powder is deposited layer by layer by means of a recoater, then, the component structure is printed into each individual layer. We introduce here the new method of local laser drying, which is a suspension-based method specially developed for the manufacturing of large voluminous ceramic parts. The structure information is directly written into the freshly deposited layer of suspension by laser drying. Initially, the technology was developed for ceramic suspensions, however, first experiments with geopolymers reveal a high potential for this class of materials. Metakaolin, fly ash and lithium aluminate-based one-part geopolymers were used in first experiments. The local annealing of the geopolymer slurry results in a drying and crosslinking reaction and, thus, in a local consolidation of the material. First parts made are introduced and their properties are discussed. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Additive manufacturing KW - Laser curing KW - Geopolymers PY - 2018 AN - OPUS4-47447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas T1 - Is phased array the future in modern ultrasonic rail inspection? N2 - Compared to standard ultrasonic testing methods the application of phased arrays offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields as well as the image based evaluation of the recorded scans. For more than one decade phased array systems have been introduced and used in the railway sector for the inspection of wheelsets in the workshops. Up to the present field applications of phased array systems in rail inspection are rather rare. On the other hand a lot of scientific work on rail testing using phased arrays has been carried out in the recent past. Mechanized ultrasonic rail inspection poses strong challenges e.g. due to the harsh environment, complex flaw types and high inspection speeds. Different tasks have to be carried out by non-destructive testing ranging from manufacturing inspection of thermite welds to in-service inspection for operational induced flaws in the rail head, rail web and rail foot as well as rolling contact fatigue. This work will give an overview and categorization of different present approaches for rail testing using phased array. Phased array systems typically offer digital image based inspection results. This make these systems become the perfect candidates to feed inspection data into a modern big data based workflow, using e.g. cloud computing, signal processing and data fusion for recording, positioning and tracking of flaws and artefacts in rails and to gain additional benefit. Evaluation of promising innovative approaches and solutions for phased array based ultrasonic rail inspection in the frame of “Industry 4.0” will be discussed. T2 - QNDE - Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 15.07.2018 KW - Rail Inspection Phased Array Ultrasound PY - 2018 AN - OPUS4-47211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas T1 - Ist die Ultraschall-Phased-Array-Technik die Zukunft der mechanisierten Schienenprüfung im Zeitalter von Bahn 4.0? N2 - Die Ultraschall Phased-Array Technik bietet durch die variable elektronische Steuerung des Schallfeldes gegenüber konventioneller Prüftechnik Vorteile bei vielen Prüfaufgaben, sowohl bei der Datenaufnahme als auch der bildhaften Bewertung. Die mechanisierte Schienenprüfung stellt sehr hohe Anforderungen an die Prüftechnik insbesondere durch die hohen Prüfgeschwindigkeiten von bis zu 20 m/s. Im Rahmen dieses Vortrags wird evaluiert, welche Lösungsansätze auf Basis der Ultraschall Phased-Array Technik vielversprechend erscheinen für einen Einsatz im Umfeld von Bahn 4.0. T2 - 10. Fachtagung ZfP im Eisenbahnwesen CY - Wittenberge, Germany DA - 13.03.2018 KW - Eisenbahn KW - Phased Array KW - Ultraschall KW - Mechanisierte Schienenprüfung PY - 2018 AN - OPUS4-47214 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Rühe, Sven A1 - Mook, Gerhard T1 - Signal processing for non-destructive testing of railway tracks N2 - Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown. T2 - QNDE - Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Provo, UT, USA DA - 16.07.2017 KW - Rail KW - Inspection KW - Train KW - Ultrasound KW - Signal KW - Processing PY - 2018 DO - https://doi.org/10.1063/1.5031528 VL - 1949 SP - 030005-1 EP - 030005-7 AN - OPUS4-47217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg A1 - Spranger, Holger A1 - Ewert, Uwe T1 - THz Applications for Non-Destructive Testing N2 - Up to now THz-TDS-systems aren’t considered to be nondestructive testing facilities for large scale industrial applications, despite it was proven that they provide a comprehensive set of quality parameters. A practical approach to bring THz-TDS in addition to already existing testing systems into the industrial mainstream is systematic development of future test procedures and test facilities for dielectrics. For this purpose polyeth-ylene test specimen with introduced artefacts were designed, to evaluate the detection sensitivity of Time of Flight measurements based on dielectrics. SAFT reconstructed tomograms are presented which visualize the sizes and location of artificially introduced flaws. T2 - 2017 Far East NDT New Technology & Application Forum (FENDT) CY - XI'an, China DA - 22.06.2017 KW - THz radiation KW - Dielectric materials KW - Image reconstruction KW - Terahertz synthetic aperture PY - 2018 DO - https://doi.org/10.1109/FENDT.2017.8584511 VL - 12 SP - 272 EP - 276 PB - IEEE Conference Publication CY - USA AN - OPUS4-47220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, P. ED - Marko, A. ED - Graf, B. ED - Rethmeier, Michael T1 - Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry N2 - With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality Needs to be validated against experiments for in-situ and post-process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED)part: at first, the validity of the heat input is ensured and subsequently, the model’s predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical Simulation model is set up in accordance with the experiment and can reproduce the measured 3-dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D-scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel Extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model. KW - DED KW - Welding simulation KW - Additive manufacturing KW - Dimensional accuracy KW - Digital image correlation PY - 2018 DO - https://doi.org/10.1016/j.addma.2018.10.006 SN - 2214-8604 SN - 2214-7810 VL - 24 SP - 264 EP - 272 PB - Elsevier AN - OPUS4-47226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Eisentraut, Paul A1 - Dittmann, Daniel A1 - Ruhl, A.S. A1 - Eitzen, L. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Thermoanalytical methods for the optimisation of microplastic analysis in freshwater sediment samples N2 - Results of various thermoanalytical techniques are presented for the analysis of microplastics in sediment samples. The homogeneity and the representativness of samples war controlled, as well as steps of separation and microplastic detection by these techniques. T2 - MICRO CY - Lanzarote, Spain DA - 19.11.2018 KW - Water KW - Microplastics KW - Sampling KW - Sampling techniques PY - 2018 AN - OPUS4-47322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe T1 - Image Quality in Industrial Radiology N2 - Overview on Concepts and Methodology used for quality ensurance in industrial radiology. The past, present and future. T2 - General Assembly of Academia NDT International CY - Brescia, Italy DA - 12.10.2018 KW - Image quality KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Film radiography PY - 2018 AN - OPUS4-47347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe A1 - Zscherpel, Uwe A1 - Vogel, Justus A1 - Zhang, F. A1 - Long, N.X. A1 - Nguyen, T.P. T1 - Visibility of Image Quality Indicators (IQI) by Human Observers in Digital Radiography in Dependence on Measured MTFs and Noise Power Spectra N2 - Digital radiographic images were analysed to predict the visibility of image quality indicators (IQI), based on normalized noise power spectra (NNPP) and modulation transfer function (MTF) measurements. The fixed pattern noise of some digital detectors result in different noise spectra, which influence the visibility of different IQIs, depending on the hole diameter. Studies, based on measurement of basic spatial resolution and contrast to noise ratio were performed together with presampled MTF measurements and the NNPS in dependence on the spatial frequency. Plate hole IQIs, step hole IQIs, and equivalent penetrameter sensitivity (EPS) IQIs based on ASTM E 746 were measured to verify the influence of the different parameters. Modelling of digital images was used to verify the applied numeric tools. A study has been performed for imaging plates and digital detector arrays to analyse differences. Formulas for the prediction of the visibility functions for hole type IQIs are derived. In consequence the standards for characterization and classification of computed radiography (ASTM E 2446) and radiography with DDAs (ASTM E 2597) need to be revised. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Image evaluation KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Detail detection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473486 UR - www.ndt.net/?id=22967 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-47348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ewert, Uwe A1 - Zscherpel, Uwe A1 - Zhang, F. A1 - Long, N.X. A1 - Phong, N. T1 - Essentielle Parameter zur numerischen Abschätzung der Sichtbarkeit von Bildgüteprüfkörpern in der digitalen Radiographie N2 - Die Voraussetzungen für die Vorhersage der Sichtbarkeit von Bildgüteprüfkörpern (BPK) wurden seit Beginn der kommerziellen Anwendung der technischen Radiographie diskutiert und in diversen nationalen und internationalen Standards festgeschrieben. Diese Fragen werden nach Einführung der digitalen Radiographie und der CT wieder neu diskutiert. Draht BPKs wurden in Deutschland seit 1935 (DIN 1915: 1935) und später in den meisten europäischen Ländern benutzt. In den USA und Frankreich wurden vorzugsweise BPKs mit Löchern verwendet (ASTM E 1025 seit 1984 oder E 1742 seit 1992 bzw. die Vorgängernorm MIL STD-543 seit 1962). Jetzt werden auch die Umrechnungsnormen zur Erkennbarkeit von Draht zu Loch-BPKs in Frage gestellt. ISO 19232-3, der französische RCCM-Kode einerseits und ASTM E 747 und ASME BPVC Section V Tab. T-276 andererseits unterscheiden sich erheblich bei den Anforderungen im Bereich hoher Wandstärken (Hochenergieradiographie). Untersuchungen dazu werden vorgestellt. Mit Einführung der digitalen Detektoren ändern sich auch die Rauschspektren. Durch die Herstellung werden insbesondere bei Speicherfolien "Rauschmuster" eingeprägt, die bei hohen Belichtungsdosen sichtbar werden. Diese veränderten Rauschspektren ergeben auch veränderte Erkennungsparameter für menschliche Bildauswerter. Hierzu wurden an ausgewählten Detektoren MTFs (presampled) und normierte Rauschspektren gemessen. Erweiterte Erkennbarkeits-Formeln zur Vorhersage der Sichtbarkeit von BPKs für Bildauswerter und erste Ergebnisse werden vorgestellt. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Image quality KW - Computed radiography (CR) KW - Digital Detector Array (DDA), KW - Sichtbarkeit von Anzeigen PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473496 UR - www.ndt.net/?id=23069 VL - 2018 SP - 1 EP - 14 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-47349 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brückner, B. A1 - Zscherpel, Uwe T1 - Spektroskopie gepulster Röntgenquellen N2 - Spektren von gepulsten Röntgenquellen wie Blitzröhren, Linearbeschleuniger (LINACs) oder Betatrons lassen sich in der Literatur nicht finden. Eine gängige Lehrmeinung ist, dass sich solche Spektren nicht messen lassen. Deshalb wurden in Zusammenarbeit mit der Goethe-Universität Frankfurt und neuester Messtechnik diese Problematik untersucht. Es wurde ein CeBr3-Szintillator-Kristall mit einem klassischen Photoelektronenvervielfacher (PMT) und einer analogen Übertragungskette verwendet, der über Stunden Integrationszeit nur einen sehr geringen Untergrund detektiert. Als kritischter Punkt stellte sich die geeignete Kollimierung von Quelle und Detektor bei möglichst großem Abstand heraus. Zu diesem Zweck wurde das verwendete 7 MeV-Betatron in einen 3t-Bleibunker betrieben, der ein Austrittsloch von 1 mm für die erzeugte Röntgenstrahlung besaß. Der Detektor wurde mit einem Densimet-Zylinder abgeschirmt. Damit konnte die Bedingung für die Spektroskopie gepulster Quellen erreicht werden: pro Puls darf nur 1 Photon den Detektorkristall erreichen, damit ohne Pile-up seine Energie vermessen werden kann. Trotz schnellster Elektronik war es nicht möglich, mehere Photonen pro Röntgenpuls (beim Betatron ca. 1 Mikrosekunde) spektral richtig aufzulösen. Die gemessenen Spektren zeigen die erwartete Form, wie sie z.B. mit aRTist simuliert werden können. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Spektroskopie KW - Betatron KW - Röntgenblitzröhre PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473505 SP - 1 EP - 2 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-47350 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Optimum Magnification Factor in Digital Radiography - Selection Criteria and Formulas N2 - The transition from X-ray film to digital detectors in radiography is accompanied by an increase of unsharpness due to the larger inherent digital detector unsharpness in comparison to film. The basic spatial resolution of digital detectors (see EN ISO 17636-2) is used today to describe this unsharpness. The geometrical unsharpness of the radiographic projection of object structures onto the detector plane is determined by the focal spot size of the X-ray tube and the magnification. The focal spot size is measured today (see ASTM E 1165) from pin hole camera exposures or edge unsharpness (see ASTM E 2903). The final image unsharpness is a result of a convolution of the geometrical and inherent detector unsharpness function, divided by the magnification factor of the object onto the detector plane. Different approximations of this convolution result in ASTM E 1000 and ISO 17636-2 in different optimum values for the magnification factor for a given focal spot size of a X—ray tube and the basic spatial resolution of the detector. The higher contrast sensitivity, an advantage of digital radiography, compared to film radiography is furthermore improved when using higher X-ray voltages as used with film and smaller focal spots of the X-ray tubes. This allows a higher distance between object and detector resulting in reduced object scatter in the image. The interactions between all these parameters will be discussed and simple rules for practitioners will be derived in this contribution. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Digital Radiology KW - Image unsharpness KW - Optimum magnification PY - 2018 AN - OPUS4-47351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - DIN EN 12681:2017 für die radiographhische Gußteilprüfung mit Film oder digitalen Detektoren N2 - Vorstellung der Konzepte and Anwendungsbereiche der neuen Norm DIN EN 12681 in 2 Teilen: Film und digitale Prüfung T2 - Röntgentechnologietage 2018 CY - Stockelsdorf bei Lübeck, Germany DA - 20.02.2018 KW - Gussteilprüfung KW - DIN EN 12681:2017 KW - Filmbasierend KW - Digitale Röntgendetektoren PY - 2018 AN - OPUS4-47352 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - DIN EN ISO 17636:2013 für die radiographische Schweißnahtprüfung mit Film oder digitalen Detektoren N2 - Die aktuelle Normentwicklung für radiographische Schweißnahtprüfung wird diskutiert und die Konsequenzen für die praktische Anwendung anhand von Beispielen erläutert. T2 - Röntgentechnologietage 2018 CY - Stockelsdorf bei Lübeck, Germany DA - 20.02.2018 KW - Digitale Radiographie KW - Schweißnahtprüfung KW - DIN EN ISO 17636 PY - 2018 AN - OPUS4-47353 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Aktuelle Normungsaktivitäten in der industriellen Durchstrahlungsprüfung N2 - Neue Normen bei DIN, CEN ISO ASTM und IIW für die industrielle Durchstrahlungsprüfung mit Film und digitalen Detektoren. Stand der Technik und neue Entwicklungen T2 - Radiographie-Forum von Baker Hughes CY - Ahrensburg, Germany DA - 20.06.2018 KW - Wall thickness measurement KW - Aktuelle Normentwicklung KW - Schweißnahtprüfung KW - Digital radiography KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Tangential radiography KW - Image evaluation PY - 2018 AN - OPUS4-47354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Annual Report of Sub-Commission V-A "Radiography-based weld inspection" N2 - A Summary pf the activities of the IIW sub-commission V-A in 2018 for radiographic weld inspection. T2 - Annual Assembly of IIW CY - Bali, Indonesia DA - 15.07.2018 KW - Radiograpgy KW - Weld Inspection KW - International Institute of Welding PY - 2018 AN - OPUS4-47355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Stegemann, Robert T1 - Update on Revision of ISO 24497 - NDT - MMM - Technique N2 - Presentation of the final compromise reached in 2018 for revision of ISO 24497, final draft for voting at ISO can be prepared now. T2 - IIW Annual Assembly 2018 CY - Bali, Indonesia DA - 15.07.2018 KW - NDT - Metal Magnetic Memory KW - Revision of ISO 24497 KW - New ISO draft PY - 2018 AN - OPUS4-47356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe T1 - Foreword N2 - The subject of this Special Issue is the fracture mechanics-based determination of the fatigue strength of weldments. Except for one, all papers were written in closer or wider relation to a methodology developed within the framework of the German Project cluster IBESS. Some of them provide background or supplementary information needed in that context but which is also relevant in a wider frame of research activities. The acronym IBESS stands for the topic of this Special Issue (in German: „Integrale Methode zu Bruchmechanischen Ermittlung der Schwingfestigkeit von Schweißverbindungen). Eight partners were involved. The cluster was cooperatively founded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and by the German AiF Network (Arbeitsgemeinschaft industrieller Forschungsvereinigungen) for industrial research. KW - Fracture mechanics PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2018.05.046 SN - 0013-7944 VL - 198 IS - SI SP - 1 EP - 1 PB - Elsevier Ltd. AN - OPUS4-48696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Artemeva, Elena A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A Spectroscopic Study of the Superplasticizer Effect on Early Cement Hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - The Sixth International Symposium on Nanotechnology in Construction (NICOM6) CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Optical Spectroscopy KW - Dye KW - Hydration PY - 2018 SP - 1 EP - 9 AN - OPUS4-49378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Unger, Jörg F. T1 - A novel computational method for efficient evaluation of structural fatigue N2 - The methods of computational damage mechanics are well-established for the description of degradation of materials under monotone loading. An extension to structural damage induced by cyclic loading is however significantly limited. This is due to enormous computational costs required to resolve each load cycle by conventional temporal incremental integration schemes while a typical fatigue loading history comprises between thousands and millions of cycles. Despite the permanent increase of computational resources and algorithmic performance, a successful approach is rather based on the development of novel multiscale in time integration schemes. A Fourier transformation-based temporal integration (FTTI) is represented, which takes advantage of temporal scale separation incorporated into the cycle jump method. The response fields are approximated by a Fourier series whose coefficients undergo the evolution on a long-time scale. This is correlated with the evolution of the history variables, including damage, by means of the adaptive cycle jump method of various orders. The necessary extrapolation rates are obtained from the underlying solution of a short-time scale problem, which results from the oscillatory boundary condition and fulfills the global equilibrium of the Fourier coefficients. In this way, a remarkable speedup is achieved because the number of cycles to be fully integrated dramatically decreases. The key idea behind the FTTI method is that the global in space equilibrium problem is linear since it is decoupled from the evolution equations. The latter are solved in the quadrature points under response fields prescribed throughout the whole load cycle. Consequently, integration of a single load cycle is much more efficient than the conventional single scale integration where the global equilibrium iteration and the local iteration of the evolution equations are coupled. This results in an additional speedup of the FTTI method. The performance of the FTTI technique is demonstrated for two different constitutive behaviors: a viscoplastic model with a damage variable governed by the local equivalent viscoplastic strain; a quasi-brittle response where the damage variable is driven by a non-local equivalent strain. The latter is implicitly introduced as proposed by Peerlings. Both, the explicit and implicit extrapolation schemes are validated. The FTTI solutions agree very well with the reference cycle-by -cycle solutions, while significantly reducing the computational costs. The adaptive determination of the jump length can properly recognize the particular responses throughout the fatigue loading history (stationary fatigue, acceleration of fatigue damage when approaching failure) as well as stress redistribution phenomena. T2 - International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue Congress Congress Congress 2018 CY - Poitiers, France DA - 27.05.2018 KW - Fatigue KW - Accelerated integration scheme PY - 2018 AN - OPUS4-46975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Holzweber, M. A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Blanchard, V. A1 - Ivanov-Pankov, S. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization of model glycan surfaces and shelf life studies of glycan microarrays using XPS, NEXAFS spectroscopy, ToF-SIMS and fluorescence scanning N2 - Biomedical applications, including functional biomaterials, carbohydrate-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of glycan arrays is a crucial factor. Herein we report on approaches for surface and interface characterization relevant to the needs of production of glycan microarrays which were tested using model carbohydrate surfaces. For detailed characterization of glycan model surfaces we used a combination of X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and ToF SIMS which are complementary techniques of surface chemical analysis. Links to fluorescence spectroscopy often used for characterization in the microarray community were established as well. In detail, amine-reactive silicon oxide and glass surfaces were used for anchoring oligosaccharides with an amino linker. The amount of surface bound carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS). Glycan immobilization was investigated using lectins, which are glycan-binding molecules. A shelf life study of model glycan microarrays on epoxy-coated glass surfaces was done over a period of 160 days under different storage conditions utilizing fluorescence, ToF-SIMS and XPS analysis. It was shown that glycan activity of the models used can be maintained at least for half a year of storage at 4 °C. KW - Glycan microarray KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Fluorescence PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0169433218320300?via%3Dihub DO - https://doi.org/10.1016/j.apsusc.2018.07.133 SN - 0169-4332 SN - 1873-5584 VL - 459 SP - 860 EP - 873 PB - Elsevier B.V. AN - OPUS4-46212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe T1 - Plastic Instability of Rate-Dependent Materials - Consideration of Isothermal and Adiabatic Conditions in Dynamic Tensile Tests - N2 - During dynamic processes, a certain range of strain rates is often observed along loaded structures and components. For precise numerical simulations, it is necessary to determine rate-dependent properties in dynamic tests and to describe the material behavior correctly within an appropriate domain of strain rates including adiabatic heating effects at higher strain rates, typically higher than 10 1/s. In principle, numerical simulations are compared to experimental results to verify the applied material models. For dynamic tensile tests considering ductile materials and large plastic deformation beyond uniform elongation, it is challenging to obtain comparable results due to plastic instability and necking of the specimen, e.g.. Based on the strain gradient in a general tensile specimen, a theoretical criterion was derived describing the plastic instability in rate-dependent materials under isothermal conditions in. It was applied to different multiplicative and additive constitutive relations and the analytical onset of necking was compared to results from numerical calculations of quasi-static and dynamic tensile tests. The simulations of a sheet-metal specimen with rectangular cross-section were carried out using the Finite Element Method and it was found that the numerical calculated and the theoretical predicted onset of plastic instability agree very good. The analytical criterion for instability holds even for specimens without geometrical or material imperfections and confirms that the onset of plastic instability must be considered a material characteristic. However, real dynamic problems with higher strain rates are not isothermal, the heat generated by plastic work is not dissipated to the surrounding and the temperature of the material increases significantly. Adiabatic heating and thermal softening must be considered within the constitutive relations of rate-dependent materials and the discussion of plastic instability. In this paper, an enhanced and more generalized approach for the description of the condition for stability is discussed and applied to phenomenological as well as more physical constitutive relations from the literature. This allows an individual assessment of the accuracy and verification of rate-dependent material models with respect to plastic instability. T2 - 13th World Congress on Computational Mechanics CY - New York, USA DA - 22.07.2018 KW - Plastic Instability KW - FEM KW - Rate-dependent Materials KW - Dynamic Tensile Test PY - 2018 AN - OPUS4-48923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel N2 - The developed model has certain limitations of the element size to be used in the simulation to characterise the strength of composite materials. A reduced volume method is proposed in order to reduce the number of degree of freedom of the finite element simulation.This study has revealed certain configuration to be followed to speed up the computation time. T2 - The 18th European Conference on Composite Materials CY - Athens, Greece DA - 24.06.2018 KW - Composite pressure vessel KW - Fibre break KW - Integral range KW - Representative volume element PY - 2018 SP - 1193-892 AN - OPUS4-48927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate this by imaging a line pattern and a star-shaped structure through a metal sheet with a resolution four times better than the width of the thermal point-spread-function. The ground-breaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function similar to the Abbe limit for a certain optical wavelength. T2 - 14th Quantitative InfraRed Thermography Conference, QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Compressed Sensing KW - Super Resolution PY - 2018 AN - OPUS4-49940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering (LS) as well as of acrylnitril-butadien-styrol (ABS) by Fused Layer Modeling (FLM), were tested with active thermography. For this, two different excitation methods (flash and impulse excitation) were used and compared, regarding the suitability for the detection of constructed and imprinted defects. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier-Transformation were applied. Furthermore, the long-term stability of the probes towards environmental stress, like UV-radiation, heat, water contact and frost is being investigated in the presented project with artificial weathering tests. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453919 SP - Tu.3.A.2, 1 EP - 9 AN - OPUS4-45391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Maierhofer, Christiane A1 - Gaal, Mate A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Blankschän, Michel A1 - Hosseini, Seyed A1 - Lodeiro, M. A1 - Segur, D. T1 - Comparison of the performance of ultrasonic non-destructive testing methods on inspection of fibre reinforced plastics N2 - In the last twenty years, components made of fibre-reinforced plastic became a prominently used material in safety-relevant structures. Periodic in-service inspection of these structures using reliable non-destructive testing methods became a relevant issue in the field. The goal of the EMRP-funded project VITCEA (Validated Inspection Techniques for Composites in Energy Applications) aims on the evaluation of the performance of various non-destructive testing methods on the inspection of fibre-reinforced plastics. In this talk the results of the comparison of different ultrasonic testing methods will be discussed. There are two challenges for the ultrasonic inspection of fibre-reinforced plastics. Firstly, different material properties of the fibre and the resin cause anisotropic acoustical behaviour of the material. Secondly, the physical layout of fibre layers leads to complex structures of fibre-reinforced plastic parts, and thus to a complex acoustical response. Both result in a reduction of the signal to noise ratio and make interpretation of measurement results rather extensive. During the VITCEA project, the acoustical behaviour of fibre-reinforced plate materials has been simulated. Specimens with artificial flaws for the evaluation of the detection thresholds have been designed and manufactured. Various mechanized ultrasonic testing methods including phased-array sensors, air-coupled transducers, immersion tank testing and contact technique have been evaluated on the specially designed specimen. Laboratory scale tests and a round robin test have been carried out. The probability of detection and the detection thresholds for each method have been estimated. T2 - ECNDT - European Conference on Non-Destructive Testing 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Comparison ndt methods FRP fibre reinforced plastics ultrasound PY - 2018 AN - OPUS4-47213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative comparison of different non-destructive techniques for the detection of artificial defects in GFRP N2 - In order to test their suitability different non-destructive methods were performed to inspect a GFRP plate with artificial defects. These defects were manufactured by means of thin PTFE sheets inserted between two plies in three different depth. The inspection methods were microwave reflection, flash thermography and phased array ultrasonics, all applied to the same specimen. Selected results are shown for all methods demonstrating opportunities and limits of the particular inspection methods. The achieved detection limits and further application aspects are compared directly to provide a useful information for the planning of inspection tasks. T2 - ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - Fiber resisted polymers KW - Non-destructive testing KW - Thermographic testing KW - Ultrasonic testing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453728 SP - ECNDT-0247-2018 AN - OPUS4-45372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Swaraj, Sufal A1 - Müller, Anja A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Core-shell nanoparticles investigated with scanning transmission X-ray microscopy N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a sharp interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, investigated at the HERMES beamline is presented for demonstration. This STXM based methodology yields particle dimensions in good agreement with the scanning electron microscopy (SEM) results (deviation equal or less than 10%). Extension of this methodology to core-shell nanoparticles with inorganic core and organic shell will also be presented and the challenges encountered will be highlighted. T2 - 13th SOLEIL Users' Meeting CY - Saint-Aubin, France DA - 18.01.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Core-shell nanoparticles KW - Polymers PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layer and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 AN - OPUS4-44795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - During the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and the scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realized by austenitic stainless steels, remains problematic, which is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. The development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behavior of hydrogen in austenitic steel contributes to an understanding of the damage processes, which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry was conducted after electrochemical charging. To obtain further information about the structural composition and cracking behavior, electron-backscattered diffraction and scanning electron microscopy were performed. Gathered data of chemical composition and topography were treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behavior, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - 21st International Conference on Secondary Ion Mass Spectrometry CY - Kraków, Poland DA - 10.09.2017 KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Austenitic stainless steel PY - 2018 DO - https://doi.org/10.1116/1.5013931 SN - 1071-1023 VL - 36 IS - 3 SP - Article 03F103, 1 EP - 6 PB - American Vacuum Society (AVS) AN - OPUS4-44840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - STXM KW - SEM KW - PS KW - PTFE KW - Core-shell nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2017 – Frühjahr 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Plasma Germany, Fachausschuss Normung, Frühjahrssitzung CY - Kiel, Germany DA - 17.04.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-44729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Schneider, Markus A1 - Müller, Anja T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is current an important task - especially in case of risk assessment, as the properties of these material class are not well understood currently. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surfaces chemical composition has to be investigated to get a better understanding and prediction of the nanomaterials' behavior. ToF-SIMS has proven as a powerful tool to determine said chemical composition. Its superior surface sensitivity allows us to study mainly the utmost atomic layer and therefore gives us an idea of the interactions involved. Here, we show first result from the validation of the method for the analysis of polystyrene and gold nanoparticles. ToF-SIMS will be compared to other methods like XPS, T-SEM or REM. Furthermore, principle component analysis (PCA) will be used to detect the influence of different sample preparation performed by an innovative microfluidic device. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -