TY - CONF A1 - Vogel, Christian A1 - Adam, Christian T1 - Phosphate fertilizer from sewage sludge and meat and bone meal - the SUSYPHOS project T2 - EuCheMS CY - Nuremberg, Germany DA - 2010-08-29 PY - 2010 AN - OPUS4-22402 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Weidner, Steffen A1 - Falkenhagen, Jana ED - Li, L. T1 - LC-MALDI MS for polymer characterization KW - Mass spectrometry KW - Polymers PY - 2010 SN - 978-0-471-77579-9 N1 - Serientitel: Chemical analysis: a series of monographs on analytical chemistry and its applications – Series title: Chemical analysis: a series of monographs on analytical chemistry and its applications VL - 175 IS - Chapter 11 SP - 247 EP - 265 PB - John Wiley & Sons AN - OPUS4-26406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: Détermination des mécanismes ignifuges par l´étude de la pyrolyse KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: From the investigation of pyrolysis to the elucidation of fire retardancy mechanisms KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Fire retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6 N2 - The fire retardancy mechanism of aluminium diethyl phosphinate (AlPi) and AlPi in combination with melamine polyphosphate (MPP) was investigated in glass-fibre reinforced polyamide 6 (PA6/GF) by analysing the pyrolysis, flammability and fire behaviour. AlPi in PA6/GF-AlPi partly vaporises as AlPi and partly decomposes to volatile diethylphosphinic acid (subsequently called phosphinic acid) and aluminium phosphate residue. In fire a predominant gas-phase action was observed, but the material did not reach a V-0 classification for the moderate additive content used. For the combination of both AlPi and MPP in PA6/GF-AlPi-MPP a synergistic effect occurred, because of the reaction of MPP with AlPi. Aluminium phosphate is formed in the residue and melamine and phosphinic acid are released in the gas phase. The aluminium phosphate acts as a barrier for fuel and heat transport, whereas the melamine release results in fuel dilution and the phosphinic acid formation in flame inhibition. The higher amount of aluminium phosphate in PA6/GF-AlPi-MPP stabilised the residue in flammability tests in comparison to PA6/GF-AlPi, so that this material achieved a V-0 classification in the UL 94 test. PY - 2010 DO - https://doi.org/10.1515/epoly.2010.10.1.443 SN - 1618-7229 IS - 041 SP - 1 EP - 14 PB - De Gruyter CY - [S.l.] AN - OPUS4-19821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2 - chromatographic separation and analysis by MALDI-TOF and FT-IR coupling N2 - PVP-block-PVAc block copolymers were synthesized by controlled radical polymerization applying a RAFT/MADIX system and were investigated by HPLC and by coupling of chromatography to FT-IR spectroscopy and MALDI-TOF MS. Chromatographic methods (LACCC and gradient techniques) were developed that allowed a separation of block copolymers according to their repeating units. The results of the spectroscopic and spectrometric analysis clearly showed transfer between radicals and process solvent. With the use of hyphenated techniques differences between main and side products were detected. In agreement with previously published results, obtained by NMR, SEC, static light scattering and MALDI-TOF MS, our data proved a non-ideal RAFT polymerization. KW - Amphiphiles KW - Block copolymers KW - Liquid chromatography KW - MALDI KW - Reversible addition fragmentation chain transfer (RAFT) KW - Liquid adsorption chromatography at critical conditions KW - Gradient chromatography KW - MALDI-TOF mass spectrometry KW - Hyphenated techniques KW - Mechanism of polymerization PY - 2010 DO - https://doi.org/10.1002/macp.201000044 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 15 SP - 1678 EP - 1688 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karrasch, Andrea A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Jäger, Christian T1 - Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate)/(PC(SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) - Part 1: PC charring and the impact of BDP and ZnB N2 - Structural changes in the condensed phase of bisphenol A polycarbonate (containing 0.45 wt% poly (tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) during thermal treatment in nitrogen atmosphere and in fire residues were investigated by solid-state NMR. H-1, B-11, C-13 and P-31 NMR experiments using direct excitation with a single pulse and H-1-P-31 cross-polarization (CP) were carried out including 31P(1 H) and C-13{P-31}double-resonance techniques (REDOR: Rotational Echo Double Resonance) on a series of heat-treated samples (580 K-850 K). Because many amorphous phases occur in the solid residues, and solid-state NMR spectroscopy addresses the most important sites carbon, phosphorus and boron, this paper is the key analytical approach for understanding the pyrolysis and flame retarding phenomenon in the condensed phase of PC/SiR/BDP and PC/SiR/BDP/ZnB. For the system PC/SiR/BDP it is shown that (i) at temperatures around 750-770 K (main decomposition step) carbonaceous charring of PC occurs and arylphosphate structures are still present, reacted in part with the decomposing PC; (ii) for higher temperatures from 770 K the phosphorus remaining in the solid phase increasingly converts to amorphous phosphonates and inorganic orthophosphates with a minor amount of crystalline orthophosphates; and (iii) H-1-P-31{H-1} CP REDOR and H-1-C-13{P-31} CP REDOR NMR experiments suggest that the phosphates and phosphonates are bound via oxygen to aromatic carbons, indicating the interaction with the carbonaceous char. When ZnB is added to the system PC/SiR/BDP, (i) ZnB leads to a slightly enhanced PC decomposition for temperatures below 750 K; (ii) alpha-Zn-3(PO4)(2) and borophosphate (BPO4) are formed in small amounts at high temperatures suggesting a reaction between BDP and ZnB during thermal decomposition; and (iii) most of the borate remains in the solid residues, forming an amorphous pure borate network, with the BO3/BO4 ratio increasing with higher temperatures. The NMR data of thermal and fire residues are highly correlated, underlining the importance of this work for understanding the pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of the PC/SiR blends. (C) 2010 Elsevier Ltd. All rights reserved. KW - Flame retardance KW - NMR KW - Polycarbonate (PC) blends KW - Bisphenol-A bis(diphenyl)phosphate (BDP) KW - Zinc borate PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.07.034 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2525 EP - 2533 PB - Applied Science Publ. CY - London AN - OPUS4-22647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard A1 - Fichera, Mario Augusto A1 - Jäger, Christian T1 - Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/Acrylonitrile-butadiene-styrene blends N2 - Bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) with and without bisphenol A bis(diphenyl phosphate) (BDP) and 5 wt.% zinc borate (Znb) were investigated. The pyrolysis was studied by thermogravimetry (TG), TG-FTIR and NMR, the fire behaviour with a cone calorimeter applying different heat fluxes, LOI and UL 94. Fire residues were examined with NMR. BDP affects the decomposition of PC/ABS and acts as a flame retardant in the gas and condensed phases. The addition of Znb results in an additional hydrolysis of PC. The fire behaviour is similar to PC/ABS, aside from a slightly increased LOI and a reduced peak heat release rate, both caused by borates improving the barrier properties of the char. In PC/ABS + BDP + Znb, the addition of Znb yields a borate network and amorphous phosphates. Znb also reacts with BDP to form alpha-zinc phosphate and borophosphates that suppress the original flame retardancy mechanisms of BDP. The inorganic–organic residue formed provides more effective flame retardancy, in particular at low irradiation in the cone calorimeter, and a clear synergy in LOI, whereas for more developed fires BDP + Znb become less effective than BDP in PC/ABS with respect to the total heat evolved. KW - Flame retardancy KW - PC/ABS KW - Aryl phosphate KW - Zinc borate KW - Flammability PY - 2010 DO - https://doi.org/10.1016/j.tca.2009.10.007 SN - 0040-6031 SN - 1872-762X VL - 498 IS - 1-2 SP - 92 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-20746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André T1 - Temperature inside burning polymer specimens: Pyrolysis zone and shielding N2 - On the basis of two examples, temperature measurements are proposed within burning polymer specimen during the cone calorimeter test; especially to gain deeper insight into the actual pyrolysis conditions and flame retardancy mechanism. The heating and pyrolysis within a poly(methyl methacrylate) specimen were characterized, discussing the characteristic maximum heating rates (165-90°Cmin-1 decreasing with depth within the specimen and >275°Cmin-1 at the initial surface), pyrolysis temperature (454-432°C decreasing in accordance with decreasing heating rates), thickness of the pyrolysis zone (0.5-1.3 mm) and its velocity (1.2-2.1 mm min-1) as a function of sample depth and burning time. Thermally thick behaviour corresponds to a pyrolysis zone thickness of 0.74 mm and a velocity of 1.51 mm min-1 and occurs until the remaining specimen thickness is less than 8 mm. The shielding effect against radiation occurring in a layered silicate epoxy resin nanocomposite was investigated. It is the main flame retardancy effect of the silicate-carbon surface layer formed under fire. The reradiation from the hot surface is increased by a factor of around 4-5 when an irradiance of 70kWm-2 is applied. The energy impact into the pyrolysis zone is crucially reduced, resulting in a reduction of fuel production and thus heat release rate. KW - Cone calorimeter KW - Pyrolysis KW - Nanocomposite KW - Poly(methyl methacrylate) KW - Pyrolysis zone KW - Pyrolysis front KW - Shielding effect PY - 2010 DO - https://doi.org/10.1002/fam.1007 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 5 SP - 217 EP - 235 PB - Heyden CY - London AN - OPUS4-21724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Hofmann-Böllinghaus, Anja A1 - Linteris, G.T. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Stoliarov, S.I. T1 - Numerical simulation of polymer materials in standard fire tests: Pyrolysis and the impact of residue formation T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Cone calorimeter KW - Poly(butylene terephtalate) PBT KW - FDS KW - ThermaKin PY - 2010 SN - 978-0-9541216-5-5 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. VL - 1 SP - 451 EP - 462 PB - Interscience Communications CY - London, UK AN - OPUS4-21668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Russo, P. A1 - Acierno, Domenico T1 - Synergistic flame retardant halogen-free combination of aluminium phosphinate and metal oxides in PBT T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Poly(butylene terephthalate) KW - Metal oxide KW - Phosphinate KW - Flammability PY - 2010 SN - 978-0-9541216-5-5 VL - 1 SP - 629 EP - 640 PB - Interscience Communications CY - London, UK AN - OPUS4-21669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Diederichs, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. T1 - Novel phosphorus-based flame retardants for epoxy resins and carbon fiber composites: Decomposition mechanisms and fire behavior T2 - 21th Annual Conference Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 2010-05-24 PY - 2010 AN - OPUS4-21431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jäger, Christian A1 - Karrasch, Andrea A1 - Schartel, Bernhard T1 - Thermal Decomposition of Flame-Retarded Polycarbonat / Silicon Rubber Blends: A Solid-State NMR Investigation T2 - Festkörper-NMR-Methoden und Anwendungen in der Materialforschung, Seminar der Universität Tübingen CY - Bad Hindelang, Germany DA - 2010-07-18 PY - 2010 AN - OPUS4-21679 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Hofmann-Böllinghaus, Anja A1 - Butler, K.M. A1 - Onate, E. A1 - Idelsohn, S.R. A1 - Rossi, R. A1 - Marti, J.M. T1 - Numerical simulation of polymeric materials in UL 94 test: competition of gasification and melt flow/dripping T2 - Interflam 2010 CY - Nottingham, England DA - 2010-07-05 PY - 2010 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. AN - OPUS4-21722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Hofmann-Böllinghaus, Anja A1 - Linteris, G.T. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Stoliarov, S. I. T1 - Numerical simulation of polymer materials in standard fire tests: pyrolysis and the impact of residue formation T2 - Interflam 2010 CY - Nottingham, England DA - 2010-07-05 PY - 2010 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. AN - OPUS4-21721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jäger, Christian A1 - Karrasch, Andrea A1 - Schartel, Bernhard T1 - Thermal Decomposition of Flame-Retarded Polycarbonat / Silicon Rubber Blends: A Solid-State NMR Investigation T2 - 52. Rocky Mountain Conference on Analytical Chemistry CY - Snowmass, CO, USA DA - 2010-08-01 PY - 2010 AN - OPUS4-21680 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Wawrzyn, Eliza A1 - Richter, K. H. A1 - Seefeldt, Henrik T1 - Halogen-free flame retarded Bisphenol a polycarbonate blends T2 - 10th European Symposium on Polymer Blends CY - Dresden, Germany DA - 2010-03-07 PY - 2010 AN - OPUS4-21034 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Mohr, F. A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Braun, Ulrike T1 - Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate N2 - The pyrolysis and flammability of phosphonium-modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG-FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous-inorganic surface layer occurred for LS-MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. KW - Nanocomposites KW - Fire retardance KW - Thermosets KW - Organoclay KW - Ammonium polyphosphate KW - Melamine borate PY - 2010 DO - https://doi.org/10.1002/app.32512 SN - 0021-8995 SN - 1097-4628 VL - 118 IS - 2 SP - 1134 EP - 1143 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-21725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Pfeifer, Dietmar A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinyl pyrrolidone and vinyl acetate, 1 - analysis of copolymer composition, end groups, molar masses and molar mass distributions N2 - New amphiphilic block copolymers consisting of N-vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. 13C NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, 13C NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism. KW - Amphiphiles KW - Block copolymers KW - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) KW - N-vinyl pyrrolidone KW - Reversible addition/fragmentation chain transfer (RAFT) PY - 2010 DO - https://doi.org/10.1002/macp.200900466 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 8 SP - 869 EP - 878 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-21905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Braun, Ulrike A1 - Recknagel, Christoph T1 - Short communication: Fire risks of burning asphalt N2 - Eyewitnesses describe burning pavement surfaces in extreme fire scenarios. However, it was believed that the pavement plays a negligible role in comparison to other items feeding such an extreme fire at the same time. The asphalt mixtures used differ widely, thus raising the question as to whether this conclusion holds for all kinds of such materials. Three different kinds of asphalt mixtures were investigated with the aim of benchmarking the fire risks. Cone calorimeter tests are performed at an irradiance of 70kWm-2. All three investigated asphalts burn in extreme fire scenarios. The fire response (fire load, time to ignition, maximum heat release rate and smoke production) is quite different and varies by factors of up to 10 when compared to each other. The fire load per mass is always very low due to the high content of inert minerals, whereas the effective heat of combustion of the volatiles is quite typical of non-flame retarded organics. The heat release rate and fire growth indices are strongly dependent on the fire residue and thus the kind of mineral filler used. Comparing with polymeric materials, the investigated Mastic Asphalt and Stone Mastic Asphalt may be called intrinsically flame resistant, whereas the investigated Special Asphalt showed a pronouncedly greater fire risk with respect to causing fire growth and smoke. Thus the question is raised as to whether the use of certain kinds of asphalts in tunnels must be reconsidered. Apart from the binder used, the study also indicates varying the kind of aggregate as a possible route to eliminate the problem. KW - Asphalt KW - Cone calorimeter KW - Fire behaviour PY - 2010 DO - https://doi.org/10.1002/fam.1027 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 7 SP - 333 EP - 340 PB - Heyden CY - London AN - OPUS4-22172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -