TY - THES A1 - Schneider, Ronald T1 - Time-variant reliability of deteriorating structural systems conditional on inspection and monitoring data N2 - The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task. The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue. An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis. Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems. The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run. The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model. T3 - BAM Dissertationsreihe - 168 KW - Reliability KW - Structural systems KW - Deterioration KW - Bayesian analysis KW - Inspection KW - Monitoring KW - Zuverlässigkeit KW - Tragstrukturen KW - Schädigungsprozesse KW - Bayes'sche Analyse KW - Inspektion KW - Monitoring PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512977 SN - 1613-4249 VL - 168 SP - 1 EP - 188 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hauswaldt, Sebastian T1 - Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall N2 - Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften. Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt. Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt. Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert. Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert. Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen. Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen. Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT 1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden. N2 - The non-linear and rate-dependent2 material behaviour of steel becomes particularly visible at high temperatures. For finite-element-simulations of steel structures in the event of fire, plastic and rate- dependent material behaviour should therefore be described. With this in mind, this thesis looks at previous material investigations and makes suggestions for three-dimensional material models with the corresponding properties. The phenomenological properties of structural steel are analysed on the basis of a literature study, whereby increased attention is paid to the material behaviour under loads and heating processes, as can be expected in the event of fire. The stress-strain-relation of the EC 3-1-2 used for the design of steel structures is examined. The advantages of this description, but also the missing properties for the development of a continuum-mechanical material formulation, are shown. A non-linear-elastic continuum mechanical material model of the deformation theory of plasticity is adapted in such a way that it describes the stress-strain curves according to EC 3-1-2 in the state of uniaxial stress. Furthermore, a thermoelastic-viscoplastic model is presented which is able to describe creep and relaxation during heating and cooling processes. The structure of this material model is chosen in such a way that the parameters can be easily identified using certain measurement results. The deviatoric part of the model consists of a rate-independent, plastic part and a rate-dependent, vis- coelastic part. The rate-independent, plastic part was formulated as a differential equation based on the endochronic theory of plasticity. The parameters of this material model are identified on the basis of the measurement results of stationary hot tensile tests on structural steel specimens. Both the non-linear-elastic EC 3-1-2 material model and the thermoelastic-viscoplastic material model with the material parameters adapted to mild steel are prepared numerically for use with finite- element-programs and implemented as UMAT-subroutines for ABAQUS in the FORTRAN code. Particular emphasis is placed on the provision of consistent tangent operators to enable efficient numerical calculation when using the material models. Finally, first finite-element-simulations are presented in order to show the possibilities of the deve- loped and implemented material models for simulations of steel constructions in case of fire. Keywords: Fire prevention, steel, fire behaviour, finite element method, material model, Eurocode 3- 1-2, UMAT 2 If the material behaviour is dependent on the process rate, it is referred to as rate-dependent. Processes can be controlled by strain, stress or temperature. The terms time-dependent and time-independent are avoided here, as these are associated with aging in materials science. T3 - BAM Dissertationsreihe - 167 KW - Brandschutz KW - Stahl KW - Brandverhalten KW - Finite-Elemente-Methode KW - Materialmodell KW - Eurocode 3-1-2 KW - UMAT KW - Fire prevention KW - Steel KW - Fire behaviour KW - Finite element method KW - Material model KW - Eurocode 3-1-2 KW - UMAT PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507662 SN - 1613-4249 VL - 167 SP - i EP - 206 PB - Bundesanstalt für Materailforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50766 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -