TY - THES A1 - Zur, Malte T1 - Numerische Modellierung der Kabinenluftströmung und des Stofftransports von Gefahrgut in Flugzeugfrachträumen N2 - Für den Transport flüssiger Gefahrguter im Luftverkehr werden unter anderem Kunststoffverpackungen verwendet, die Leckagen aufweisen oder Permeation unterliegen können. Aufgrund der vorhandenen Belüftungsbedingungen ist eine Ansammlung entzündlicher oder gesundheitsschädlicher Gase im Frachtraum von Flugzeugen denkbar. Die Überschreitung ausreichender Konzentrationen solcher Gase kann zu einer Gefährdung führen. Im Rahmen der vorliegenden Arbeit werden die Kabinenluftströmungen und der Stofftransport von Gefahrgut in Flugzeugfrachträumen mittels CFD untersucht. Zunächst erfolgt die Entwicklung eines geeigneten numerischen Modells auf der Grundlage eines generischen Frachtraums mit typischen Merkmalen. Die verwendeten realitätsnahen Randbedingungen entsprechen aktuellen Flugzeugmustern. Das numerische Modell wird mittels experimenteller Modellversuche im Maßstab 1/10 validiert. Das Strömungsfeld im Frachtraummodell wird mittels eines LDA-Systems vermessen. Das validierte numerische Modell wird sowohl für Simulationen im Maßstab 1/10 als auch im Maßstab 1/1 verwendet. Anhand der drei Validierungskriterien Symmetrie, Verlaufe und Beträge der betrachteten Strömungsgrößen und einer LDA-Spektralanalyse wird insgesamt eine gute qualitative und quantitative Übereinstimmung zwischen Experiment und Simulation ermittelt. Eine systematische Untersuchung zeigt den Einfluss relevanter Parameter auf das Strömungsfeld und den Stofftransport. Zunächst werden die Einlassreynoldszahl und der Einlassturbulenzgrad sowie die Wandrauigkeit und Wandunebenheit bewertet. Für kleine Reynoldszahlen werden hohe Konzentrationen und für größere Reynoldszahlen werden deutlich geringeren Konzentrationen von Gefahrgut ermittelt. Anhand einer Variation in vier Schritten wird der Einfluss des Einlassmassenstromverhältnisses aus Luft und Gefahrgut bewertet. Erst für Werte von <1000 lasst sich ein signifikanter Einfluss feststellen. Es werden die Stoffe Toluol und n-Hexan beispielhaft für brennbare Gefahrgüter der Klasse 3 verwendet. Der Einfluss der Position und Gestalt verschiedener Einlassquellen wird an vier realitätsnahen Quellentypen bewertet. Anhand vier verschiedener Transportszenarien wird die Ausbreitung von Gefahrgut im Modellmaßstab untersucht. Die Szenarien unterscheiden sich durch die Art der Belüftung und durch die Dauer des Gefahrgutaustritts. Szenarien mit aktiver Frachtraumbelüftung sind als eher unkritisch zu beurteilen. Die betrachteten Szenarien ohne aktive Frachtraumbelüftung sind als gefährlich einzustufen. Insbesondere das Szenario mit zeitlich unbegrenztem Gefahrgutmassenstrom erreicht kritische Konzentrationswerte und eine kritische Ausdehnung der Gefahrgutansammlung im Frachtraum. Diese Ergebnisse werden anhand zweier Szenarien im Maßstab 1/1 bestätigt. Die vorliegende Arbeit leistet einen Beitrag, das Verständnis der Strömungs- und Stofftransportvorgange im Flugzeugfrachtraum beim Transport von Gefahrgütern im Luftverkehr zu erweitern, um Risiken im Luftverkehr zu identifizieren. Die Allgemeingültigkeit und die Übertragbarkeit der Erkenntnisse auf Flugzeugmuster und Flugszenarien mit komplexeren Details sind zu prüfen. N2 - Liquid dangerous goods are regularly transported as air freight in commercial aircrafts. Using plastic jerrycans or plastic containers, liquids or gases can escape by leakage or permeation effects. The specific ventilation situation in the aircraft cargo compartment may lead to agglomerations of potentially flammable or harmful gas-air mixtures in the cargo compartment. Exceeding certain concentration limits of such gases may cause dangerous situations. This work presents a CFD study of the cabin air flow and the mass transport of dangerous goods in the cargo compartments of commercial airplanes. In a first step, an adequate numerical model is developed that utilizes a generic aircraft cargo compartment with typical characteristics. The realistic boundary conditions are based on modern types of aircrafts. The numerical model is validated by model experiments in 1/10 scale. As a second step, the flow field in the cargo compartment is determined using a LDA-system. The validated numerical model is employed for simulations in 1/10 and 1/1 scale. Using three validation criteria (the symmetry, the evolution and values of flow variables and a LDA spectral analysis) a good qualitative and quantitative agreement between experiment and simulation is found. As a next step, a systematic analysis of relevant parameters influencing the flow and the mass transport in the cargo compartment is conducted. The influence of the inlet Reynolds number and the inlet turbulence intensity as well as the wall roughness and geometric obstructions on the wall are evaluated. For low Reynolds numbers, high concentrations are found and for higher Reynolds numbers, significantly lower concentrations of dangerous goods are calculated. The influence of, the ratio of air and dangerous good flowing into the domain is evaluated using four different values of. Only values of <1000 show a significant influence on the concentration levels in the domain. The dangerous substances toluene and hexane are used as examples for class 3 flammable dangerous goods. The influence of the position and the shape of different inlet sources for dangerous goods are evaluated using four different types of sources. In a final step, four different transport scenarios are used to simulate and evaluate the expansion and propagation of dangerous goods in the generic cargo compartment in the model scale 1/10. The scenarios differ in the ventilation situation and the duration of the mass of dangerous goods entering the domain. Scenarios with an active cargo compartment ventilation are found to be noncritical. Scenarios without an active ventilation lead to critical concentrations of dangerous goods. In particular, a scenario with an indefinite mass inflow of a dangerous gas shows critical concentration levels and a critical expansion in the cargo compartment. These findings are confirmed by simulations of two different scenarios in a 1/1 scale. The presented work contributes to a better understanding of the cabin air flow and the mass transport of dangerous goods in aircraft cargo compartments in order to identify potential risks. The universal validity and the transferability of the findings to other, more complex aircraft cargo compartments and transportations scenarios are to be reviewed in further research. T3 - BAM Dissertationsreihe - 128 KW - CFD KW - Kabinenluftströmung KW - Stofftransport von Gasen KW - gefährliche Güter im Luftverkehr KW - LDA PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-4949 SN - 978-3-9816668-8-5 VL - 128 SP - 1 EP - 170 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-494 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vasilić, Ksenija T1 - A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy N2 - This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. N2 - Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen. T3 - BAM Dissertationsreihe - 144 KW - porous medium KW - self-compacting concrete KW - rheology KW - numerical modelling KW - CFD KW - reinforcement KW - poröses Medium KW - selbstverdichtender Beton KW - Rheologie KW - numerische Modellierung KW - Bewehrung PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-357833 SN - 978-3-9817502-6-3 SN - 1613-4249 VL - 144 SP - 1 EP - 175 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Klippel, Alexander T1 - Investigations into the influence of dustiness on the course of vented dust explosions N2 - A new safety characteristic named “dustiness” according to the German guideline VDI 2263 – part 9 is investigated. Dustiness describes the tendency of a powder to form airborne dust by a prescribed mechanical stimulus. Dusts often behave differently in a dust/air mixture or in the case of a dust explosion, even if they have comparable physical properties such as particle size and density. In order to look into the effects of dustiness on dust cloud Formation and explosion properties experiments and simulations in a 75 L vertical dust Dispersion glass tube apparatus were carried out. In a second step industrial-scale experiments were carried out in a 50 m³ silo. Experiments showed that particle size and density are not the only factors which influence dustiness, since the chosen dusts with comparable densities and particle size distributions showed very different behavior in the flow. Other dust properties such as particle shape, specific surface area, humidity and agglomeration processes have an influence which can outweigh size and density. Preliminary explosion experiments showed that dustiness has an influence on the reduced explosion pressure and pressure rise in a vented 75 L test apparatus. In order to verify the results for applications in the process industries further tests with different settings were carried out in industrial-scale experiments. First dust concentration measurements were done in order to evaluate the reproducibility of filling processes. Experiments showed that single tests differed by 30 % and more from the average depending on dust sample and filling method. First explosion experiments with a worst-case scenario in terms of high turbulence and homogenous dust distribution showed that the maximum reduced explosion pressures were well below the calculated values. Reduced explosion pressures and rates of pressure rise of the hree tested dust were as their Explosion characteristics pmax and KSt let suggest. The Euler/Lagrange and the Euler/Euler approaches were compared simulating dust/air mixtures. Especially sedimentation and the ability of the approaches to simulate the tendency of dust to stay airborne were investigated. The Euler/Lagrange approach is better suited for simulating local dust concentrations, particle size distributions and particle forces. With the Euler/Euler method it is possible to achieve fast solutions for one specified diameter. The computational fluid dynamics code ANSYS CFX R14 was used for all simulations. N2 - Eine neue sicherheitstechnische Kennzahl, das Staubungsverhalten gemäß VDI Richtlinie VDI 2263 – Blatt 9, wird hinsichtlich ihres Nutzens für den Staubexplosionsschutz untersucht. Unter Staubungsverhalten versteht man die Tendenz eines Staubes, Wolken aufgrund eines festgelegten mechanischen Stimulus zu bilden. Stäube können sich bei vergleichbareren physikalischen Eigenschaften wie Dichte oder Partikelgrößenverteilung, teilweise sehr unterschiedlich in einem Staub/Luft-Gemisch oder im Falle einer Staubexplosion verhalten. Um den Einfluss des Staubungsverhaltens auf die Staubwolkenbildung und den Ablauf von Explosionen zu untersuchen, wurden Experimente und Simulationen in einer vertikalen 75 L Rohrapparatur durchgeführt. Mit den Erkenntnissen aus diesen Laborversuchen wurden weitere Versuche im Realmaßstab in einem 50 m³ Silo durchgeführt. Versuche im Labormaßstab in einem druckentlasteten 75 L Behälter haben gezeigt, dass das Staubungsverhalten einen Einfluss auf die reduzierten Explosionsdrücke, die zeitlichen Druckanstiege und die Flammengeschwindigkeiten hat. Um die Versuchsergebnisse für den industriellen Maßstab zu belegen, wurden Versuche in einem 50 m³ Silo durchgeführt. Dabei wurde zunächst die Reproduzierbarkeit von Befüllungsvorgängen mit Staubkonzentrationsmessungen durch mehrere Wiederholungsversuche überprüft. Dabei ergaben sich Abweichungen von 30 % und mehr im Vergleich zum Mittelwert der Versuche. Erste Explosionsversuche eines Worst-Case-Szenarios mit hoher Turbulenz und möglichst homogenen Staubwolken ergaben deutlich niedrigere reduzierte Explosionsdrücke als die mit den empirischen Gleichungen berechneten. Der Explosionsverlauf war in Übereinstimmung mit den Kenngrößen pmax und KSt. Bei der Simulation von Staub/Luft-Gemischen wurden mit dem Euler/Lagrange- und dem Euler/Euler-Ansatz verwendet. Dabei wurde vor allem untersucht inwiefern das Sedimentations- und Staubungsverhalten modelliert werden können. Es zeigte sich, dass der Euler/Lagrange-Ansatz besser geeignet ist lokale Staubkonzentrationsverteilungen, Partikelgrößenverteilungen und -kräfte zu simulieren. Der Euler/Euler-Ansatz ermöglicht generelle Aussagen in kürzerer Rechenzeit für eine definierte Partikelgröße. Der numerische Strömungslöser ANSYS CFX V14 wurde für alle Simulationen benutzt. T3 - BAM Dissertationsreihe - 123 KW - dustiness KW - Euler/Lagrange approach KW - vented dust explosion KW - dust explosion protection KW - CFD PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-4635 SN - 978-3-9816668-2-3 VL - 123 SP - 1 EP - 207 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kempel, Florian T1 - Komplementäre Nutzung von Polymerwissenschaft und Brandsimulation: Vier Beispiele in den Dimensionen Kubikdekameter bis Kubikzentimeter N2 - Vereint unter dem Begriff Ingenieurmethoden haben Brandsimulationen Eingang in die Fortentwicklung des Baurechts gefunden und werden vermehrt zur Unterstützung von Brandschutzkonzepten und -nachweisen eingesetzt. Aktuelle Software verbindet Verbrennungsmodelle mit numerischer Strömungsmechanik und eignet sich so für die flexible Bearbeitung unterschiedlichster Fragestellungen. Darüber hinaus bieten erste Programme die Möglichkeit, Untermodelle zur Beschreibung des Feststoffabbrands bzw. der Pyrolyse von Brandlasten einzufügen. In der Polymerwissenschaft stellt die Untersuchung und Optimierung des Brandverhaltens einschließlich der Pyrolyse eine wichtige Aufgabe dar. Aufgrund des Brandrisikos ist die Verwendung polymerer Werkstoffe häufig eingeschränkt. Die Entwicklung flammgeschützter Materialien hat daher eine besondere Bedeutung und es existieren detaillierte Methoden zur Charakterisierung brandrelevanter Materialeigenschaften. Vor diesem Hintergrund zielt die vorliegende Arbeit darauf ab, die Potentiale und Herausforderungen der komplementären Nutzung von Brandsimulation und polymerwissenschaftlichen Methoden zu untersuchen. Hierfür wurden vier Brandszenarien ausgewählt: Der Brand in einem Einfamilienhaus in der Dimension Kubikdekameter (dam³), der Single Burning Item SBI Test in der Dimension Kubikmeter (m³), der Cone Kalorimeter Test in der Dimension Kubikdezimeter (dm³) und der UL 94 Test in der Dimension Kubikzentimeter (cm³). Die Brandszenarien werden zunächst ausführlich charakterisiert. Anschließend wird ein jeweils passendes Simulationsmodell erstellt und berechnet und die Berechnungsergebnisse werden mit den realen Ausprägungen verglichen. Schließlich werden die Simulationen, unterstützt durch eine Parameterstudie, bewertet. In den Untersuchungen zu den vier Brandszenarien werden durch die komplementäre Nutzung von Brandsimulation und Polymerwissenschaft belastbare numerische Berechnungen erarbeitet. Grundlage für die Ergebnisse sind die detaillierte Charakterisierung der brandrelevanten physikalischen und chemischen Eigenschaften der Werkstoffe und die damit verbundene Qualität der Eingabeparameter. Für das Brandszenario Einfamilienhaus wird der Brandverlauf in einer komplexen Geometrie mit unterschiedlichen Brandlasten realistisch berechnet. Für den SBI Test und den Cone Kalorimeter Test stehen die Wärmefreisetzungsrate bzw. die Massenverlustrate im Mittelpunkt der Simulation und zeigen eine hohe Übereinstimmung mit den experimentellen Ergebnissen. Für den vertikalen UL 94 Test werden darüber hinaus erstmals das komplexe Zusammenspiel von Pyrolyse, Verbrennung und Tropfverhalten simuliert und die unterschiedlichen Klassifizierungen und Zeitmaßstäbe übereinstimmend mit den Experimenten aus den Berechnungen abgeleitet. Anhand der Beispiele werden erweiterte Anwendungsbereiche von Brandsimulationen durch gezielte Nutzung der polymerwissenschaftlichen Kenntnisse aufgezeigt. Gleichzeitig weisen insbesondere die Untersuchungen zu den Brandszenarien Cone Kalorimeter Test und UL 94 Test auf den wertvollen Beitrag von Brandsimulationen für die Polymerwissenschaft hin. Durch Parametervariationen können aufbauend auf einem validierten Simulationsmodell zusätzliche Erkenntnisse über die Struktur-Eigenschaftsbeziehungen von Polymeren hinsichtlich des Brandverhaltens gewonnen werden, um die Entwicklung flammgeschützter Materialien zielführend zu unterstützen. N2 - Termed as engineering methods, fire simulations have found their way into building legislation and are frequently used to support concepts and verifications of structural fire protection plans. Recent software developments combine combustion models and computational fluid dynamics and therefore qualify for the processing of a wide variation of tasks and questions. Above all, latest programs provide the opportunity of adding further submodels in order to describe the fire behaviour of solid fuels, i.e. the thermal decomposition or pyrolysis of the materials can be calculated. In polymer science, the research and development of the fire behavior of materials is a scientific task of its own. Due to the fire risk, the application of polymers is often restricted. Hence, the development of fire retarded materials is of particular importance and existing methods are being used to characterize in detail all aspects of material properties according to its reaction to fire. According to this, the aims of this thesis were to investigate the capabilities and challenges of the complementary use of fire simulation and polymer science. Four different fire scenarios were chosen for the analysis: a fire case in a family home in the dimension of cubic decameter (dam³), the Single Burning Item SBI test in the dimension of cubic meter (m³), the Cone Calorimeter test in the dimension of cubic decimeter (dm³) and the UL 94 test in the dimension of cubic centimeter (cm³). The investigation involved a thorough characterization of those scenarios as well as the creation and calculation of a simulation model for each scenario. Subsequently simulation was compared to the real characteristics and an evaluation, supported by parameter analysis, provided. By analyzing the four fire scenarios and due to the complementary use of fire simulation and polymer science, numeric calculations have lead to significant results. Those are based upon the detailed characterization of the fire related physical and chemical properties of materials and the associated quality of the input parameters. For the family-homescenario the fire spread is calculated realistically within a complex geometry with different fire loads. For the fire scenarios SBI and Cone Calorimeter test, which focus on the calculated heat release rate and the mass loss rate, respectively, a very close agreement with the experimental results was achieved. For the fire scenario UL 94 test the interaction of gasification, combustion and melt dripping is being simulated for the first time and the UL 94 classifications of the materials as well as the time scales are derived in accordance with the experimental results. On the basis of the four examples as shown above, and by the systematic use of polymer science, this thesis demonstrates extended ranges of applications of fire simulations. At the same time the considerable contribution of fire simulations to polymer science is highlighted in particular during the analysis of the fire scenarios Cone Calorimeter and the UL 94 test. Based on the validated model, parameter variations reveal additional insight into the structure-property-relationship of polymers regarding their fire behavior, which may guide the development of fire retarded materials. T3 - BAM Dissertationsreihe - 104 KW - Polymer KW - Brandverhalten KW - Pyrolyse KW - Brandsimulation KW - CFD PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545 SN - 978-3-9815748-5-2 SN - 1613-4249 VL - 104 SP - 1 EP - 173 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -