TY - CHAP A1 - Unger, Wolfgang A1 - Gross, Thomas ED - John C. Rivière, ED - Sverre Myhra, T1 - Catalyst characterization KW - Catalyst KW - Surface KW - Analysis KW - XPS KW - ESCA KW - SIMS PY - 2009 SN - 978-0-8493-7558-3 VL - 2nd Edition IS - Chapter 16 SP - 501 EP - 528 PB - CRC Press CY - Boca Raton, FL, USA AN - OPUS4-19602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts N2 - In this chapter, the current state-of-the-art of in situ monitoring and in situ NDE methods in additive manufacturing is summarized. The focus is set on methods, which are suitable for making statements about the quality and usability of a component currently being manufactured. This includes methods which can be used to determine state properties like temperature or density, other physical properties like electrical or thermal conductivity, the microstructure, the chemical composition, the actual geometry, or which enable the direct detection of defects like cracks, voids, delaminations, or inclusions. Thus, optical, thermographic, acoustic, and electromagnetic methods, as well as methods being suitable for investigating particle and fume emission are presented. The requirements of in situ monitoring methods with a focus on thermographic methods are discussed by considering different additive manufacturing processes like laser powder bed fusion (PBF-LB/M) and direct energy deposition (DED-LB/M). Examples of the successful implementation and applications of such monitoring methods at BAM are given. The in situ monitoring and NDE methods are compared against post-process NDE methods. The advantages and challenges of in situ methods concerning real-time data analysis and the application of AI algorithms are addressed and discussed. KW - Additive manufacturing KW - In situ monitoring KW - In situ NDE KW - Post NDE KW - Thermography KW - Laser powder bed fusion KW - Direct energy deposition PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_51-1 SP - 1 EP - 37 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ET - 1 AN - OPUS4-52824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Krüger, M. A1 - Maierhofer, Christiane A1 - Leissner, J. A1 - Bellendorf, P. A1 - Meinhardt, J. A1 - Antretter, F. ED - Fouad, N.A. T1 - Methoden der Dauerüberwachung von Gebäuden des kulturellen Erbes im Rahmen der Denkmalkonservierung KW - Monitoring KW - Zerstörungsfreie Prüfung KW - Verfahrenskombination KW - Denkmalpflege KW - Forschungsprojekte PY - 2012 SN - 978-3-433-02986-2 SN - 1617-2205 VL - 12 IS - Kap. D4 SP - 559 EP - 602 PB - Ernst & Sohn CY - Berlin AN - OPUS4-25706 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane ED - Maierhofer, C. ED - Reinhardt, H.-W. ED - Dobmann, G. T1 - Planning a non-destructive test programme for reinforced concrete structures KW - Non-destructive testing KW - Concrete KW - On-site assessment KW - Method validation KW - Quality assurance PY - 2010 SN - 978-1-84569-950-5 VL - 2 IS - Chapter 1 SP - 3 EP - 13 PB - Woodhead Publ. AN - OPUS4-22610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Röllig, Mathias T1 - Application of active thermography to the detection of safety relevant defects in civil engineering structures T2 - IRS² 2009 - 11th International conference on infrared sensors & systems CY - Nürnberg, Germany DA - 2009-05-26 KW - Non-destructive testing KW - Active thermography KW - Pulse-phase thermography KW - Concrete KW - Voids KW - Cracks KW - CFRP delaminations PY - 2009 SN - 978-3-9810993-6-2 IS - Chapter 2.2 SP - 215 EP - 220 AN - OPUS4-19873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schiller, M. A1 - Mecke, R. A1 - Seidl, T. A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Kalisch, U. A1 - Meinhardt, J. A1 - Hennen, C. T1 - Fallbeispiele für die Anwendung der 3D-Messtechnik und der aktiven Thermografie in der Denkmalpflege T2 - 4. Konservierungswissenschaftliches Kolloquium - Zerstörungsfreie Oberflächenuntersuchungsmethoden - Stand der Technik, Grenzen und Ausblicke CY - Potsdam, Deutschland DA - 2010-10-29 KW - Historisches Mauerwerk KW - Aktive Thermografie KW - 3D-Laserscanner KW - Datenfusion KW - Monitoring PY - 2010 SN - 978-3-88462-305-3 IS - Kap. 3 SP - 26 EP - 31 PB - Wernersche Verlagsgesellschaft AN - OPUS4-22636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Kohl, Christoph A1 - Wöstmann, Jens ED - Maierhofer, C. ED - Reinhardt, H.-W. ED - Dobmann, G. T1 - Combining the results of various non-destructive evaluation techniques for reinforced concrete: data fusion KW - Non-destructive testing KW - Concrete KW - Data fusion KW - Radar KW - Ultrasonic techniques PY - 2010 SN - 978-1-84569-950-5 VL - 2 IS - Chapter 5 SP - 95 EP - 107 PB - Woodhead Publ. AN - OPUS4-22607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Defer, D. ED - Breysse, D. T1 - Infrared thermography KW - Infrared thermography KW - NDT in civil engineering KW - Concrete structures KW - Passive thermography KW - Active thermography KW - Pulse phase thermography PY - 2012 SN - 978-94-007-2735-9 DO - https://doi.org/10.1007/978-94-007-2736-6 IS - Chapter 10 SP - 85 EP - 97 PB - Springer CY - Dordrecht Heidelberg London New York AN - OPUS4-25705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A. B. ED - Wilkie, C. A. T1 - Multi-Component Flame-Retardant Systems N2 - Applying synergistic multicomponent systems is often key to efficient flame retardancy. Different flame retardants are combined or used together with fillers, adjuvants, or synergists to enhance their efficiency, reduce the worsening of other properties, or reduce the costs. Further, fibres and other reinforcing fillers contribute to fire properties crucially. Although the main flame-retardant modes of action are known, the scientific understanding usually falls short, when it comes to complex multicomponent systems, the crucial tiny optimizations, or quantifying in terms of specific fire properties. This book chapter illuminates the need for the multicomponent approach, the concept of synergistic flame retardants, and the main phenomena. Multicomponent systems are discussed in their capacity as general powerful strategy for achieving and optimizing future flame retardant polymeric materials. KW - Flame retardants KW - Flame retardancy KW - Synergy KW - Composites PY - 2024 SN - 978-1-0324-5754-3 SN - 978-1-0324-6233-2 SN - 978-1-0033-8068-9 DO - https://doi.org/10.1201/9781003380689 SP - 330 EP - 359 PB - CRC Press CY - Boca Raton ET - 3rd AN - OPUS4-60843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A. B. ED - Wilkie, C. A. T1 - Uses of Fire Tests for Flame-Retardant Material Development N2 - Innovation and scientific progress are often located in the synthesis of new flame retardants or in the compounding of new composites. Thus, although nearly everyone applies fire tests to ascertain the flame retardancy achieved, regular, cost-efficient fire testing is preferred, sometimes its reliability and meaningfulness are questioned. The goal of this revised chapter is to inspire the exploitation of the potential of fire testing beyond a soulless pass-and-fail or isolated number rating. Recommendations are given as to how fire behaviour can be investigated and how data can be evaluated faithfully and meaningfully. Backgrounds and benchmarks are discussed as thought-provoking impulses which could allow bench-scale fire testing to be exploited as a vital basis and powerful tool for science-based development. KW - Fire behaviour KW - Flammability KW - Flame retardancy KW - Flame retardant modes of action KW - Flame retardants KW - Fire scenarios KW - Ignition KW - Developing fire KW - Fire tests KW - Cone calorimeter KW - Petrella plot PY - 2024 SN - 978-1-0324-5754-3 SN - 978-1-0324-6233-2 SN - 978-1-0033-8068-9 DO - https://doi.org/10.1201/9781003380689-17 SP - 360 EP - 385 PB - CRC Press CY - Boca Raton ET - 3rd AN - OPUS4-60845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -