TY - JOUR A1 - Häcker, Ralf A1 - Wossidlo, Peter T1 - Meßunsicherheiten bestimmen - Am Beispiel der Ermittlung von Rißwiderstandskurven PY - 1998 SN - 0025-5300 VL - 40 IS - 9 SP - 361 EP - 365 PB - Carl Hanser Verlag CY - München AN - OPUS4-33404 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR T1 - Amts- und Mitteilungsblatt, Band 28, Heft 4 T3 - Amts- und Mitteilungsblatt der BAM - 4/1998 PY - 1998 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553070 SN - 0340-7551 VL - 28 IS - 4 SP - 701 EP - 798 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-55307 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR T1 - Amts- und Mitteilungsblatt, Band 28, Heft 3 T3 - Amts- und Mitteilungsblatt der BAM - 3/1998 PY - 1998 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553083 SN - 0340-7551 VL - 28 IS - 3 SP - 495 EP - 708 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-55308 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR T1 - Amts- und Mitteilungsblatt, Band 28, Heft 2 T3 - Amts- und Mitteilungsblatt der BAM - 2/1998 PY - 1998 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553097 SN - 0340-7551 VL - 28 IS - 2 SP - 191 EP - 498 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-55309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR T1 - Amts- und Mitteilungsblatt, Band 28, Heft 1 T3 - Amts- und Mitteilungsblatt der BAM - 1/1998 PY - 1998 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553106 SN - 0340-7551 VL - 28 IS - 1 SP - 1 EP - 194 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-55310 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Kraus, Werner T1 - PowderCell 2.0 for Windows N2 - PowderCell contains a comfortable, user friendly visualization and modification tool for crystal structures. It provides on-line calculation of the corresponding powder diffraction patterns simulating a variety of experimental conditions. The common ICSD and Shelx file formats are supported for importing crystal structure information. It has control of automatic cell transformation and also derivation of subgroups. More than 740 different settings of the 230 space-group types are supported. Up to ten crystal structures can be considered simultaneously. A full pattern refinement enables the direct comparison with experimental diffractograms for quantitative phase analysis, lattice parameter refinement, polynomial background estimation, etc. KW - XRD KW - Simulation KW - Powdercell KW - Software KW - Programming KW - Phase mixtures KW - Crystal structure KW - Subgroup PY - 1998 SN - 0885-7156 VL - 13 IS - 4 SP - 256 EP - 259 PB - Cambridge University Press AN - OPUS4-38037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reier, T. A1 - Schultze, J. W. A1 - Österle, Werner A1 - Buchal, C. T1 - Nucleation and growth of AlN nanocrystallites prepared by N+2 implantation N2 - The formation of AlN films prepared by N+2 ion implantation into aluminium was investigated using X-ray and Auger photoelectron spectroscopy ( XPS, AES) as well as cross-sectional transmission electron microscopy (XTEM). After 100-keV N+2 implantation of low doses (1×1017 cm−2), the formation of hexagonal AlN nanocrystals (crystal size <5 nm, Ncrystal=1017 cm−3) was observed. Their orientation is strongly correlated with the aluminium matrix. With the dose increasing to 3×1017 cm−2, crystal growth follows, finally forming a homogeneous AlN-layer. Furthermore, the diffraction patterns show an increasing amount of misorientation with increasing dose. From the crystal size distribution, we conclude that continuous nucleation takes place. Samples implanted with an energy of 3 keV exhibit analogous behaviour. Nitride growth was further investigated using microstructured AlN formed by 3-keV implantation through movable TEM-masks (structure size: 15–150 mm). In the case of high N+2 doses (D&5×1017 cm−2), AlN is detected by AES in the shielded area at a distance of up to 10 mm from the exposed region. The Diffusion coefficient was calculated to be 10−10 cm2 s−1. The formation of AlN proceeds in two steps. After a continuous nucleation, diffusion-assisted Crystal growth takes place until a homogeneous AlN layer results. KW - Aluminium nitride KW - Ion implantation KW - Nanocrystallites KW - Surface analysis KW - XTEM PY - 1998 SN - 0257-8972 VL - 103-104 SP - 415 EP - 420 PB - Elsevier AN - OPUS4-38539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhmann, J. F. A1 - Chiang, C. H. A1 - Harde, P. A1 - Reier, F. A1 - Österle, Werner A1 - Urban, Ingrid A1 - Klein, A. T1 - Pt thin-film metallization for FC-bonding using SnPb60/40 solder bump metallurgy N2 - Platinum does not form any adherent oxides and can be easily wetted by tin-based solders. Platinum is also an available metallization in semiconductor laboratories. Therefore we investigated the diffusion of platinum thin-film metallizations into eutectic tin–lead solder by using a high-resolution secondary ion mass spectroscopy (SIMS) profiling from the back side. It is shown that an intermetallic phase (PtSn4) is formed during soldering, which controls the consumption of platinum during soldering and in operation. The consumption of platinum follows the well-known parabolic diffusion law. The activation energy of this process is 0.63 eV. Even at extended heating cycles of 2 min at 250°C, 190 nm from the original 300 nm of the platinum film remain undissolved. This high stability makes platinum a very attractive thin-film metallization for flip-chip (FC) bonding of new microsystems. KW - Pt thin film metallization KW - FC solder bonding KW - Diffusion KW - SIMS PY - 1998 SN - 0921-5093 VL - A242 SP - 22 EP - 25 PB - Elsevier AN - OPUS4-38540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, Werner A1 - Nolze, Gert T1 - PowderCell as teaching tool N2 - PowderCell represents a user friendly program which supports the solution of scientific problems as well as teaching and education. Especially for the last one the program offers a lot of information regarding the space-group type as well as crystal structure used. Therefore, on some universities the program is used successfully to make students familiar with x-ray crystallography. The quasi-simultaneous diffraction pattern simulation visualized the changes caused by the respective crystal structure. However, it is also possible to vary different diffraction parameters and investigate the resulting changes in the interference intensity or the reflection position. In principle, the aim of the program is the intuitive generation of structure models. Therefore, special tools have been implemented to move (rotate or shift) or transform the crystal structure. KW - Simulation KW - PowderCell KW - Crystal structure KW - XRD KW - Neutron KW - Programming PY - 1998 VL - 20 SP - 27 EP - 29 AN - OPUS4-38055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO T1 - IBC im Feuer N2 - IBC (Intermediate Bulk Container) sind Großpackmittel. Die gängigsten IBC bestehen aus einer Palette mit Kunststofftank mit einem maximalen Volumen von 3000 Litern und einem einfachen Gitterrohrrahmen. Werden Gefahrgüter darin transportiert, müssen die IBC zugelassen sein. Für die Zulassung ist die BAM zuständige Behörde in Deutschland. Eine Zulassung beinhaltet sicherheitstechnische Prüfungen, z. B. Brandtests. Bei diesen Prüfungen muss der Behälter beweisen, dass er für den Gefahrguttransport einsetzbar ist. KW - IBC PY - 1998 VL - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-45529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -