TY - THES A1 - Bothe, Martin T1 - Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks N2 - Formgedächtnispolymere (FGPe) können unter Einwirkung eines geeigneten Stimulus ihre Form verändern. Um dieses Verhalten zu ermöglichen, wird eine Deformation mittels ‘Programmierungs’- Verfahren fixiert, wobei das FGP eine stabile, temporäre Form einnimmt. In thermoresponsiven FGPen löst anschließendes Erwärmen entropieelastische Rückstellung in die ursprüngliche Form aus. Um thermoreversible Zweiwege-Aktuation zu realisieren, kann eine zusätzliche Formänderung beim Abkühlen durch ein Kristallisationsphänomen hervorgerufen werden. Mittels zyklischer thermomechanischer Messungen wurden (1) die Formgedächtniseigenschaften (FGEen) und (2) das thermoreversible Aktuationsverhalten sowohl unter konstanter Auflast als auch unter spannungsfreien Bedingungen quantifiziert. Sternförmige Hybridpolymernetzwerke, chemisch quervernetzt durch polyedrisches oligomeres Silsesquioxan und Polyurethan (SPOSSPU) und physikalisch quervernetzte Poly(ester urethan)-Blockcopolymere (PEUe) wurden im Bereich der Schmelz- und Kristallisationstemperaturen ihrer Polyesterweichsegmente untersucht. (1) Insbesondere die SPOSS-PUs mit hoher Quervernetzungsdichte zeigten Formfixier- und Formrückstellbarkeiten von nahezu 100%, während PEUs ausgeprägte FGEen bei hohem eichsegmentanteil aufwiesen. In zweifach programmierten SPOSS-PUs ließen sich darüber hinaus zwei thermisch separierte Rückstellungen induzieren. Selbst eine Einschnürung, die sich während der Verformung von SPOSS-PUs mit hohem Weichsegmentanteil gebildet hatte, war reversibel. (2) Global orientierte Kristallisation führte bei Abkühlung zur Expansion der PEU-Proben, vor allem bei hohem Weichsegmentanteil und nach dem Aufbringen einer starken Deformation. Schmelzen revidierte die Orientierung; die PEU-Probe kontrahierte und komplettierte damit den thermoreversiblen Aktuationszyklus. Unter Auflast konnten multiple Phasenübergänge im polymorphen Weichsegment zwei aufeinander folgende Expansions- und Kontraktionsschritte auslösen, während spannungsfrei verschiedene Formänderungen, z.B. die Zu- und Abnahme von Probenlänge und -dicke sowie Ver- und Entdrehen einer Probe experimentell belegt werden konnten. Die vorgestellte Aktuatortechnologie ermöglicht völlig neue Anwendungen, die bidirektionale, organische Bewegungen nachahmen und wiederholen können. N2 - Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a ‘programming’ procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation technology allows for entirely new applications, enabling mimicry of reversible, bidirectional and repeated organic movements. T3 - BAM Dissertationsreihe - 121 KW - Shape Memory Polymers KW - Polymorphism KW - Semicrystalline KW - Actuation KW - Training PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372 SN - 978-3-9816668-1-6 SN - 1613-4249 VL - 121 SP - 1 EP - 139 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lothongkam, Chaiyaporn T1 - Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges N2 - Eine neue Methode zur optischen Detektion von Teilentladungen in Hoch- und Höchstspannungs- Kabelgarnituren wird vorgeschlagen. Optische Fasern, integriert in die Hochspannungseinrichtung, können hochempfindlich messen und sind gegenüber elektromagnetischen Feldern immun. Sie ermöglichen somit ein Online-Monitoring in Bereichen hoher elektromagnetischer Felder. Diese optische Detektionsmethode kann in transparenten Silikonelastomer-Isolierstoffen, die sowohl dielektrische als auch mechanische Anforderungen erfüllen und für moderne Feldsteuerteile zum Einsatz kommen, zur Früherkennung von Teilentladungen genutzt werden. In dieser Arbeit werden das dielektrische Festigkeitsverhalten und die mechanischen Eigenschaften dreier kommerziell verfügbarer Silikonelastomere unter Wechselspannungsbeanspruchung untersucht. Ein Silikonmaterial war transluzent, zwei andere waren transparent, jedoch mit unterschiedlichen Vernetzungsbedingungen. Die Messung der Reißdehnung bzw. Zugfestigkeit erfolgte gemäß Standard ISO 37. Zur Untersuchung der dielektrischen Festigkeit Eb der unmodifizierten und modifizierten Silikonelastomere wurde eine neue Untersuchungsmethodik entwickelt. Gegenüber bisherigen Methodiken erlaubt dieses Prüfverfahren Untersuchungen mit geringem Materialverbrauch bei minimalem Zeitaufwand und ist gleichermaßen zuverlässig und effizient. Kernstück dieses Untersuchungsverfahrens ist eine speziell entwickelte Prüfeinrichtung. Darüber hinaus ermöglicht diese Prüfmethode eine einfache Präparation und Handhabung hochwertiger Prüflinge. Diese sowohl technischen als auch ökonomischen Vorteile können bei der Bestimmung des für Silikonelastomere wichtigen Wertes der elektrischen Festigkeit Eb ausgenutzt werden. Wegen der kostensparenden Prüfmethodik kann diese Prüfeinrichtung auch vorteilhaft für statistische Untersuchungen in Laboratorien eingesetzt werden. Die Untersuchungsergebnisse werden mittels Weibull- Verteilung statistisch analysiert und bewertet. Die Untersuchungen zeigten, dass das transluzente unmodifizierte Silikonelastomer einen großen Elastizitätsbereich mit akzeptabler plastischer Deformation besitzt; für Prüflinge mit einer Dicke von 0,5 mm wurde für 50 Hz Wechselspannung eine dielektrische Festigkeit von annähernd 24 kV/mm gemessen. Diese Festigkeitseigenschaften des transluzenten Silikonelastomers lässt die Schlussfolgerung zu, dass dieses Material die gegenwärtig für Feldsteuerteile in Hochspannungsgarnituren genutzten lichtundurchlässigen Elastomere ersetzen können. Die Lichtdurchlässigkeit des transluzenten Materials ist allerdings gering im Vergleich zu optisch klaren (transparenten) Silikonelastomeren. Andererseits erfüllen die mechanischen Eigenschaften der unmodifizierten transparenten Silikonelastomere nicht die Anforderungen, die an Aufschiebe-Feldsteuerteile gestelltwerden; ihre Reißdehnung wird als zu gering eingeschätzt. Sie erreichen jedoch einen Wert für die Wechselspannungsfestigkeit von 28 kV/mm bzw. 29 kV/mm (0,5 mm Probendicke), der höher ist, als der für den transluzenten Typ. Es wurde des Weiteren herausgefunden, dass ein Nachvernetzen der Silikonelastomere keinen positiven Einfluss auf ihre Reißdehnung hat. Aus diesem Grund muss die Reißdehnung unmodifizierter transparenter Silikonelastomere verbessert werden, bevor sie als Isoliermaterial in Feldsteuerteilen verwendet werden können. Zusätzlich wurde auch in der Arbeit der Einfluss der Dehnungsbeanspruchung auf die dielektrische Festigkeit unmodifizierter transluzenter Silikonelastomere untersucht. Es konnte gezeigt werden, dass eine Dehnungsbeanspruchung derartiger Silikonelastomere die dielektrische Festigkeit nicht negativ beeinflusst; diese Materialien können somit unter kombinierter mechanischer und elektrischer Beanspruchung eingesetzt werden. Neben der Verbesserung der optischen Teilentladungsdetektion in transluzenten Silikonelastomer- Isolierstoffen wurde auch der Einfluss ihrer Modifikation mit Fluoreszenzfarbstoffen untersucht. Die Ergebnisse zeigen, dass das Modifizieren transluzenter Silikonpolymere mit 0,02 Gew.-% kommerziell erhältlicher Fluoreszenzfarbstoffe die dielektrische Festigkeit dieser Werkstoffe nicht negativ beeinflusst. Somit eignet sich ein optisch kompatibles Silikonelastomer sehr gut für die Herstellung neuartiger fluoreszierender Silikonfasern, die dann in modifizierte transparente Silikonelastomer-Aufschiebekörper für Hochspannungskabel-Endverschlüsse zum Zwecke der Teilentladungsdetektion integriert werden können. Im Ergebnis der Untersuchungen können experimentell verifizierte Empfehlungen für die Revision des IEC- Standards 60243-1 gegeben werden, insbesondere für die Bestimmung der Wechselspannungsfestigkeit von Silikonelastomeren. Empfehlungen für weiterzuführende Untersuchungen werden im abschließenden Kapitel dieser Arbeit gegeben. N2 - A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength Eb behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity Eb value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by statistical analysis based on the 2-parameter Weibull distribution function. The investigations revealed that the virgin translucent silicone rubber has a large elastic region with an acceptable plastic deformation and also provides an AC 50 Hz dielectric strength of approximately 24 kV/mm for 0.5 mm thickness. These values enable considering the tested translucent silicone as replacement material for an opaque elastomer that is currently used for a rubber stress cone of HV cable accessories Unfortunately, its optical transmittance is poor compared to optically clear transparent silicone rubbers. On the other hand, the mechanical properties of virgin transparent silicone rubbers do not comply with those demanded from push-on stress cones. In particular, their elongation at break is considered too low for that application. However they provide the AC dielectric strength values in either 28 kV/mm or 29 kV/mm for 0.5 mm thickness, which are higher than those of the translucent type. Moreover, it was found that the post-curing process does not provide a positive impact on the ultimate elongation of silicone rubbers. Hence, the elongation at break of virgin transparent silicone rubbers must be improved before they can be used as insulating material for a rubber stress cone. In addition, the influence of mechanical tensile stress on the dielectric strength of the virgin translucent silicone rubber was investigated. The results show that mechanical tensile stress does not negatively influence on dielectric strength of such silicone rubber, so it can be well-operated under combined electrical and mechanical stresses. Beside the improvement of optical PD detection performance in the translucent silicone insulation materials, the influence of fluorescent dye’s modification was investigated. The results indicate that the commercially available fluorescent dyes of 0.02 wt. % mixed into the translucent silicone polymer do not negatively influence on the Eb value of such silicone material. So an optically compatible silicone rubber is perfectly suitable for the fabrication of novel fluorescent silicone optical fibres, which can be integrated into the modified transparent rubber stress cones of HV cable terminations. The final outcomes of this investigation are experimentally substantiated recommendations for future revision of IEC 60243-1, especially the chapter dealing with the determination of AC dielectric strength of silicone rubbers. Recommendations and suggestions for further investigations are addressed in the final chapter of this thesis. T3 - BAM Dissertationsreihe - 120 KW - Silicone rubber KW - tensile strength KW - dielectric strength KW - IEC 60243-1 KW - fluorescent silicone rubber KW - elongation at break KW - Weibull distribution KW - dielectric breakdown test PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-381 SN - 978-3-9816380-9-7 SN - 1613-4249 VL - 120 SP - 1 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Nai, Corrado T1 - Rock-inhabiting fungi studied with the aid of the model black fungus Knufia petricola A95 and other related strains N2 - Schwarze Hefen sind jüngst beschriebene Mikroorganismen und zählen zu den widerstandsfähigsten derzeitig bekannten Eukaryonten. Diese taxonomisch sehr unterschiedlichen, jedoch morphologisch undifferenzierten filamentösen Pilze teilen zwei Hauptcharakteristika, nämlich die Melanisierung der Zellwand und die kompakte, blumenkohlartige Koloniebildung, was den Organismen passive und konstitutive Extremotoleranz verleiht. Obwohl morphologisch meist ununterscheidbar, weisen Schwarze Hefen eine ausgeprägte phylogenetische und ökologische Diversität auf. Aufgrund ihrer Beständigkeit in widrigen ökologischen Nischen, sind solche Mikroorganismen sowohl ubiquitär in Wüsten und auf Gletschern als auch dauerhafte Ansiedler von Stein- und weiteren umgebungsexponierten Oberflächen sowie anthropogenen Umgebungen wie Salzwerken, Luftbefeuchtungsanlagen und Geschirrspülern, und sind daher in der gemäßigten Klimazone weltweit verbreitet. Einige Mitglieder dieser Gruppe sind verheerende opportunistische Pathogene von Wirbellosen oder Wirbeltieren, einschließlich Menschen; für weitere Mitglieder, weisen einige Beobachtungen auf eine symbiotische Lebensweise mit gleichzeitig auftretenden Mikroorganismen an extremen Standorten hin. Neben ihrem Interesse in der Grundlagenforschung, sind Schwarze Hefen wichtig für zahlreiche angewandte Bereiche wie z.B. in der Biotechnologie, Astrobiologie, Bioremediation und im Materialschutz. Trotz neuerlicher Fortschritte in der Untersuchung solche Pilze, sind viele biologische Fragestellungen zurzeit noch abzuklären, wie z.B. hinsichtlich der molekularen Mechanismen ihrer Stresstoleranz, ihrer Physiologie und Ernährungsweise, und ihrer spezifischen Wechselwirkungen mit vermeintlichen symbiontischen Partnern. Modellorganismen für pathogene und salztolerante Schwarze Hefen sind bereits beschrieben; allerdings war noch kein passendes Modell für stein- und materialbesiedelnde Pilze vorhanden. Diese Doktorarbeit führt den Stamm Knufia petricola A95 als geeigneten Modellorganismus zur Untersuchung gesteinsbesiedelnder Lebensweise ein. Unter dieser Zielsetzung, wurde der Stamm auf physiologischer und molekularbiologischer Ebene anhand phänotypischer Microarrays, Genomanalysen, Wachstumsexperimenten und weiterer Methoden beschrieben. Zellwand-Mutanten von K. petricola A95 wurden während dieser Studie isoliert und beschrieben und in die komparative Analyse des Einflusses von Melanisierung auf Physiologie und Stresstoleranz eingeschlossen. Ein direkter Vergleich mit der phylogenetisch sehr unterschiedlichen, jedoch ökologisch, biogeographisch und morphologisch höchst ähnlichen gesteinsbesiedelnden Spezies Coniosporium apollinis wurde durchgeführt. Anfängliche Betrachtungen der Interaktionen zwischen K. petricola A95 und dem photosynthetisch aktiven Cyanobakterium Nostoc punctiforme ATCC 29133 wurden vorgestellt, um einen geeigneten Modellbiofilm aus gesteinsbesiedelnden Mikroorganismen zu etablieren. Die hier vorgestellten Ergebnisse sind ein Beitrag, um die Ökophysiologie und Extremotoleranz von Schwarzen Hefen zu verstehen. N2 - Black fungi are recently described microorganisms and amongst the most stress-tolerant eukaryotes currently known. They are a taxonomically diverse, but morphologically similar group of filamentous fungi that share two distinct signature characteristics, i.e. melanisation of the cell wall and compact colony morphology, which confer them passive, constituent extremotolerance. Albeit morphologically undifferentiated, black fungi show extensive phylogenetic and ecological diversity. Due to their persistence in unfavourable niches, they are ubiquitous on deserts and in glaciers and are permanent settlers of rock and other atmosphere-exposed material surfaces as well as man-made environments like salterns, humidifiers and dishwashers, and thus widespread in temperate regions worldwide. Some members are devastating opportunistic pathogens of invertebrates or vertebrates, including humans; others show symbiotic potentials with co-occurring microorganisms in extreme ecosystems. Beside their interest for fundamental biology, black fungi are important for several applied applications, e.g. in biotechnology, astrobiology, bioremediation and material preservation. Despite recent advances in the study of these fungi, many biological questions remain to be clarified regarding the molecular mechanisms underlying persistence, their physiology and nutritional modes, and their specific interactions with putative symbiotic partners. Models for pathogenic and halotolerant black fungi are established; however, no model was yet available for rock- and material-inhabiting ones. This thesis introduces the strain Knufia petricola A95 as a suitable model to study rockinhabiting lifestyle. For this purpose, the strain was characterised at the physiological and molecular levels by phenotype microarrays, growth experiments and genome analyses as well as further methods. Cell- wall mutants of K. petricola A95 isolated during the course of this study were described and included in the comparative analysis to investigate effect of melanisation on physiology and stress tolerance. Direct comparisons were also performed between the model strain and the phylogenetically distant but ecologically, biogeographically and morphologically highly similar rock inhabitant Coniosporium apollinis. Preliminary observations of a model biofilm of K. petricola A95 and the photosynthetic cyanobacterium Nostoc punctiforme ATCC 29133 are introduced to study symbiotic interactions of rock-inhabiting microorganisms. Data presented here are a contribution to the understanding of ecophysiology and extremotolerance of rock-inhabiting black fungi. T3 - BAM Dissertationsreihe - 119 KW - Gesteinsbesiedelnde Pilze KW - Schwarze Hefen KW - Modellorganismen KW - Stammbeschreibung KW - Biolog Phenotype MicroArrays KW - Rock-Inhabiting Fungi (RIF) KW - Black Yeast-Like Fungi KW - Model Organisms KW - Strain Characterisation PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-398 SN - 978-3-9816380-8-0 SN - 1613-4249 VL - 119 SP - 1 EP - 179 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Yin, Huajie T1 - Thermal and Dynamic Glass Transition in Ultrathin Films of Homopolymers and a Miscible Polymer Blend N2 - Dünne Polymerschichten im nanoskaligen Bereich finden heute in vielen Gebieten z. B. für Beschichtungen, als Membranen, für Sensoren oder in diversen elektronischen Geräten ihre Anwendung. Wissenschaftliche Studien belegen, dass viele physikalische Eigenschaften (Glasübergang, Kristallisation, Entnetzung, Alterung etc.) von ultradünnen Polymerschichten (Polymere in 1-dimensionaler räumlicher Begrenzung) stark von dem Verhalten im Volumen abweichen. Da die Eigenschaften eng mit der Verwendung und Funktionalität von Polymeren verknüpft sind, müssen die beobachteten Unterschiede in nanoskaliger Begrenzung genauer untersucht werden. Die vorliegende Arbeit beschäftigt sich damit, wie die Oberfläche (Luft-Polymer- Grenzfläche), die Polymer-Substrat-Wechselwirkung und die Schichtdicke die Glasübergangstemperatur (Tg) und die segmentale Dynamik (α-Relaxationsprozess) in Homopolymeren und mischbaren Polymer-Blends in dünnen Schichten beeinflussen. Komplementäre experimentelle Methoden, wie Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Breitbandige Dielektrische Spektroskopie (BDS) und Spezifische Wärme Spektroskopie (SHS) wurden angewendet, um den Glasübergang der dünnen Polymerschichten aus der thermodynamischen und kinetischen Sicht zu untersuchen. In dieser Arbeit werden die Glasübergangstemperatur und die segmentale Dynamik von ultradünnen Polymerschichten in Abhängigkeit der Schichtdicke untersucht. Für ultradünne Polycarbonatschichten (PC-Schichten, dünner als 20 nm) zwischen zwei Aluminiumschichten wurde ein Anstieg von der Glasübergangstemperatur (Tg) als auch der Vogel Temperatur (T0) mit abnehmender Schichtdicke beobachtet. BDS-Messungen zeigten einen Anstieg der segmentalen Relaxationszeit für ultradünne PC-Schichten. In den SHS-Messungen für die Siliciumdioxid (10-192 nm) basierten PC-Schichten konnte unter Einbeziehung des experimentellen Fehlers keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke festgestellt werden. Diese Eigenschaften werden im Hinblick auf die Geometrie der dünnen Schichten und die relevanten Wechselwirkungsenergien zwischen dem Polymer und dem Substrat diskutiert. Im Falle von dünnen Polystyrolschichten (PS-Schichten) mit hohem Molekulargewicht (Mw) sinkt die Glasübergangstemperatur Tg mit Verringerung der Schichtdicke. Die segmentale Dynamik hängt jedoch nicht von der Stärke der Schichtdicke ab. Darüber hinaus werden für dünne PS-Schichten die Auswirkungen des Molekulargewichts Mw und Temperbedingungen auf Tg und die segmentale Dynamik untersucht. Im Bereich der dünnen Polyvinylmethyletherschichten (PVME-Schichten) konnte mittels SHS keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke aufgezeigt werden. Der letzte Teil dieser Arbeit beschäftigt sich mit dünnen Schichten mischbarer Polymer-Blends mit einem Gewichtsteil von 50/50 PS/PVME. Es wurde eine Beschleunigung der segmentalen Dynamik mit geringerer Schichtdicke beobachtet. Dieses Phänomen wird mit der Oberflächenanreicherung von PVME, welches eine niedrigere Oberflächenenergie als PS aufweist, in das Polymer-Blend-System erklärt. Die segmentale Dynamik der mit PVME angereicherten freien Oberflächenschicht ist schneller als die Volumen- Dynamik. Durch die Verringerung der Schichtdicke werden diese freien Oberflächeneffekte so dominant, dass sie die gesamte segmentale Dynamik der Schichten von SHS (differenzieller AC Chip- basierten Kalorimetrie) erkennbare beeinflussen. Mittels Röntgenphotoelektronenspektroskopie (XPS) konnte die Oberflächenzusammensetzung des Films ermittelt und so die Phänomene der Oberflächenanreicherung verifiziert werden. N2 - Nowadays nanoscale thin polymer films are widely used in many fields like coatings, membranes, sensors, electronic devices and so on. Meanwhile, a lot of research work has evidenced the fact that many physical properties (glass transition, crystallization, dewetting, physical aging, etc.) of ultrathin polymer films show strong deviations from their bulk behavior. Since the aforementioned properties of polymer are closely related to their application and functionality, the discrepancies motivated us to obtain a more complete understanding of how nanoscale confinement affects the physical properties of polymer. The research work presented in this thesis is focused on understanding how the free surface (air- polymer interface), the polymer-substrate interface and the film thickness influence the glass transition temperature (Tg) and the related segmental dynamics (α-relaxation process) in both homopolymers and miscible polymer blends of thin films. Complementary experimental techniques including Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) have been used to investigate the glass transition of thin polymer films from both the thermodynamic and the kinetic point of view. In the thesis the film thickness dependence of Tg and segmental dynamics of different thin polymer films have been investigated. For ultrathin polycarbonate (PC) films capped between two aluminum (Al) layers an increase of both the glass transition temperature (Tg) and Vogel temperature (T0) with decreasing film thickness (d) was observed when the thickness became lower than 20 nm. The segmental relaxation time at a fixed temperature was found to increase for the ultrathin PC film of 19 nm measured by BDS, whereas no thickness dependency of the segmental dynamics was detected within the experimental error limit for the PC films supported on silicon dioxide (SiO2) (10-192 nm) in the SHS measurements. These properties are discussed in terms of the thin film geometry and the relevant interfacial interaction between the polymer and the substrate. In the case of thin polystyrene (PS) films with high molecular weight (Mw), Tg is decreasing with reducing film thickness while the segmental dynamics is independent of film thickness. Moreover, the effects of the Mw and the annealing protocol performed on thin PS films on their Tg and segmental dynamics is studied. In the part of thin poly(vinyl methyl ether) (PVME) films, no thickness dependence of the segmental dynamics was observed in the SHS measurements. The last part of the thesis was concentrated on the thin films of a miscible polymer blend, PS/PVME with the weight fraction of 50/50. It was observed that the segmental dynamics became faster with reducing the film thickness. This phenomenon is explained in terms of surface enrichment of PVME in the polymer blend system where PVME has a lower surface energy than PS. The segmental dynamics of the PVME-enriched free surface layer are faster than the bulk dynamics. Such free surface effect becomes so predominant with reducing the film thickness that it affects the segmental dynamics of the whole films detected by SHS using differential AC chip-based calorimetry. X-ray photoelectron spectroscopy (XPS) was used to probe the surface composition in order to confirm such surface enrichment phenomena. T3 - BAM Dissertationsreihe - 117 KW - glass transition KW - specific heat spectroscopy KW - ultrathin film KW - polymer KW - broadband dielectric spectroscopy PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418 SN - 978-3-9816380-5-9 SN - 1613-4249 VL - 117 SP - 1 EP - 133 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gravenkamp, Hauke T1 - Numerical methods for the simulation of ultrasonic guided waves N2 - Ultrasonic guided waves offer a wide range of applications in fields such as non-destructive testing, structural health monitoring or material characterization. They can be excited in thin-walled structures and propagate over comparably long distances. Due to their complex and dispersive propagation behavior, numerical methods are often required in order to analyze the guided wave modes that can be excited in a given structure and to simulate their interaction with defects. In the work presented in this thesis, highly efficient numerical methods have been developed that are specifically optimized for guided wave problems. The formulation is based on the Scaled Boundary Finite Element Method (SBFEM). The SBFEM is a semi-analytical method which evolved from the concept of Finite Elements but requires the discretization of the boundary of the computational domain only. To compute dispersion curves and mode shapes of guided waves, only the cross-section of the waveguide is discretized in the Finite Element sense, while the direction of propagation is described analytically. The wavenumbers of guided wave modes and the corresponding mode shapes are obtained as the eigenvalues and eigenvectors of a frequency-dependent Hamiltonian matrix. For the discretization, higher-order spectral elements are employed, leading to very low computational costs compared to traditional Finite Elements. Particular formulations are presented for plate structures as well as axisymmetric waveguides, where only the throughthickness direction has to be discretized. For the cases where the waveguide is embedded in or coupled to a quasi-infinite medium, a dashpot boundary condition is proposed in order to account for the effect of waves being transmitted into the surrounding medium. Though this approach is not exact, it leads to sufficiently accurate results for practical applications, while the computational costs are typically reduced by several orders of magnitude compared to other Finite Element based approaches. As a particular application, an experimental set-up for material characterization is discussed, where the elastic constants of the waveguide’s material are obtained from the analysis of waves propagating through the waveguide. A novel solution procedure is proposed in this work, where each mode of interest is traced over the required frequency range. The solutions are obtained by means of inverse iteration. To demonstrate the potential of the SBFEM for non-destructive testing applications, the interaction of guided wave modes with cracks in plates is simulated in the time domain for several examples. Particularly for the modeling of cracked structures, the SBFEM is very well suited, since the side-faces of the crack do not require discretization and the stress-singularity at the crack tip does not introduce additional difficulties. Hence, the computational costs can be reduced by typically a factor 100 compared to traditional Finite Elements and the meshing is straightforward. T3 - BAM Dissertationsreihe - 116 KW - guided wave KW - numerical methods KW - scaled boundary finite element method KW - ultrasound PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-428 SN - 978-3-9816380-4-2 SN - 1613-4249 VL - 116 SP - 1 EP - 195 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-42 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kolkoori, Sanjeevareddy T1 - Quantitative Evaluation of Ultrasonic Wave Propagation in Inhomogeneous Anisotropic Austenitic Welds using 3D Ray Tracing Method: Numerical and Experimental Validation N2 - Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non- destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austeniticweld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. Theultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb’s reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to determine the ultrasonic wave fields generated by a point source as well as finite dimension array transducers. T3 - BAM Dissertationsreihe - 112 KW - Nondestructive Testing KW - Inhomogeneous Materials KW - Austenitic Weld KW - Zerstörungsfreie Prüfung KW - 3D Ray Tracing Verfahren KW - Ultraschallfeld KW - austenitische Schweißnaht KW - inhomogene Materialien KW - 3D Ray Tracing Method KW - Ultrasonic Field PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-469 SN - 978-3-9815944-6-1 SN - 1613-4249 VL - 112 SP - 1 EP - 272 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -