TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a closed autoclave with an ignition energy higher than the standard 10 J a 20 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B. With a newly developed ignition system a graded ignition energy between 3 J and 1000 J was generated. Different types of gases were studied with this ignition system: methane as a typical fuel gas and reference gas for some standards for explosion limit determination, the refrigerant R32 (difluoromethane) as a mildly flammable gas with low burning velocity and high minimum ignition energy compared with methane as well as the chemical unstable gases acetylene, nitrous oxide and ethylene oxide, which can decompose explosively in the absence of air or other oxidizers. It was found that the influence of strong ignition sources on explosion and decomposition limits can be very different for different systems. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In a standard test vessel with an inner volume of 14 dm3 it was difficult to quantify the upper explosion limit of methane exactly with the strong ignition source, because the explosion pressure did not increase abruptly near the explosion limit, but steadily over a large concentration range. Probably a larger explosion vessel is more appropriate in this case. In case of R32 however, it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. Here special regard is necessary in practical applications, if uncommonly strong ignition sources cannot be excluded. KW - Explosionsgrenzen KW - Zündenergie KW - Zündquellen KW - Chemisch instabile Gase KW - Kältemittel PY - 2019 SN - 978-88-95608-74-7 DO - https://doi.org/10.3303/CET1977022 SN - 2283-9216 VL - 77 SP - 127 EP - 132 PB - AIDIC - The Italian Association of Chemical Engineering CY - Milano, Italy AN - OPUS4-49936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499601 DO - https://doi.org/10.1039/c9nr07143a SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Mohamed, T. A. A1 - Abu-Saied, M. A1 - Helaly, H. A1 - El-Desouky, F. T1 - Structure/property relationship of polyvinyl alcohol/ dimethoxydimethylsilane composite membrane: Experimental and theoretical studies N2 - A novel mixed matrix composite has been prepared using solution-casting method at different volume concentrations of polyvinyl alcohol; PVA (50, 67, 75 and 80 %) and fixed amount of Dimethoxydimethylsilane in air atmosphere. The hydrolyzed dimethyldisilanol acts as in-situ cross linker through a wet-out condensation between the hydroxyl moieties of SiOH and PVAOH. Such process improves the mechanical properties of composite membranes as compared to pristine PVA which has been determined as function of varied membrane components to evaluate the structure/property relationships. Furthermore, DFT (B3LYP)/6-31G(d) geometry and frequency computations were carried out for the suggested dimeric PVA structures via 1,3-diol linkage followed by condensation and hydrogen bonding interaction. Vibrational interpretations of composite membranes were proposed based on the computed wavenumbers, Cartesian coordinates displacements for the suggested hydrolyzed products involving the dominant PVA/SiOH/SiOC/SiOSi functional groups compared with those given in literatures. FTIR and EDX provide clear evidences for incorporating silicon to 3D network. Meanwhile, the infrared de-convoluted spectral interpretations ensure 17-30% cross-linked SiOC within the network of Composite membranes. KW - Polyvinyl alcohol KW - Polymer composites PY - 2019 DO - https://doi.org/10.1016/j.saa.2019.117810 SP - 117810 PB - Elsevier AN - OPUS4-49967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kurth, Lutz A1 - Schwarz, Silke T1 - Vorsicht bei der Reinigung von Feuerstätten! N2 - Bei der Explosion in einer Herstellungsstätte für ein Pulver zur Reinigung industrieller Feuerungsanlagen in Deutschland ist eine Person tödlich verunglückt. Die BAM wurde gebeten, beschlagnahmte Muster des Reinigungspulver zu bewerten. Dafür wurden verschiedene Untersuchungen durchgeführt. Diese sollten klären, ob die stoffliche Einstufung des Reinigungspulvers in die Stoffklasse 5.1 für die sichergestellten Pulverproben zutreffend ist. Es konnte nachgewiesen werden, dass die untersuchten Pulverproben explosionsgefährliche Eigenschaften aufweisen. Die von explosionsgefährlichen Stoffen ausgehenden Gefährdungen müssen ermittelt und bei der Herstellung und Verwendung berücksichtigt werden. Die Gefährdungen sind entsprechend neu eingeführter sicherheitstechnischer Kennzahlen ermittelt und anschließend klassifiziert worden. Die Klassifizierung erfolgte durch die Zuordnung zu einer s.g. Gefahrgruppe. KW - Gefahrgruppen KW - Schwarzpulverähnliches Reinigungspulver KW - Explosionsgefährliche Eigenschaften PY - 2019 SN - 2191-007 VL - 11/12 SP - 16 EP - 20 PB - VDI Fachmedien CY - Düsseldorf AN - OPUS4-49987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Oliveira Lopes, M. A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Investigations on TaC Localized Dispersed X38CrMoV5-3 Surfaces With Regard to the Manufacturing of Wear Resistant Protruded Surface Textures N2 - The potential of lowered surface features as well as the application of wear resistant coatings have been known for many years to improve the tribological behavior of forming tools. More recent studies also discuss the capability of protruded microfeatures for adjusting the tribological behavior between contacting surfaces. The demand for a high wear resistance of such structures as well as their economical and reliable production, however, often limits the industrial application. The laser implantation process can overcome these limitations. In contrast to conventional cw-laser dispersing processes, where the formation of uniform metal matrix composite layers is intended, this surface engineering technique aims to improve the tribological behavior of contacting surfaces by a localized dispersing of pre-placed hard ceramic particles. This enables the formation of deterministic textures composed of separated wear resistant dome- or ring-shaped microstructures (implants). Since TaC shows very promising material properties for improving the wear resistance of tools exposed to severe operating conditions, this paper analyzes its suitability for pulsed laser implantation on X38CrMoV5-3 tool steel for the first time. In the experiments, the influence of the particles and the laser parameters (pulse power, pulse duration and focal diameter) on the material properties of the localized dispersed zones was studied by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The composite´s (micro-) hardness was measured and calculated by using a rule of mixture. Additionally, the influence of the laser parameters and the TaC particles on the geometrical properties of the implants was studied by optical microscopy and white light interferometry. The results showed that defect-free implants with hardness values of ~900 HV1 can be obtained at the focal spot, since a localized dispersing of the TaC particles is possible using a pulsed millisecond laser. However, in dependence of the laser intensity, also a partial dissolution of the initial particles occurs. This leads to the precipitation of new dendritic TaC nanoparticles and to varying contents of retained austenite in the matrix. Both effects have a strong influence on the implant hardness and must be considert by the rule of mixture. Regarding the geometrical response it was pointed out that protruded microfeatures with heights up to 10 µm can be created. In comparison to laser remelted zones, the implanted zones showed significantly altered weld pool profiles due to the influence of the particles on the melt convection. A transition of the implant shape from predominantly dome-shaped to predominantly ring-shaped was observed for intensities >1.7∙106 W/cm2 due to the onset of the keyhole effect. KW - Laser implantation KW - Surface texturing KW - TaC KW - Tantalum carbide KW - Hot-Stamping KW - X38CrMoV5-3 KW - Localized Laser Dispersing PY - 2019 DO - https://doi.org/10.1007/s40516-019-00106-x SN - 2196-7229 VL - 2019 IS - First Online SP - 1 EP - 22 PB - Springer Nature Switzerland AG. Part of Springer Nature. AN - OPUS4-50041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, J. A1 - Terrell, J. A1 - Ferris, L. A1 - Tucker, D. A1 - Leonhardt, T. A1 - Goldbeck, Hennig T1 - Low-Cost Fabrication of Tungsten-Rhenium Alloys for Friction Stir Welding Applications N2 - Friction stir welding (FSW) of high-melting temperature alloys, such as steel and Inconel, requires tooling that can survive under the applied loads at the elevated temperatures. Tungsten-Rhenium (W-Re) alloys are a suitable candidate for this application; however, the costs typically associated with achieving the required densities and grain structure for the tooling are high due to the lengthy traditional processing required. Further costs are incurred in machining the starting bar stock to the final FSW tooling configuration. An alternate processing method is used in this study to shorten the fabrication time using direct current sintering which rapidly consolidates the starting powders at lower temperatures than used in traditional powder metallurgy. Although this process enables retention of the fine grain size, the sintering time is too short to form the desired single, solid phase. Therefore, the specimens were subjected to a post-consolidation heat treatment to fully solutionize the W matrix. Once the desired density and solid solution phase was verified in coupons, the final processing parameters were used to consolidate a net shape tool for FSW. KW - Tungsten-Rhenium KW - Friction Stir Welding KW - Fabrication PY - 2019 DO - https://doi.org/10.1007/s11663-019-01726-6 VL - 51 IS - 1 SP - 35 EP - 44 PB - Springer AN - OPUS4-50027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Trofimov, Anton A1 - Apel, D. A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Hesse, René A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - On the interplay of microstructure and residual stress in LPBF IN718 N2 - The relationship between residual stresses and microstructure associated with a laser powder bed fusion (LPBF) IN718 alloy has been investigated on specimens produced with three different scanning strategies (unidirectional Y-scan, 90° XY-scan, and 67° Rot-scan). Synchrotron X-ray energy-dispersive diffraction (EDXRD) combined with optical profilometry was used to study residual stress (RS) distribution and distortion upon removal of the specimens from the baseplate. The microstructural characterization of both the bulk and the nearsurface regions was conducted using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). On the top surfaces of the specimens, the highest RS values are observed in the Y-scan specimen and the lowest in the Rot-scan specimen, while the tendency is inversed on the side lateral surfaces. A considerable amount of RS remains in the specimens after their removal from the baseplate, especially in the Y- and Z-direction (short specimen Dimension and building direction (BD), respectively). The distortion measured on the top surface following baseplate thinning and subsequent removal is mainly attributed to the amount of RS released in the build direction. Importantly, it is observed that the additive manufacturing microstructures challenge the use of classic theoretical models for the calculation of diffraction elastic constants (DEC) required for diffraction-based RS analysis. It is found that when the Reuß model is used for the calculation of RS for different crystal planes, as opposed to the conventionally used Kröner model, the results exhibit lower scatter. This is discussed in context of experimental measurements of DEC available in the literature for conventional and additively manufactured Ni-base alloys. KW - L-PBF IN718 material KW - Effect of scanning strategies KW - Near-surface X-ray diffraction KW - Residual stress in AM KW - Distortion upon baseplate removal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519460 DO - https://doi.org/10.1007/s10853-020-05553-y SN - 0022-2461 VL - 56 IS - 9 SP - 5845 EP - 5867 PB - Springer AN - OPUS4-51946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531595 DO - https://doi.org/10.3390/ma14174912 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Khrapov, D. A1 - Paveleva, A. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. A1 - Koptyug, A. A1 - Bruno, Giovanni T1 - X-ray Computed Tomography Procedures to Quantitatively Characterize the Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control, which can prevent their successful application. In fact, the optimization of the AM process is impossible without considering structural characteristics as manufacturing accuracy, internal defects, as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of X-ray computed tomography (XCT). Several advanced image analysis workflows are presented to evaluate the effect of build orientation on wall thicknesses distribution, wall degradation, and surface roughness reduction due to the chemical etching of TPMSS. It is shown that the manufacturing accuracy differs for the structural elements printed parallel and orthogonal to the manufactured layers. Different strategies for chemical etching show different powder removal capabilities and both lead to the loss of material and hence the gradient of the wall thickness. This affects the mechanical performance under compression by reduction of the yield stress. The positive effect of the chemical etching is the reduction of the surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of retained powder with the pore size of the functionally graded TPMSS, which can further improve the manufacturing process. KW - Metamaterials KW - Functionally graded porous structure KW - Triply periodic minimal surface structures KW - Roughness analysis KW - Powder removal KW - Deep learning segmentation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528142 DO - https://doi.org/10.3390/ma14113002 VL - 14 IS - 11 SP - 3002 PB - MDPI AN - OPUS4-52814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Hofmann, M. A1 - Wimpory, R. C. A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Scanning Manufacturing Parameters Determining the Residual Stress State in LPBF IN718 Small Parts N2 - The influence of scan strategy on the residual stress (RS) state of an as-built IN718 alloy produced by means of laser powder bed fusion (LPBF) is investigated. Two scan vector rotations (90°-alternation and 67°-rotation), each produced following two different scan vector lengths (long and short), are used to manufacture four rectangular prisms. Neutron diffraction (ND) and laboratory X-ray diffraction (XRD) techniques are used to map the bulk and surface RS state, respectively. The distortion induced upon removal from the baseplate is measured via profilometry. XRD measurements show that the two long scan vector strategies lead to higher RS when compared with the equivalent short scan vector strategies. Also, the 67°-rotation strategies generate lower RS than their 90°-alternation counterparts. Due to the lack of reliable stress-free d0 references, the ND results are analyzed using von Mises stress. In general, ND results show significant RS spatial non-uniformity. A comparison between ND and distortion results indicates that the RS component parallel to the building direction (Z-axis) has a predominant role in the Z-displacement. The use of a stress balance scheme allows to discuss the d0 variability along the length of the specimens, as well as examine the absolute RS state. KW - As-built LPBF IN718 alloy KW - Scan strategy influence KW - Neutron diffraction KW - Residual stress state KW - Stress balance condition KW - Distortion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526360 DO - https://doi.org/10.1002/adem.202100158 VL - 23 IS - 7 SP - 158 PB - Wiley AN - OPUS4-52636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kupsch, Andreas A1 - Laquai, René A1 - Müller, Bernd R. A1 - Paciornik, S. A1 - Horvath, J. A1 - Tushtev, K. A1 - Rezwan, K. A1 - Bruno, Giovanni T1 - Evolution of Damage in All-Oxide Ceramic Matrix Composite After Cyclic Loading N2 - While structural ceramics usually display a brittle mechanical behavior, their composites may show nonlinearities, mostly due to microcracking. Herein, the stiffness evolution of a sandwich-like laminate of an Al2O3 15%vol. ZrO2 matrix reinforced with Nextel 610 fibers is studied as a function of number of cycles N in tension. The stiffness of the composite degrades with increasing N, indicating microcracking. However, synchrotron X-ray refraction radiography shows that the internal specific surface of such cracks varies differently. A modeling strategy is developed for the calculation of the equivalent stiffness of mixtures (first the matrix and then the sandwich), based on the Voigt and Reuß schemes. The Bruno–Kachanov model is then used to estimate the initial microcrack density in the matrix (due to the thermal expansion mismatch) and the amount of microcracking increase upon cyclic loading. The stiffness in the composite degrades dramatically already after 20 000 cycles but then remains nearly constant. The combination of mechanical testing, quantitative imaging analysis, and modeling provides insights into the damage mechanisms acting: microcrack propagation is more active than microcrack initiation upon cyclic loading, but the second also occurs. This scenario is similar but not equal to previous results on porous and microcracked ceramics. KW - Ceramic matrix composites KW - Homogenization schemes KW - Microcracking KW - Nonlinear behavior KW - Synchrotron X-ray refraction radiography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534541 DO - https://doi.org/10.1002/adem.202100763 SN - 1527-2648 SN - 1438-1656 VL - 24 IS - 6 SP - 2100763 -1 EP - 2100763 -13 PB - VCH GmbH CY - Weinheim AN - OPUS4-53454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Dubiez-Le Goff, S. A1 - Murugesan, S. A1 - Bruno, Giovanni A1 - Hryha, E. T1 - Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design N2 - The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual Oxygen content of 100 ppm O2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas’s high thermal conductivity, heat capacity, and thermal diffusivity. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Process atmosphere KW - Helium PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534209 DO - https://doi.org/10.1016/j.addma.2021.102340 VL - 47 SP - 2340 PB - Elsevier B.V. AN - OPUS4-53420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano-Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Sprengel, Maximilian A1 - Pirling, T. A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - The importance of subsurface residual stress in laser powder bed fusion IN718 N2 - The residual stress (RS) in laser powder bed fusion (LPBF) IN718 alloy samples produced using a 67°-rotation scan strategy is investigated via laboratory X-ray diffraction (XRD) and neutron diffraction (ND). The location dependence of the strain-free (d₀) lattice spacing in ND is evaluated using a grid array of coupons extracted from the far-edge of the investigated specimen. No compositional spatial variation is observed in the grid array. The calculated RS fields show considerable non-uniformity, significant stress gradients in the region from 0.6 to 2 mm below the surface, as well as subsurface maxima that cannot be accounted for via XRD. It is concluded that failure to determine such maxima would hamper a quantitative determination of RS fields by means of the stress balance method. KW - Laser powder bed fusion KW - Neutron and X-ray diffraction KW - Residual stress analysis KW - Strain-free lattice references KW - Stress balance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532707 DO - https://doi.org/10.1002/adem.202100895 SN - 1615-7508 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Magkos, Sotirios A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT) N2 - The reconstruction of cone-beam computed tomography data using filtered back-projection algorithms unavoidably results in severe artefacts. We describe how the Direct Iterative Reconstruction of Computed Tomography Trajectories (DIRECTT) algorithm can be combined with a model of the artefacts for the reconstruction of such data. The implementation of DIRECTT results in reconstructed volumes of superior quality compared to the conventional algorithms. KW - DIRECTT KW - Iterative method KW - Signal processing KW - X-ray imaging KW - Computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531085 DO - https://doi.org/10.3390/jimaging7080147 SN - 2313-433X) VL - 7 IS - 8 SP - 147 - 1 EP - 147 -9 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pereira, Raíssa Monteiro A1 - Lohbauer, Ulrich A1 - Schulbert, Christian A1 - Göken, Mathias A1 - Wurmshuber, Michael A1 - Campos, Tiago Bastos Moreira A1 - Thim, Gilmar Patrocínio A1 - Mieller, Björn A1 - Belli, Renan T1 - Instantiations of Multiscale Kinship in Pressing‐Defect Distributions in Yttria‐Stabilized Zirconias by Powder Partitioning N2 - Modern dry pressing of ceramic powders using spray‐dried granulates cannot avoid the occurrence of defects related to persisting inter‐ and intra‐granulate interstitial voids. These constitute the parent defect size population limiting the application of polycrystalline ceramics in high‐stress conditions. The mitigation of such defects could widen the range of application in technical and biomedical engineering, reduce the safety range for design, and extend the lifetime of components. Herein, the Weibull size‐effect on strength in size‐partitioned Yttria‐stabilized zirconias (YSZ) feedstocks is used to explore the viability of changing the density distribution of granulate sizes as an effective strategy to obtain a denser particle packing that could reduce the size distribution of strength‐limiting pressing defects. In a direct assessment of critical defect size using multiscale strength testing with a dataset of ≈1300 values, the success of such an approach in increasing the strength reliability for small volume components is demonstrated, along with its ultimate failure in altering the defect size distribution in sintered YSZ ceramics across several length scales. Finally, it is shown that granule morphology (spherical or dimpled) fails to affect the defect density and size distribution in YSZ ceramics. KW - Zirconia KW - Strength KW - Toughness KW - Weibull distribution KW - Defect population PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602697 DO - https://doi.org/10.1002/adem.202400139 SN - 1438-1656 SP - 1 EP - 17 PB - Wiley VHC-Verlag AN - OPUS4-60269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestroni, L. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Ulbricht, Alexander A1 - Wieder, Frank A1 - Fritsch, Tobias A1 - Sciti, D. A1 - Bruno, Giovanni T1 - Determination of short carbon fiber orientation in zirconium diboride ceramic matrix composites N2 - In fiber-reinforced components, the fiber alignment and orientation have paramount influence on the thermomechanical properties of the resulting composite, for both short and continuous fiber. Here we present the case of an ultra-refractory matrix intended for extreme environment applications, ZrB2, reinforced with 20 vol% and 50 vol% short carbon fibers. In both cases, fibers tend to align perpendicular to the uniaxial pressure applied during shaping and sintering of a pellet, although the fiber tilt across the pellet thickness is difficult to determine. Moreover, for high volume fractions of reinforcement, the spatial distribution of the fibers is heterogeneous and tends to have domains of preferential orientations. We compare the information on the fiber distribution as collected by scanning electron microscopy images, X-ray computed tomography and synchrotron X-ray refraction radiography (SXRR). The three techniques prove to be complementary. Importantly, we demonstrate that SXRR yields the most statistically significant information due to the largest field of view, yet with a sensitivity down to the nanometer, and that can be successfully applied also to heavy matrix materials, such as zirconium boride. KW - Ceramic matrix composites KW - Synchrotron X-ray refraction radiography KW - X-ray computed tomography KW - Scanning electron microscopy KW - High-temperature ceramics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597712 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.02.048 SN - 0955-2219 VL - 44 IS - 8 SP - 4853 EP - 4862 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paulus, Daniel A1 - Bresch, Sophie A1 - Moos, Ralf A1 - Schönauer-Kamin, Daniela T1 - Powder aerosol deposited calcium cobaltite as textured P-type thermoelectric material with power factors approaching single crystal values N2 - In this work, the thermoelectric material calcium cobaltite Ca3Co4O9 (CCO), a promising p-type conducting thermoelectric oxide with anisotropic properties, was processed by the powder aerosol deposition method (PAD) to form a dense ceramic CCO film with a thickness in the µm range. The prepared films were characterized regarding their microstructure and thermoelectric properties between room temperature and 900 °C. After heat treatment at 900 °C, the CCO PAD film in-plane shows excellent properties in terms of electrical conductivity (280 S/cm at 900 °C) and Seebeck coefficient (220 µV/K at 900 °C). The calculated power factor in-plane (ab) reaches with 1125 µW/(m K2) 40 % of the single crystal value, surpassing the known-properties of CCO bulk ceramics. Examination of the microstructure shows a strong fiber texture of the film as well as a strong coarsening of the grains during the first heat treatment up to 900 °C. KW - thermoelectrics KW - calcium cobaltite KW - thermoelectric oxide KW - aerosol deposition method (ADM) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606246 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.116717 SN - 0955-2219 VL - 44 IS - 15 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-60624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Fritsch, Tobias A1 - Luzin, Vladimir A1 - Ferrari, Bruno A1 - Simón-Muzás, Juan A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Impact of scan strategy on principal stresses in laser powder bed fusion N2 - Additive manufacturing techniques, such as laser powder bed fusion (PBF-LB), are well known for their exceptional freedom in part design. However, these techniques are also characterized by the development of large thermal gradients during production and thus residual stress (RS) formation in produced parts. In this context, neutron diffraction enables the non-destructive characterization of the bulk RS distribution. By control of the thermal gradients in the powder-bed plane by scan strategy variation we study the impact of in-process scan strategy variations on the microstructure and the three-dimensional distribution of RS. Microstructural analysis by means of electron backscatter diffraction reveals sharp microstructure transitions at the interfaces ranging from 100-200 µm. The components of the RS tensor are determined by means of neutron diffraction and the principal stress directions and magnitudes are determined by eigenvalue decomposition. We find that the distribution of RS in the powder-bed plane corresponds to the underlying scan strategy. When the alternating scan vectors align with the x- and y sample coordinate axes, the principal stress directions co-align. In the present geometry, nearly transverse isotropic stress states develop when the scan vectors are either aligned 45° between x and y or continuously rotated by 67° between each layer. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Electron Backscatter Diffraction KW - Neutron Diffraction KW - Residual Stress KW - Principal Stress PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607910 DO - https://doi.org/10.1016/j.matdes.2024.113171 SN - 0264-1275 VL - 244 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-60791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Nils A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Bau, Alexander A1 - Setzchen, Max A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Krug von Nidda, Jonas T1 - High Precision Nail‐Penetration Setup for the Controlled Thermal Runaway Initiation of Lithium‐Ion Cells at Very Low Temperatures N2 - A high precision nail‐penetration (NP) tool for characterizing the mechanically induced thermal‐runaway (TR) of lithium‐ion battery (LIB) cells in a defined range of temperatures down to −140 °C was developed. To understand the cell specific behavior at low temperatures aiming at the determination of safe handling conditions, different scenarios are analyzed. First, accuracy tests of the NP‐tool regarding motion and penetration depth are conducted with cylindrical cells at different temperatures. Thus, postmortem computer tomographic (CT) images are compared to the data measured with the newly integrated 3‐axis force sensor which is further combined with a high‐resolution position sensor. The herein developed setup allows evaluation of the NP‐metrics at an accuracy of ±1 pierced electrode layer without CT‐scans. Further NP examinations at 20 °C of fully charged cylindrical lithium nickel manganese cobalt oxide cells reveal a reproducible minimum damage as a reliable TR‐trigger. Moreover, NP‐tests at low temperature disclose a relation of the short circuit conductivity and TR‐reactions during subsequent rethermalization to room temperature. Finally, the implementation of a novel fixture for a controlled very fast cooling of LIB‐cells during critical damage opens the way to investigate the individual steps during a TR and, thus, to gain important information of the specific TR‐mechanism of different LIB‐cells. KW - Battery Safety KW - High-precision nail penetration KW - Lithium-ion batteries KW - Abuse testing KW - Thermal runaway PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598127 DO - https://doi.org/10.1002/ente.202301379 SN - 2194-4288 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-59812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Hassine, Sahar Ben A1 - Töpfer, Jörg A1 - Priese, Christoph A1 - Bochmann, Arne A1 - Capraro, Beate A1 - Stark, Sebastian A1 - Partsch, Uwe A1 - Fresemann, Carina T1 - Ontology‐based Data Acquisition, Refinement, and Utilization in the Development of a Multilayer Ferrite Inductor N2 - A key aspect in the development of multilayer inductors is the magnetic permeability of the ferrite layers. Here, the effects of different processing steps on the permeability of a NiCuZn ferrite is investigated. Dry pressed, tape cast, and co‐fired multilayer samples are analyzed. An automated data pipeline is applied to structure the acquired experimental data according to a domain ontology based on PMDco (Platform MaterialDigital core ontology). Example queries to the ontology show how the determined process‐property correlations are accessible to non‐experts and thus how suitable data for component design can be identified. It is demonstrated how the inductance of co‐fired multilayer inductors is reliably predicted by simulations if the appropriate input data corresponding to the manufacturing process is used.This article is protected by copyright. All rights reserved. KW - Ontology KW - Ceramic multilayer KW - Data pipeline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605483 DO - https://doi.org/10.1002/adem.202401042 SN - 1527-2648 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-60548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leonhardt, Robert A1 - Böttcher, Nils A1 - Dayani, Shahabeddin A1 - Rieck, Arielle A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Tichter, Tim A1 - Krug von Nidda, Jonas T1 - Exploring the electrochemical and physical stability of lithium-ion cells exposed to liquid nitrogen N2 - The transport and storage of lithium-ion (Li-ion) batteries — damaged or in an undefined state — is a major safety concern for regulatory institutions, transportation companies, and manufacturers. Since (electro)chemical reactivity is exponentially temperature-dependent, cooling such batteries is an obvious measure for increasing their safety. The present study explores the effect of cryogenic freezing on the electrochemical and physical stability of Li-ion cells. For this purpose, three different types of cells were repeatedly exposed to liquid nitrogen (LN2). Before and after each cooling cycle, electrical and electrochemical measurements were conducted to assess the impact of the individual freezing steps. While the electrochemical behavior of the cells did not change significantly upon exposure to LN2 , it became apparent that a non-negligible number of cells suffered from physical changes (swelling) and functional failures. The latter defect was found to be caused by the current interrupt device of the cylindrical cells. This safety mechanism is triggered by the overpressure of expanding nitrogen which enters the cells at cryogenic temperatures. This study underlines that the widely accepted reversibility of LN2 -cooling on a material scale does not allow for a direct extrapolation toward the physical integrity of full cells. Since nitrogen enters the cell at cryogenic temperatures and expands upon rethermalization, it can cause an internal overpressure. This can, in turn, lead to mechanical damage to the cell. Consequently, a more appropriate temperature condition — less extreme than direct LN2 exposure — needs to be found KW - Lithium-ion battery KW - LN2 cooling KW - Battery characterization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599248 DO - https://doi.org/10.1016/j.est.2024.111650 VL - 89 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Valavi, Masood A1 - Caldeira Rêgo, Celso Ricardo T1 - An Automatized Simulation Workflow for Powder Pressing Simulations Using SimStack N2 - Automated computational workflows are a powerful concept that can improve the usability and reproducibility of simulation and data processing approaches. Although used very successfully in bioinformatics, workflow environments in materials science are currently commonly applied in the field of atomistic simulations. This work showcases the integration of a discrete element method (DEM) simulation of powder pressing in the convenient SimStack workflow environment. For this purpose, a Workflow active Node (WaNo) was developed to generate input scripts for the DEM solver using LIGGGHTS Open Source Discrete Element Method Particle Simulation code. Combining different WaNos in the SimStack framework makes it possible to build workflows and loop over different simulation or evaluation conditions. The functionality of the workflows is explained, and the added user value is discussed. The procedure presented here is an example and template for many other simulation methods and issues in materials science and engineering. KW - Simulation workflow KW - Discrete element method PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604791 DO - https://doi.org/10.1002/adem.202400872 SP - 1 EP - 7 PB - Wiley AN - OPUS4-60479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lapenna, Michela A1 - Tsamos, Athanasios A1 - Faglioni, Francesco A1 - Fioresi, Rita A1 - Zanchetta, Ferdinando A1 - Bruno, Giovanni T1 - Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data N2 - Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation. KW - Geometric deep learning KW - Segmentation KW - Microstructure KW - X-ray computed tomography KW - Al–Si metal matrix composites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602517 DO - https://doi.org/10.1007/s42452-024-05985-0 SN - 3004-9261 VL - 6 IS - 6 SP - 1 EP - 9 AN - OPUS4-60251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Giovanelli, F. A1 - Rabe, Torsten T1 - Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite N2 - Calcium cobaltite (Ca3Co4O9) is considered as one of the most promising thermoelectric p-type oxides for energy harvesting applications at temperatures above 500 °C. It is challenging to sinter this material as its stability is limited to 920 °C. To facilitate a practicable and scalable production of Ca3Co4O9 for multilayer generators, a systematic study of the influence of powder calcination, Bi-doping, reaction sintering, and pressure-assisted sintering (PAS) on microstructure and thermoelectric properties is presented. Batches of doped, undoped, calcined, and not calcined powders were prepared, tape-cast, and sintered with and without uniaxial pressure at 900 °C. The resulting phase compositions, microstructures and thermoelectric properties were analysed. It is shown that the beneficial effect of Bi-doping observed on pressureless sintered samples cannot be transferred to PAS. Liquid phase formation induces distortions and abnormal grain growth. Although the Seebeck coefficient is increased to 139 µV/K by Bi-doping, the power factor is low due to poor electrical conductivity. The best results were achieved by PAS of calcined powder. The dense and textured microstructure exhibits a high power factor of 326 µW/mK² at 800 °C but adversely high thermal conductivity in the relevant direction. The figure of merit is higher than 0.08 at 700 °C. KW - Ceramics KW - Calcium cobaltite KW - Thermoelectric properties KW - Calcination KW - Pressure-assisted sintering PY - 2019 DO - https://doi.org/10.1063/1.5107476 SN - 0021-8979 VL - 126 IS - 7 SP - 075102-1 EP - 075102-11 PB - AIP Publishing CY - Melville AN - OPUS4-48708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mack, D. E. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Helle, O. A1 - Sebold, D. A1 - Vaßen, R. A1 - Bruno, Giovanni T1 - Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing N2 - Degradation of thermal barrier coatings (TBCs) in gas‐turbine engines due to calcium–magnesium–aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X‐ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria‐stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer. KW - Characterization KW - CMAS KW - Synchrotron X‐ray refraction radiography KW - Thermal barrier coatings PY - 2019 DO - https://doi.org/10.1111/jace.16465 SN - 0002-7820 SN - 1551-2916 VL - 102 IS - 10 SP - 6163 EP - 6175 PB - Wiley CY - Oxford AN - OPUS4-47804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Compilation and evaluation of the pressure-assisted master sintering surface for low-temperature cofired ceramics N2 - Pressure-assisted sintering (PAS) is an established procedure for the production of low-temperature cofired ceramics (LTCC) without lateral shrinkage and minimal shrinkage tolerances for automotive and high-frequency applications. To develop a feasible model for the prediction of densification during that process, master sintering curves (MSCs) for the commercial LTCC DP951 were generated from thermomechanical analysis (TMA) data in the pressure regime from 2 to 500 kPa. Strain mainly related to creep deformation of the LTCC was identified by evaluation of the strain rate and was discarded for the determination of MSC parameters. It was found that no creep occurred at any pressure up to a relative density of 0.9. Different pressure levels can be modeled with the same activation energy of 400 kJ/mol. Densification curves predicted by the model were in good agreement with experimental data. Based on MSCs, the pressure-assisted master sintering surface was compiled to illustrate the influence of pressure on densification. The results show that the MSC approach is a suitable method to feasibly predict the densification of LTCC during PAS. KW - LTCC KW - Low temperature co-fired ceramics KW - Master sintering curve KW - Activation energy KW - DP951 PY - 2015 DO - https://doi.org/10.1111/jace.13732 SN - 0002-7820 SN - 1551-2916 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 98 IS - 11 SP - 3503 EP - 3508 PB - Blackwell Publishing CY - Malden AN - OPUS4-34795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Bernd R. A1 - Cooper, R.C. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Wheeler, M. A1 - Hentschel, Manfred P. A1 - Staude, Andreas A1 - Pandey, A. A1 - Shyam, A. A1 - Bruno, Giovanni T1 - Stress-induced microcrack density evolution in β-eucryptite ceramics: Experimental observations and possible route to strain hardening N2 - In order to investigate their microcracking behaviour, the microstructures of several β-eucryptite ceramics, obtained from glass precursor and cerammed to yield different grain sizes and microcrack densities, were characterized by laboratory and synchrotron x-ray refraction and tomography. Results were compared with those obtained from scanning electron microscopy (SEM). In SEM images, the characterized materials appeared fully dense but computed tomography showed the presence of pore clusters. Uniaxial tensile testing was performed on specimens while strain maps were recorded and analyzed by Digital Image Correlation (DIC). X-ray refraction techniques were applied on specimens before and after tensile testing to measure the amount of the internal specific surface (i.e., area per unit volume). X-ray refraction revealed that (a) the small grain size (SGS) material contained a large specific surface, originating from the grain boundaries and the interfaces of TiO2 precipitates; (b) the medium (MGS) and large grain size (LGS) materials possessed higher amounts of specific surface compared to SGS material due to microcracks, which decreased after tensile loading; (c) the precursor glass had negligible internal surface. The unexpected decrease in the internal surface of MGS and LGS after tensile testing is explained by the presence of compressive regions in the DIC strain maps and further by theoretical arguments. It is suggested that while some microcracks merge via propagation, more close mechanically, thereby explaining the observed X-ray refraction results. The mechanisms proposed would allow the development of a strain hardening route in ceramics. KW - Beta-eucryptite KW - Microcracked ceramics KW - X-ray refraction KW - Tensile load KW - Strain hardening KW - Synchrotron KW - BAMline KW - Computed Tomography KW - CT PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S1359645417308881 DO - https://doi.org/10.1016/j.actamat.2017.10.030 SN - 1359-6454 SN - 1873-2453 VL - 144 IS - Supplement C SP - 627 EP - 641 PB - Elsevier B.V. AN - OPUS4-43024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reveron, H. A1 - Serrano-Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Chevalier, J. A1 - Bruno, Giovanni T1 - Transformation-induced plasticity in zirconia during tensile loading: A combined microscopy and synchrotron X-ray refraction study N2 - The stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation can provide a certain degree of plasticity to Ceria-stabilized (Ce-TZP) zirconia-based composites. Characterizing and monitoring this phase transition on a millimeter-size range, within the bulk and in-situ remains a challenge. In this work, the mechanical behavior of Ce-TZP based composite was studied in tension, combining microscopy and synchrotron Xray refraction techniques. In contrast with microscopy methods, which only provide surface information, X-ray refraction radiography (SXRR) allowed the visualization of all the transformation bands, over the entire length and thickness of tested specimens, opening up new avenues for in-situ stress-induced t-m transformation studies. KW - Zirconia KW - Ceria KW - Composite KW - Phase transformation KW - Plasticity KW - Synchrotron X-ray refraction PY - 2024 DO - https://doi.org/10.1016/j.matlet.2024.136445 SN - 0167-577X SN - 1873-4979 VL - 366 SP - 1 EP - 4 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risse, S. A1 - Juhl, A. A1 - Mascotto, S. A1 - Arlt, T. A1 - Markötter, Henning A1 - Hilger, A. A1 - Manke, I. A1 - Fröba, M. T1 - Detailed and Direct Observation of Sulfur Crystal Evolution During Operando Analysis of a Li-S Cell with Synchrotron Imaging N2 - Herein, we present a detailed investigation of the electrochemically triggered formation and dissolution processes of α- and β-sulfur crystals on a monolithic carbon cathode using operando high-resolution synchrotron radiography (438 nm/pixel). The combination of visual monitoring with the electrical current response during cyclic voltammetry provides valuable insights into the sulfur formation and dissolution mechanism. Our observations show that the crystal growth process is mainly dictated by a rapid equilibrium between long-chain polysulfides on one side and solid sulfur/short-chain polysulfides on the other side, which is consistent with previous studies in this field. The high temporal and spatial resolution of synchrotron imaging enables the observation of different regimes during the sulfur formation and dissolution process. The appearance of short-chain polysulfides after the first anodic CV peak initiates a rapid dissolution process of α-sulfur crystals on the cathode. The increase in the long-chain lithium polysulfide concentration at the cathode surface during charge results in an increased crystal growth rate, which in turn produces imperfections in α- and β-sulfur crystals. There are strong indications that these defects are fluid inclusions, which may trap dissolved polysulfides and therefore reduce the electrochemical cell capacity. KW - LiS battery KW - Radiography KW - Synchrotron Imaging PY - 2020 DO - https://doi.org/10.1021/acs.jpclett.0c01284 VL - 11 IS - 14 SP - 5674 EP - 5679 AN - OPUS4-51100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rieder, Philipp A1 - Petrich, Lukas A1 - Serrano-Munoz, Itziar A1 - Fernández, Ricardo A1 - Bruno, Giovanni A1 - Schmidt, Volker T1 - Statistical Comparison of Substructures in Pure Aluminum Before and After Creep Deformation, Based on EBSD Image Data N2 - Electron backscatter diffraction (EBSD) images of extruded pure aluminum were statistically analyzed to investigate creep-induced subgrain structures after applying two different levels of creep stress, corresponding to the power law (PL) and power-law breakdown (PLB) regimes. Kernel average misorientation analysis of EBSD measurements revealed 2D morphologies, which were subdivided by a multi-step segmentation procedure into subgranular arrangements. Various descriptors were employed to characterize the “subgrains” quantitatively, including their size, shape, spatial arrangement, and crystallographic orientation. In particular, the analysis of the orientations of subgrains was conducted by neglecting rotations around the loading axis. This approach facilitated the individual investigation of the {001} and {111} subgrain families with respect to the loading axis for two investigated stress levels plus a reference specimen. For the PL regime, the statistical analysis of subgrain descriptors computed from segmented image data revealed a similar degree of strain accumulation for {111} and {001} subgrains. In contrast, for the PLB regime, the analyzed descriptors indicate that {111} subgrains tend to accumulate significantly more strain than {001} ones. These observations suggest that the mechanisms leading to PLB may be associated with strain localization dependent on intergranular stress, hindering the recovery process within {111} grains. KW - Crystallographic descriptor KW - Dislocation-climb-controlled creep KW - Electron backscatter diffraction (EBSD) KW - Geometric descriptor KW - Ernel average misorientation (KAM) KW - pure aluminum KW - Qquantification and segmentation KW - Statistical image analysis KW - subgrain PY - 2023 DO - https://doi.org/10.1093/micmic/ozad121 SN - 1431-9276 SP - 1 EP - 12 PB - Oxford University Press AN - OPUS4-58730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schob, D. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under cyclic loading N2 - The material and damage behaviour of additively manufactured polyamide 12 under cyclic loading was characterized by cyclic tests and microstructure analysis by using microscopy, X-ray refraction, and computed tomography. The results were used to determine parameters for the viscoplastic material model by Chaboche and a damage model by Gurson-Tvergaard-Needleman. The temperature was monitored during the experiments and the self-heating effect was observed. By including this effect, a higher accuracy could be achieved with the results of mechanical experiments. KW - 3D printing Polyamide 12 KW - Chaboche model KW - GTN model KW - Material and damage behaviour KW - X-ray refraction KW - Computed tomography PY - 2020 DO - https://doi.org/10.1016/j.engfracmech.2019.106841 SN - 0013-7944 VL - 229 SP - 106841-1 EP - 106841-13 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Haußmann, J. A1 - Alink, R. A1 - Dittmann, K. A1 - Tötzke, C. A1 - Krüger, P. A1 - Klages, M. A1 - Arlt, Tobias A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Manke, I. A1 - Banhart, J. T1 - Investigation of fuel cell materials and liquid water transport by means of synchrotron imaging N2 - Synchrotron imaging allows addressing various important issues in fuel cell research, for example water distribution and transport. The water distribution in polymer electrolyte membrane fuel cells (PEMFCs) was observed quasi in-situ directly after operation by means of synchrotron tomography. The 3D data set was compared with the tomogram of a dry cell in order to separate the water distribution from cell materials. Engineered transport pathways realized by perforating holes through the gas diffusion layer (GDL) are a recent approach to optimize water transport and cell performance. For some parameter sets a cell performance increase and an improvement of stabilization have already been proven. We present high resolution investigations of the water distribution in perforated GDLs of operating PEMFCs by means of in-situ synchrotron radiography. The surrounding areas of the holes exhibited a distinct hydrophilic character. KW - Gas-diffusion layers KW - Resolution neutron-radiography KW - X-ray radiography KW - Visualization KW - PEMFC PY - 2013 DO - https://doi.org/10.1149/04529.0195ecst SN - 1938-6737 SN - 1938-5862 VL - 45 IS - 29 SP - 195 EP - 202 CY - Pennington, NJ, USA AN - OPUS4-30545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. T1 - Determination of macroscopic stress from diffraction experiments: A critical discussion N2 - The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and Show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kröner’s model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool. KW - Additive manufacturing KW - X-ray diffraction KW - Elastic constants KW - Stress concentration tensor PY - 2020 DO - https://doi.org/10.1063/5.0009101 VL - 128 IS - 2 SP - 025103 PB - AIP Publishing AN - OPUS4-50993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzoni, R. A1 - Curosu, I. A1 - Léonard, Fabien A1 - Paciornik, S. A1 - Mechtcherine, V. A1 - Silva, F. A. A1 - Bruno, Giovanni T1 - Combined mechanical and 3D-microstructural analysis of strain-hardening cement-based composites (SHCC) by in-situ X-ray microtomography N2 - The paper presents the results of a series of combined mechanical and in-situ morphological investigations on highstrength strain-hardening cement-based Composites (SHCC). Tension and compression experiments were performed in a CT scanner employing a dedicated mechanical testing rig. The in-situ microtomographic scans enabled correlating the measured specimen response with relevant microstructural features and fracture processes. The microstructural segmentation of SHCC was performed in the framework of Deep Learning and it targeted an accurate segmentation of pores, fibers and aggregates. Besides their accurate volumetric representation, these phases were quantified in terms of content, size and orientation. The fracture processes were monitored at different loading stages and Digital Volume Correlation (DVC) was employed to spatially map the strains and cracks in the specimens loaded in compression. The DVC analysis highlighted the effect of loading conditions, specimen geometry and material heterogeneity at the mesolevel on the strain distribution and fracture localization. KW - Digital Volume Correlation KW - High Strength Concrete KW - In-situ Computed Tomography KW - composites PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106139 VL - 136 SP - 106139 PB - Elsevier Ltd. AN - OPUS4-51054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Bokuchava, G. A1 - Toda-Caraballo, I. A1 - Bruno, Giovanni A1 - Turchenko, V. A1 - Gorshkova, Y. A1 - González-Doncel, G. T1 - Analysis of the Combined Strengthening Effect of Solute Atoms and Precipitates on Creep of Aluminum Alloys N2 - The creep strengthening mechanisms in (age-hardenable) aluminum alloys are analyzed on the basis of a new microstructural study of powder samples, an analysis of a comprehensive revision of creep data from the literature, and a new modeling approach. A strategy based on the strength difference (SD) method to separate the contributions of solid solution atoms and precipitates to creep strengthening is proposed. The new methodology considers the combination of the two contributions avoiding the need of a threshold stress term in the creep equation. The contribution of both precipitates and solid solution is taken into account by means of the analysis of the lattice parameter variation with aging time. For this study, powders of two commercial AA2xxx alloys have been analyzed using diffraction methods. The experimental results are modeled using Lubarda’s approach combined with the SD method. KW - Composites KW - Aluminum alloys KW - Creep models KW - Neutron Diffraction KW - Stress exponent PY - 2020 DO - https://doi.org/10.1002/adem.201901355 VL - 22 IS - 4 SP - 1901355 PB - WILEY-VCH Verlag AN - OPUS4-51055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Fernández, R. A1 - Garcés, G. A1 - Nieto-Luis, H. A1 - Gonzáles-Doncel, G. T1 - Fractional brownian motion of dislocations during creep deformation of metals N2 - The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8% and Al- 3.85%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character. KW - Metals KW - Fractional brownian motion KW - Creep deformation PY - 2020 DO - https://doi.org/10.1016/j.msea.2020.140013 VL - 796 SP - 140013 PB - Elsevier B.V. CY - Paris AN - OPUS4-51450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano-Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718 N2 - A range of heat treatments have been developed for wrought Inconel 718 to obtain desired properties. For additively manufactured Inconel 718, the recently developed standard ASTM F3301 provides guidance for heat treatment of powder bed fusion specimens. Although this standard is based on standards developed for wrought Inconel 718, it does not include direct aging. Since direct aging reduces the number of processing steps, it can result in a post processing cost reduction if the desired properties are obtained. In this study, we characterized the microstructure and tensile behavior of Inconel 718 specimens produced by a laser powder bed fusion process. The specimens were heat treated according to two different routines after stress relieving: a full heat Treatment versus a one-step direct aging process. Differences in the resulting texture and grain morphology were observed. The ex-situ stress-strain behavior was broadly similar. However, a slight increase in yield strength was observed for the direct aged specimen. In order to understand this behavior, investigations with in-situ synchrotron Energy dispersive X-ray diffraction tensile testing revealed differences in the load partitioning among different Crystal directions. Importantly, the elastic anisotropy expressed by the magnitude of the diffraction elastic constants showed a dependency on the microstructures. KW - Electron microscopy KW - X-ray analysis KW - Inconel 718 KW - Additive Manufacturing KW - Mechanical behavior KW - Diffraction elastic constants PY - 2021 DO - https://doi.org/10.1016/j.msea.2020.140555 VL - 805 SP - 40555 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berndard, D. A1 - Léonard, Fabien A1 - Plougonven, E. A1 - Bruno, Giovanni T1 - On the use of autocorrelation functions, permeability tensors, and computed tomography to characterise the anisotropy of diesel particulate filter materials N2 - We show how the combination of the spatial autocorrelation function and permeability calculations, applied to 3D X-ray computed tomography data, can yield quantitative information on the anisotropy of both meso-structure and fluid flow in Diesel Particulate Filter (DPF) materials, such as Cordierite and SiC. It was found that both the degree of anisotropy, and the orientation of the permeability and meso-structure are similar, but not identical. We confirm that the morphological anisotropy of cordierite materials is weak, and clearly influenced by the extrusion process that determines the main direction of anisotropy. Properties of the autocorrelation function are discussed and it is shown why estimating the characteristic length of real meso-structures (grain or ?pore? size) is not possible. Finally, we show that the autocorrelation function applied on grey-level images can give a good estimate of the degree of anisotropy even with limited resolution. KW - Anisotropy KW - Autocorrelation function KW - Computed tomography KW - Permeability tensor KW - Diesel particulates filter KW - Ceramics PY - 2020 DO - https://doi.org/10.1080/14786435.2020.1798532 SN - 1478-6435 VL - 100 IS - 22 SP - 2802 EP - 2835 PB - Taylor & Francis AN - OPUS4-52291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Ávila Calderón, Luis A1 - Schoenstein, F. A1 - Serrano-Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohseninia, A A1 - Eppler, M A1 - Kartouzian, D A1 - Markötter, Henning A1 - Kardjilov, N A1 - Wilhelm, F A1 - Scholta, J A1 - Manke, I T1 - PTFE Content in Catalyst Layers and Microporous Layers: Effect on Performance and Water Distribution in Polymer Electrolyte Membrane Fuel Cells N2 - This work describes the effects of catalyst layers (CLs) consisting of hydrophobic PTFE on the performance and water management of PEM fuel cells. Catalyst inks with various PTFE contents were coated on Nafion membranes and characterized using contact angle measurements, SEX-EDX, and mercury porosimetry. Fuel cell tests and electrochemical impedance spectroscopy (EIS) were conducted under varying operating conditions for the prepared materials. At dry conditions, CLs with 5 wt.% PTFE were advantageous for cell performance due to improved membrane hydration, whereas under humid conditions and high air flow rates CLs with 10 wt.% PTFE improved the performance in high current density region. Higher PTFE contents (⩾20 wt.%) increased the mass transport resistance due to reduced porosity of the CLs structure. Operando neutron radiography was utilized to study the effects of hydrophobicity gradients within CLs and cathode microporous layer (MPLC) on liquid water distribution. More hydrophobic CLs increased the water content in adjacent layers and improved performance, especially at dry conditions. MPLC with higher PTFE contents increased the overall liquid water within the CLs and GDLs and escalated the water transfer to the anode side. Furthermore, the role of back-diffusion transport mechanism on water distribution was identified for the investigated cells. KW - Neutron imaging KW - Polymer Electrolyte Membrane Fuel Cell KW - Catalyst Layer KW - Microporous Layer KW - Water Distribution PY - 2021 DO - https://doi.org/10.1149/1945-7111/abec53 VL - 168 IS - 3 SP - 034509 PB - IOP Science AN - OPUS4-52402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kardjilov, N A1 - Manke, I A1 - Hilger, A A1 - Arlt, T A1 - Bradbury, R A1 - Markötter, Henning A1 - Woracek, R A1 - Strobel, M A1 - Treimer, W A1 - Banhart, J T1 - The Neutron Imaging Instrument CONRAD — Post‐Operational Review N2 - The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER‐II at Helmholtz‐Zentrum Berlin (HZB) from 2005 to 2020. The Instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid‐state polarizers, Monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength‐selective, dark‐field, phase‐contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the Expansion of the neutron imaging community. KW - Neutron imaging KW - Neutron scattering KW - Neutron instrument KW - Tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534190 DO - https://doi.org/10.3390/ jimaging7010011 VL - 7 IS - 11 SP - 7010011 PB - MDPI AN - OPUS4-53419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khimich, M. A. A1 - Prosolov, K. A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Monforte, X. A1 - Teuschl, A. H. A1 - Slezak, P. A1 - Ibragimov, E. A. A1 - Saprykin, A. A. A1 - Kovalevskaya, Z. G. A1 - Dmitriev, A. I. A1 - Bruno, Giovanni A1 - Sharkeev, Y. P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Additive manufacturing KW - Biomaterials KW - Ti-Nb alloy KW - Nanostructured powder KW - Laser methods KW - Powder methods KW - Laser powder bed fusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525344 DO - https://doi.org/10.3390/nano11051159 VL - 11 IS - 5 SP - 1159 PB - MDPI AN - OPUS4-52534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peruzzi, N. A1 - Galli, S. A1 - Helmholz, H. A1 - Kardjilov, N. A1 - Krüger, D. A1 - Markötter, Henning A1 - Moosmann, J. A1 - Orlov, D. A1 - Prgomet, Z. A1 - Willumeit-Römer, R. A1 - Wennerberg, A. A1 - Bech, M. T1 - Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screws N2 - Extensive research is being conducted on magnesium (Mg) alloys for bone implant manufacturing, due to their biocompatibility, biodegradability and mechanical properties. Gadolinium (Gd) is among the most promising alloying elements for property control in Mg alloy implants; however, its toxicity is contro- versial. Investigating Gd behavior during implant corrosion is thus of utmost importance. In this study, we analyzed the degradation byproducts at the implant site of biodegradable Mg-5Gd and Mg-10Gd implants after 12 weeks healing time, using a combination of different imaging techniques: histology, energy-dispersive x-ray spectroscopy (EDX), x-ray microcomputed tomography (μCT) and neutron μCT. The main finding has been that, at the healing time in exam, the corrosion appears to have involved only the Mg component, which has been substituted by calcium and phosphorus, while the Gd remains localized at the implant site. This was observed in 2D by means of EDX maps and extended to 3D with a novel application of neutron tomography. X-ray fluorescence analysis of the main excretory organs also did not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy happened during degradation. KW - Magnesium-gadolinium alloy KW - Biodegradable implant KW - Multimodal analysis KW - Energy-dispersive x-ray spectroscopy KW - Micro-computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535910 DO - https://doi.org/10.1016/j.actbio.2021.09.047 SN - 1742-7061 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-53591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Fischer, M. A1 - Ahlström, J. A1 - Fritsch, Tobias A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion N2 - Contour scanning and process gas type are process parameters typically considered achieving second order effects compared to first order factors such as laser power and scanning speed. The present work highlights that contour scanning is crucial to ensure geometrical accuracy and thereby the high performance under uniaxial compression of complex Alloy 718 lattice structures. Studies of X-ray computed tomography visualizations of as-built and compression-strained structures reveal the continuous and smooth bending and compression of the walls, and the earlier onset of internal contact appearance in the denser lattices printed with contour. In contrast, the effect of addition of He to the Ar process gas appears to have limited influence on the mechanical response of the lattices and their microstructure as characterized by electron backscattered diffraction. However, the addition of He proved to significantly enhance the cooling rate and to reduce the amount of the generated spatters as evidenced by in situ monitoring of the process emissions, which is very promising for the process stability and powder reusability during laser powder bed fusion. KW - Additive manufacturing KW - Laser powder bed fusion KW - Gyroid lattice KW - Process atmosphere PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546632 DO - https://doi.org/10.1016/j.matdes.2022.110501 SN - 0264-1275 VL - 215 SP - 110501 PB - Elsevier Ltd. AN - OPUS4-54663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, F. A1 - Lange, A. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - On the Morphological and Crystallographic Anisotropy of Diesel Particulate Filter Materials N2 - The determination of the anisotropy of materials’ microstructure and morphology (pore space) in diesel particulate filter (DPF) materials is an important problem to solve, since such anisotropy determines the mechanical, thermal, and filtration properties of such materials. Through the use of a dedicated (and simple) segmentation algorithm, it is shown how to exploit the information yielded by 3D X-ray computed tomography data to quantify the morphological anisotropy. It is also correlated that such anisotropy of the pore space Such anisotropy of the pore space is also correlated with the microstructure and crystallographic anisotropy of the material in several showcases: a microstructurally isotropic material, such as SiC, and some morphologically and microstructurally anisotropic cordierite materials. In the later case, the finer the grain size, the more isotropic the microstructure. KW - Diesel Particulate Filter Materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540705 DO - https://doi.org/10.1002/adem.202101380 VL - 24 IS - 2101380 SP - 1 EP - 12 PB - Wiley VCH GmbH CY - Weinheim AN - OPUS4-54070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -