TY - THES A1 - Dixneit, Jonny T1 - Wärmeführung und Beanspruchung von hochfesten Verbindungen mit LTT-Schweißzusatzwerkstoff N2 - Bestrebungen zum Leichtbau sowie höhere Anforderungen an das ertragbare Lastkollektiv führen in der Auslegung von Schweißkonstruktionen zunehmend zum Einsatz hochfester Feinkornbaustähle. Ohne Anwendung kostenintensiver Nachbehandlungsverfahren ist die Lebensdauer hochfester Schweißverbindungen unter wechselnder zyklischer Beanspruchung jedoch limitiert. Neben der geometrischen Kerbe sind schweißbedingte Gefügeveränderungen und die Höhe und die Verteilung von Schweißeigenspannungen für die Eigenschaften von Schweißverbindungen von erheblicher Bedeutung. Sogenannte LTT-Zusatzwerkstoffe bieten eine äußerst lukrative Möglichkeit, die resultierenden Schweißeigenspannungen bereits während des Schweißens zu adaptieren. Durch die gezielte Ausnutzung der mit der martensitischen Phasenumwandlung verbundenen Volumenausdehnung können bei hinreichend niedriger Umwandlungstemperatur Druck oder niedrige Zugeigenspannungen induziert werden. Bisherige Untersuchungen konzentrieren sich vorrangig auf die Entwicklung von LTT-Legierungskonzepten sowie dem Nachweis von Druckeigenspannungen, bieten jedoch nur wenige Erkenntnisse zum Einfluss der Wärmeführung, vor allem der Zwischenlagentemperatur, oder der Schrumpfbehinderung auf die Beanspruchung von LTT- Mehrlagenschweißverbindungen unter realitätsnahen Fertigungsbedingungen. Die Interaktion zwischen der martensitischen Phasenumwandlung und den thermischen bzw. den mechanischen Einflussfaktoren auf die Schweißeigenspannungen wurde einleitend durch elementare Schweißversuche analysiert. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf den Eigenspannungszustand in LTT-Schweißverbindungen erstmalig richtungsabhängig verstanden. Unter der Vorlage eines hohen Einspanngrades wurden Druckspannungen bevorzugt aufgebaut, wenn der Temperaturgradient während der Phasenumwandlung nur schwach ausgeprägt war. Dabei durchgeführte In-situ-Beugungsexperimente haben gezeigt, dass der Einspanngrad nur in Zusammenhang mit der richtungsabhängig vorliegenden behinderten thermischen Schrumpfung zu betrachten ist, um die Beanspruchung einer Schweißverbindung unter konstruktiver Schrumpfbehinderung bauteilübergreifend bewerten zu können. Anschließend wurden Mehrlagenschweißversuche unter freier Schrumpfung sowie in einer speziellen Prüfanlage unter konstruktiver Schrumpfbehinderung und realistischen Fertigungsbedingungen durchgeführt. Es gelang der Nachweis, dass durch die Verwendung von LTT-Legierungen das Reaktionsmoment Mx gegenüber einer konventionellen Schweißverbindung unabhängig von der Zwischenlagentemperatur reduziert wird. Dennoch nimmt die Reaktionsspannung σ_total mit zunehmender Zwischenlagentemperatur zu. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf die lokale und die globale Beanspruchung der untersuchten Schweißverbindungen interpretiert. Unabhängig von der genutzten Zwischenlagentemperatur lag für die LTT-Stumpfstoßverbindungen vor allem in Longitudinalrichtung nur eine geringe Schrumpfbehinderung während der martensitischen Phasenumwandlung vor. Dadurch wurden während der Abkühlung vor allem im Volumen Druckspannungen in Longitudinalrichtung aufgebaut. Der Eigenspannungszustand von LTT-Verbindungen wird darüber hinaus durch inhomogene Phasenumwandlung der Schweißnaht infolge von Konzentrationsunterschieden verschiedener Elemente im Schweißgut bestimmt. N2 - Efforts towards lightweight constructions and higher demands on the bearable load spectrum are increasingly leading to the use of high-strength-low-alloyed steels in the design of welded structures. Without the use of cost-intensive post weld treatments the service life of high strength welded joints is limited under alternating cyclic loading. In addition to the geometric notch, structural changes caused by welding and the level and the distribution of welding residual stresses are of considerable importance for the properties of welded joints. So-called Low Transformation Temperature filler materials (LTT) offer an extremely gainful possibility to adapt the resulting welding residual stresses already during welding. Through the targeted utilization of the volume expansion associated with the martensitic phase transformation, compression residual stresses or low tensile residual stresses can be induced at sufficiently low transformation temperatures. Previous investigations have concentrated primarily on the development of LTT alloy concepts and the verification of compressive welding residual stresses, but offer only limited insights into the influence of the heat conduction. Especially the influence of the interpass temperature or the shrinkage restraint on the stress of LTT multi-run welded joints under realistic production conditions have not been investigated yet. The interaction between the martensitic phase transformation and the thermal and mechanical factors influencing the welding residual stresses has been first analyzed by elementary welding experiments. By using the temperature gradient the influence of the shrinkage restraint of the weld on the residual stress state in LTT welded joints has been understood direction-dependent for the first time. Under the assumption of a high intensity of restraint, compressive residual stresses were preferentially built up only when the temperature gradient during phase transformation was weakly pronounced. In situ diffraction experiments have shown that the intensity of restraint can only be considered in connection with the direction-dependent thermal shrinkage of a welded joint in order to be able to evaluate the stress of a welded joint across all components. Subsequently, multi-run welding experiments were carried out under free shrinkage and high intensity of restraint using a special test facility to simulate realistic production conditions. It has been demonstrated that the use of LTT alloys reduces the reaction moment Mx compared to that of a conventional welded joint irrespective of the interpass temperature. The reaction stress σ_total however was increased with increasing interpass temperature. Using the temperature gradient, the influence of the shrinkage restraint of the weld on the local and global stress of the examined welded joints was interpreted. Irrespective of the interpass temperature, the LTT butt joints were only subject to minor shrinkage restraint in the longitudinal direction during the martensitic phase transformation of the weld. As a result, longitudinal compressive stresses were generated in the volume during cooling. In addition, the residual stress condition of LTT joints is determined by inhomogeneous phase transformation of the weld due to concentration differences of different elements in the weld metal. T3 - BAM Dissertationsreihe - 163 KW - LTT-Zusatzwerkstoff KW - MAG KW - HSLA KW - Feinkornbaustahl KW - Wärmeführung KW - Einspanngrad KW - Beanspruchungsanalyse KW - Eigenspannung KW - AXRD KW - Synchrotronbeugung KW - Neutronenbeugung PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471541 SN - 1613-4249 VL - 163 SP - 1 EP - 286 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-47154 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schlick-Hasper, Eva T1 - Analyse, Charakterisierung und Modellierung der Gasleckageraten repräsentativer Bauarten von Gefahrgutverpackungen N2 - Derzeit existieren für Gefahrgutverpackungen in den internationalen Gefahrgutvorschriften keine Festlegungen für quantitative Grenzleckageraten, die sich an Sicherheitsbetrachtungen während der Beförderung orientieren. Für die Dichtheitsprüfung im Rahmen der Bauartzulassung von Gefahrgutverpackungen für flüssige Füllgüter ist das Standardprüfverfahren das Eintauchverfahren in Wasser („Bubble Test“). Hierbei handelt es sich um ein lokalisierendes Prüfverfahren. Seine Anwendung lässt keine quantitative Aussage darüber zu, ob unter Beförderungsbedingungen aufgrund von strömungsbedingter Stofffreisetzung durch Leckstellen der Gefahrgutverpackungen die Gefahr der Bildung einer explosionsfähigen Atmosphäre besteht. Zentrales Ziel der vorliegenden Arbeit ist daher, zunächst quantitative Dichtheitsanforderungen an Gefahrgutverpackungen im Hinblick auf die Entstehung explosionsfähiger Dampf-Luft-Gemische während des Transports zu entwickeln. Im Anschluss werden strömungsbedingte Leckageraten der Verschlüsse verschiedener Bauarten von Gefahrgutverpackungen gemessen. Der Vergleich der Messwerte mit den berechneten Grenzwerten ermöglicht die Einschätzung hinsichtlich der Bildung einer explosionsfähigen Atmosphäre. Dieser quantitative Ansatz zur Beurteilung der Dichtheit ist für Gefahrgutverpackungen derzeit noch nicht etabliert. Die Grenzleckageraten werden für das Szenario des interkontinentalen Transports von Gefahrgutverpackungen in einem 20-Fuß-Frachtcontainer im Hinblick auf die untere Explosionsgrenze abgeleitet. Dies geschieht unter Annahme einer Worst-Case-Betrachtung für Beförderungsdauer, Beladung und Luftwechselrate. Als mittlere Beförderungstemperatur wird 30 °C angesetzt. Eine vollständige Durchmischung im freien Luftraum des Containers wird angenommen. Es werden drei repräsentative Baugrößen von Gefahrgutverpackungen gewählt, mit einem Volumen von ca. 6 L, ca. 60 L und ca. 220 L. Als Füllgüter werden die 23 meistbeförderten flüssigen Gefahrgüter betrachtet. Die treibende Kraft für die Strömung durch Leckstellen ist der sich in der Verpackung ausbildende Überdruck. Die Berechnung des Überdrucks erfolgt durch analytische Modellgleichungen in Abhängigkeit der spezifischen Stoffdaten, Füllgrad, Befülltemperatur, Transporttemperatur und Nachgiebigkeit der Verpackungsbauart. Die quantitative Leckageratenmessung der Gefahrgutverpackungen wird mit dem Überdruckverfahren mit Ansammlung (Akkumulationsverfahren) unter Verwendung von Helium als Prüfgas vorgenommen. Zusätzlich erfolgt die Detektion weiterer potentieller Leckstellen außerhalb des Verschlussbereiches mit dem Schnüffelverfahren. Bei allen untersuchten Bauarten, mit Ausnahme des 6 L-Feinstblechkanisters, ist der Verschluss die einzige systematische Leckstelle der Verpackung. Die Messung der Helium-Leckageraten und der anschließende Vergleich mit den berechneten Helium-Grenzleckageraten zeigt, dass folgende Bauarten hinsichtlich des Erreichens der unteren Explosionsgrenze (UEG) durch eine Leckageströmung als kritisch einzuschätzen sind: Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn bei diesen bestimmte Schädigungsmuster im Verschlussbereich vorliegen; Feinstblechkanister, da bei ihnen nicht nur der Verschlussbereich eine Leckstelle darstellt; Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn diese auch für Füllgüter der Verpackungsgruppe I zugelassen sind. Als Konsequenz sollten bei diesen kritischen Bauarten entweder Modifikationen in Bezug auf die Verpackung selbst oder auf die Transportbedingungen im Frachtcontainer vorgenommen werden. Bei Kunststoffverpackungen ist auch die Füllgutpermeation als Freisetzungsmechanismus relevant. Es wird der prinzipielle Rechenweg zur Berücksichtigung dieses Quellterms exemplarisch gezeigt. Diese Arbeit leistet einen grundlegenden Beitrag für die Etablierung einer systematischen quantitativen Dichtheitsbetrachtung von Gefahrgutverpackungen mit dem Ziel der Verbesserung der Sicherheit beim interkontinentalen Gefahrguttransport im Frachtcontainer. T3 - BAM Dissertationsreihe - 161 KW - Gefahrgutverpackungen KW - Dichtheit KW - Dichtheitsprüfung KW - Leckagerate KW - Überdruck KW - Dangerous goods packagings KW - Leakproofness KW - Leak testing KW - Leakage rate KW - Gauge pressure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468410 SN - 1613-4249 VL - 161 SP - 1 EP - 244 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46841 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Alexander T1 - Schädigungscharakterisierung an Faser-Kunststoff-Verbunden im Schwingversuch mittels Röntgenrefraktionstopographie unter Berücksichtigung der Matrixeigenschaften N2 - In der vorliegenden Arbeit wurden verschiedene Epoxidharzsysteme charakterisiert. Zwei Systeme mit großen bruchmechanischen Unterschieden wurden zur Fertigung äquivalenter GFK- und CFK-Laminate mit Faserausrichtungen in 0/90° und ±45° ausgewählt. In quasi-statischen Zugversuchen und Einstufenschwingversuchen mit einem Beanspruchungsverhältnis von R= 0,1 wurden diese Laminate hinsichtlich ihres Schädigungsbeginns und ihrer Schädigungsentwicklung untersucht. Die Detektion der Schädigungen sowie die Dokumentation der Schädigungsentwicklung wurde anhand der Lichtabsorptionsanalyse an GFK-Laminaten und anhand der Röntgenrefraktionsanalyse an CFK-Laminaten umgesetzt. Auf diese Weise konnten Einflüsse der bruchmechanischen Eigenschaften der Matrix auf die Schädigungsentwicklung im Verbund aufgezeigt werden. Zudem wurden für die untersuchten Laminate die Schädigungsgrenzen bei schwingender Beanspruchung ermittelt. Anhand durchgeführter Schwingversuche an CFK-Laminaten im Very High Cycle Fatigue-(VHCF)-Lastwechselbereich bis 108 konnten Rückschlüsse vom Schädigungsverhalten im High Cycle Fatigue-(HCF)-Lastwechselbereich bis 106 auf die Dauerfestigkeit im VHCF-Bereich gezogen werden und damit VHCF-Dauerfestigkeitsgrenzen bestimmt werden. Mit dem Ziel die Ermüdung der Laminate auf die Beanspruchung der Matrix zurückzuführen, wurden die Erweiterte Inverse Laminattheorie, mikromechanikbasierte Mischungsregeln sowie eine Vergleichsspannungshypothese auf die untersuchten Laminate angewendet. Die Schädigungsgrenzen konnten damit in Form der Matrixbeanspruchung wiedergegeben werden. Die Abbildung der Ermüdung verschiedener Laminate anhand einer matrixspezifischen normierten Masterschädigungslinie ist für die behandelten CFK- und GFK-Laminate gelungen. T3 - BAM Dissertationsreihe - 162 KW - CFK KW - GFK KW - Ermüdung KW - Epoxidharz KW - Masterschädigungslinie KW - Röntgenrefraktion KW - ZfP PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467833 SN - 1613-4249 VL - 162 SP - 1 EP - 204 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Luong, Thi Mai Hoa T1 - Identification of the state of stress in iron and steel truss structures by vibration-based experimental investigations N2 - Safety evaluation of truss structures depends upon the determination of the axial forces and corresponding stresses in axially loaded members. Due to presence of damages, change in intended use, increase in service loads or accidental actions, structural assessment of existing truss structures is necessary. This applies particularly to iron and steel trusses that are still in use, including historic and heritage monuments. Precise identification of the stresses plays a crucial role for the preservation of historic trusses. The assessment measures require non–destructiveness, minimum intervention and practical applicability. The axial forces in truss structures can be estimated by static calculations using the method of joints, method of sections or finite element method, if accurate information about parameters such as external loads, geometrical characteristics, mechanical properties, boundary conditions and joint connections are known. However, precise information about these parameters is difficult to be obtained in practice. Especially in the cases of historic constructions, reasonable assumptions about the uncertain parameters may not be acquired. Motivated by the preservation of existing truss−type constructions composed of axially loaded slender members, the present work aims to develop a non–destructive methodology to identify the axial forces or corresponding stress states in iron and steel truss structures. The approach is based on vibration measurements and the finite element method combined with optimization techniques. After a state of the art review, numerical and experimental studies were carried out on three partial systems of truss–type structures. The investigated systems included single bars, a two–bar truss−like system and a five–bar truss. They were developed step–by–step as built–up truss−type constructions that are constituted of individual members connecting at joints. The examined aspects included the effects of structural loading on the dynamic performance of truss structures, modelling of joint connections, mode pairing criteria, selection of updating parameters and definition of an objective function, as well as the use of different optimization techniques. Concerning the axial force effects on the structural dynamic responses, the effects of the stress stiffening become more complicated for multiple–member truss systems with increasing complexity. The coexistence of both compressive and tensile forces in trusses has counteracting effects on the modal parameters. These effects cause variation of natural frequencies and interchange of modes when the loads or corresponding member forces are changed. To examine the axial force effects on the structures at different stress states, in the numerical study and laboratory experiments, loads were applied progressively to the investigated truss−like systems. Regarding the modelling of joints for truss–type structures, the joint flexibility affects the structural dynamic responses. Therefore, the numerical models of truss−type structures include joint models with variable rotational springs to represent semi–rigid connections. Considering the mode pairing criterion, the mode pairing is performed by adapting an enhanced modal assurance criterion with the calculation of the modal strain energy. The criterion allows the selection of desired clusters of degrees of freedom related to specific modes. With respect to the model updating strategies, the selection of updating parameters and the choice of an appropriate objective function are identified to be significantly important. In addition, three different optimization techniques were applied to compare their suitability for the inverse axial force identification and estimation of joint flexibility of truss structures. The results of the numerical study and laboratory tests show that nature–inspired optimization methods are considered as promising techniques. A methodology consisted of a two–stage model updating procedure using optimization techniques was proposed for the determination of multiple member axial forces and estimation of the joint flexibility of truss–type structures. In the first stage optimization, the validation criterion is based on the experimentally identified global natural frequencies and mode shapes of the truss. Additionally, the axial forces in selected individual members of the truss are used. They are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the members using an analytically−based algorithm. Based on the results of the identified axial forces in the first stage, a second optimization procedure for the joint stiffnesses is performed. In this stage, the modal parameters of the global natural frequencies and mode shapes are used as validation criterion. From the results of the laboratory experiments, the identified axial forces by the proposed methodology agree well with the experimentally measured axial forces of the investigated systems at different stress states. Moreover, based on the numerical verification, the identified joint stiffnesses indicate reasonably the joint flexibility in relation to the pinned or rigid conditions. To assess the relevance of the proposed methodology on existing structures in real−life conditions, an in–situ experiment was carried out on a historic Wiegmann–Polonceau truss in the city of Potsdam. The in–situ experiment shows that uncertainties relating the mechanical and geometrical properties of historic trusses as well as the experimental sensor setup can influence the accuracy of the axial force identification. In the present work, recommendations are given for the development of a guideline of measuring concepts and assessment strategies applied to existing truss structures. The intention is to integrate the proposed methodology as part of the Structural Health Monitoring for historic truss–type constructions. T3 - BAM Dissertationsreihe - 159 KW - State of stress KW - Beanspruchungszustand KW - fachwerkartige Stahltragwerken KW - Schwingungsmessungen KW - Finite-Elemente-Modellkalibrierung KW - Optimierungsmethoden KW - Truss structures KW - Vibration measurements KW - Finite element model updating KW - Optimization techniques PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449615 SN - 1613-4249 VL - 159 SP - 1 EP - 195 PB - BAM Eigenverlag CY - Berlin AN - OPUS4-44961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hesse, Almut T1 - Entwicklung immunchemischer Methoden zur Spurenanalytik der Sprengstoffe Nitropenta und Trinitrotoluol N2 - Pentaerythrityltetranitrat (PETN), ein in jüngster Vergangenheit häufig von Terroristen verwendeter Sprengstoff, ist äußerst schwer zu detektieren. Ein verbesserter Antikörper gegen PETN wurde durch Anwendung des Konzepts des bioisosteren Ersatzes entwickelt,indem ein Nitroester durch einen Carbonsäurediester ersetzt wurde. Biostere Moleküle haben eine ähnliche Struktur wie die Referenzsubstanz und zeigen eine vergleichbare biologische Wirkung. Dieser Ansatz führte zu polyklonalen Antikörpern mit extrem guter Selektivität und Sensitivität. Die Nachweisgrenze des Enzyme-Linked Immunosorbent Assays (ELISAs) beträgt 0,15 μg/L. Der Messbereich des Immunassays liegt zwischen 1 und 1000 μg/L. Die Antikörper sind sowohl hinreichend pH-stabil als auch robust gegen Lösungsmittelzusätze. Das Antiserum könnte auch für Schnelltests, Biosensoren, Mikro-Arrays und andere analytische Methoden verwendet werden. Für die Umweltanalytik von Trinitrotoluol (TNT) wurde eine Hochdruckflüssigkeitschromatographie (HPLC)-kompatible Affinitätssäule hergestellt. Druckbeständiges, poröses Glas hat sich als ein hervorragendes Trägermaterial herauskristallisiert. Um selektive anti-TNT-Antikörper für die Herstellung der Affinitätssäule aus den beiden verwendeten TNT-Seren zu isolieren, wurde eine Trennung an einer Dinitrophenyl-Affinitätssäule durchgeführt. Zur Optimierung der Immobilisierungsmethode wurden orangefarbene Dabsyl -Proteine synthetisiert und auf der Oberfläche gebunden. Die Färbung wurde als Indikator für die Immobilisierungsdichte verwendet. Wegen der hohen Affinitätskonstanten der polyklonalen anti-TNT-Antikörper der beiden Seren (5,1 bzw. 2,3∙109 L/mol) lässt sich TNT durch eine typische saure Elution der TNT-Affinitätssäule nur schwer eluieren. Aus diesem Grund wurde eine neuartige Elutionsmethode entwickelt, die irreversible, denaturierende, thermische Online -Elution. Diese eröffnet ein weites Anwendungsfeld, da so Affinitäten, die klass ischerweise aufgrund zu hoher Bindungskonstanten zwischen Ligand und Rezeptor nicht für die Affinitätschromatographie genutzt werden können, für die Analytik besser handhabbar werden. Die maximale Kapazität einer im Rahmen dieser Arbeit hergestellten Affinitätssäule (64,8 μL) betrug 650 ng TNT bzw. 10 μg/mL Säulenvolumen. Um die Immobilisierungsdichte der produzierten Affinitätssäulen zu bestimmen, wurde ein neues Verfahren entwickelt, da die üblichen spektroskopischen Proteinbestimmungsmethoden aufgrund der hohen unspezifischen Wechselwirkung mit dem Trägermaterial zur Proteinbestimmung nicht geeignet waren. Zur Quantifizierung von Proteinen oder Peptiden,die auf festen Trägern immobilisiert sind, wurde auf Grundlage einer HPLC-Trennung der aromatischen Aminosäuren Tyrosin (Tyr) und Phenylalanin (Phe) ohne vorherige Derivatisierung eine gegenüber der klassischen Aminosäureanalytik vereinfachte HPLC/UV-Methode entwickelt. Die Hydrolyse der Proteine und Peptide wurde durch Einsatz von Mikrowellentechnik beschleunigt, sodass nur 30 Minuten statt ca. 22 Stunden für das Standardprotokoll benötigt wurden, bei dem ein Hydrolyseröhrchen verwendet wird. Zur internen Kalibrierung wurden zwei Standardverbindungen, Homotyrosin (HTyr) und 4-Fluorphenylalanin (FPhe) verwendet. Die Nachweisgrenze (limit of detection, LOD) bei 215 nm ist sowohl für Tyr als auch für Phe 0,05 μM (~ 10 μg/L). Dieses neue Verfahren, das als Aromatische Aminosäureanalyse (Aromatic Amino Acid Analysis, AAAA) bezeichnet werden kann, wurde zur Proteinbestimmung von homogenen Proben mit Rinderserumalbumin (BSA) des Nationalen Instituts für Standards und Technologie der USA (NIST) validiert, wobei die Nachweisgrenze für Proteine mit 16 mg/L (~ 300 ng BSA) mit gängigen spektroskopischen Verfahren vergleichbar ist. Es liefert incl. der Hydrolysestufe eine verbesserte Genauigkeit mit einer relativen Standardabweichung von ca. 5%. T3 - BAM Dissertationsreihe - 158 KW - Affinitätschromatographie KW - Affinity chromatography KW - Polyklonale TNT-Antikörper KW - Immunassay KW - Aromatische Aminosäureanalyse KW - Polyclonal TNT-antibodies KW - Polyclonal PETN-antibodies KW - Immunoassay KW - Aromatic amino acid analysis KW - Polyklonale PETN-Antikörper PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-417566 SN - 1613-4249 VL - 158 SP - I EP - 234 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bronsert, Jeffrey T1 - Numerische Modellierung der Fahrzeug-Fahrweg-Wechselwirkung an Eisenbahnfahrwegen und ihre Anwendung im Brückenübergangsbereich N2 - Im Mittelpunkt der vorliegenden Arbeit steht die numerische Modellierung der Fahrzeug-Fahrweg-Wechselwirkung von Eisenbahnfahrwegen, die auch für Fahrwege mit einer Diskontinuität einsetzbar ist. Der Fokus wurde hier auf Fahrwege mit einem Brückenbauwerk gelegt, weil es an den Übergängen zu einer erhöhten Beanspruchung kommt. Daher wurde für den Fahrweg mittels der Finiten Elemente Methode (FEM) ein dreidimensionales Modell mit einer Lösung im Zeitbereich entwickelt, das die wesentlichen Elemente des Schienenverkehrs, das Fahrzeug, den Fahrwegoberbau und den Untergrund, enthält. Aufgrund der unendlichen Ausdehnung des Untergrundes wurde für den Rand des endlichen FE-Gebiets, die sogenannte Scaled Boundary Finite Element Methode (SBFEM) verwendet, welche ein semi-analytisches Verfahren ist und die Abstrahlungsbedingung erfüllt. Da dieses Verfahren sowohl zeitlich als auch räumlich global ist, kann es mitunter für lange Simulationszeiten sehr aufwendig sein. Deshalb wurde es mittels der Methode der reduzierten Basisfunktionen und einer Linearisierung der Beschleunigungs-Einflussmatrix modifiziert, wodurch das Berechnungsverfahren effizienter gestaltet werden konnte. Anhand von zwei analytischen Lösungen aus der Bodendynamik konnte das modifizierte Verfahren der SBFEM validiert werden. Für ein Gleis auf homogenem Untergrund wurden mit Hilfe des gekoppelten FE-SBFE-Modells verschiedene Ergebnisse am Oberbau, im Boden und für die Ausbreitung von Erschütterungen berechnet, die sehr gut mit Ergebnissen aus der Literatur übereinstimmen. Zudem konnte das numerische Modell mit einer Schwingungsmessung an einer Schwelle eines realen Fahrwegs validiert werden. Unter Anwendung des gekoppelten FE-SBFE-Modells wurde ein Fahrweg mit Brückenbauwerk untersucht, wobei eine Beurteilung und Optimierung des Übergangsbereichs unter Verkehrslast hinsichtlich des Langzeitverhaltens im Vordergrund stand. Anhand von einfachen Bewertungskriterien, die als Indikatoren für das Langzeitverhalten dienen können, wurden verschiedene konstruktive Optimierungsmaßnahmen für den Brückenübergangsbereich diskutiert, wie zum Beispiel die Gestaltung eines Hinterfüllungsbereiches oder der Einsatz elastischer Elemente (Zwischenlagen, Besohlungen, Unterschottermatten) im Fahrweg. Das entwickelte numerische Modell für die Fahrzeug-Fahrweg-Wechselwirkung lässt sich ohne großen Aufwand auf weitere Problemstellungen von Übergangsbereichen erweitern, um spezifische konstruktive Optimierungsmaßnahmen zu untersuchen. T3 - BAM Dissertationsreihe - 157 KW - Brückenübergangsbereich KW - Fahrzeug-Fahrweg-Wechselwirkung KW - Gekoppeltes FE-SBFE-Modell PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395784 SN - 978-3-9818270-6-4 SN - 1613-4249 VL - 157 SP - 1 EP - 140 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39578 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mirtschin, Nikolaus T1 - Thermomechanisches Verhalten von semikristallinem Polyester-Urethan N2 - Formgedächtnispolymere werden durch thermomechanische Vorbehandlung, die Programmierung, in eine temporäre Form überführt. In die Ursprungsform kehren sie dann erst nach externer Stimulierung, durch Auslösen des Formgedächtniseffekts, wieder zurück. Um diesen Effekt zu optimieren, werden in dieser Arbeit thermomechanische Designoptionen analysiert und Stellschrauben der Programmierung diskutiert. Quantifiziert wird das Materialverhalten eines physikalisch vernetzten Polyurethans mit semikristalliner Polyester-Weichsegmentphase (PEU) in thermomechanischen Messungen, in denen das Polymer Dehnungen bis über 1000% fixiert. Deformationen im breiten Schmelzübergangsbereich der Weichsegmentphase ermöglichen die präzise Kontrolle über die Temperaturen der Dehnungs- und Spannungsrückstellung, den bekannten Temperaturgedächtniseffekt (TGE). Erst durch eine neuartige Programmierung wird jedoch der Beginn der Rückstellung einstellbar. Für diesen Onset-TGE wird das PEU direkt nach dem Recken entlastet und danach unter die Kristallisationstemperatur abgekühlt. In situ Röntgenstreuung zeigt, dass durch den frühen Entlastungszeitpunkt nur der Teil der kristallinen Weichsegmentphase zur Fixierung beiträgt, der auch beim Recken kristallin ist. Die Kristallinität bietet daher eine Stellschraube, um das thermomechanische Verhalten zu veredeln. Über die Optimierungsparameter Reckrate, Temperaturhaltezeit und maximale Dehnung erzielt das PEU hohe Fixierbarkeiten und Rückstellspannungen, ohne die Rückstellung und den Onset-TGE zu beeinträchtigen. Durch die Erweiterung der Programmierung des Onset-TGEs hin zu einer zweiten Deformation und Entlastung innerhalb des Schmelzübergangs zeigt das PEU einen bisher nicht berichteten zweistufigen Spannungsanstieg während der Rückstellung. Ein Temperaturlimit für den Onset-TGE stellt die Peak-Schmelztemperatur aus der dynamischen Differenzkalorimetrie dar. Durch die verbleibende Kristallinität oberhalb dieser Temperatur führt die Deformation und Entlastung direkt zur thermoreversiblen Aktuation mit Dehnungsänderungen bis zu 28%. Die Ergebnisse werden auf einen Miniaturisierungsansatz für schaltbare Informationsträger übertragen, mit denen eine maschinenlesbare Information von nichtlesbar nach lesbar geschaltet werden kann. In einer Machbarkeitsstudie wird der für Sensoranwendungen vielversprechende Onset-TGE genutzt, um die Lesbarkeit der Informationsträger bei einer vordefinierten Temperatur zu schalten. Das erweitert das potentielle Anwendungsfeld der Technologie vom Produkt- und Markenschutz zur Überwachung von Kühlketten. N2 - Shape memory polymers are able to change their shape upon application of an external stimulus. This behavior requires a thermomechanical treatment, so-called programming, to establish a temporary shape. To optimize the shape memory performance, thermomechanical design options will be analyzed and programming parameters discussed in the present thesis. The material behavior of a physically crosslinked polyurethane with semicrystalline polyester soft segments (PEU) is quantified by thermomechanical measurements, where the polymer fixes strains of above 1000%. The deformation within the broad melting transition of the soft segment phase enables the precise control over the temperatures of strain and stress recovery, also known as temperature-memory effect (TME). But only the herein introduced programming route, consisting in elongation and unloading prior to cooling below the crystallization transition, allows for fine-tuning the beginning of recovery. For the resulting onset-TME in situ X-ray scattering indicates that only soft segment crystals contribute to fixation, which are crystalline during deformation. Therefore, the crystallinity opens the door for gaining precisely control over the thermomechanical behavior. Optimization parameters for reaching high strain fixities and recovery stresses without compromising recovery nor the onset-TME are found in the strain rate, temperature holding time and maximum strain. When extending the programming route for onset-TMEs towards a second deformation and unloading step of PEU within the melting transition, an unreported two-step stress recovery is rendered possible. However, the peak melting temperature determined from differential scanning calorimetry represents a temperature limit for the onset control. Through the residual crystallinity above that temperature, deformation and unloading yield thermoreversible actuation with strain changes up to 28%. The findings are transferred to a miniaturization approach for switchable information carriers for switching encoded information from machine-unreadable to readable. In a proof-of-concept study the onset-TME – promising for sensor applications – can be exploited in order to predefine a temperature threshold value for readability of information carriers. This behavior widen their potential applicability from product and brand protection to cold chain supervision. T3 - BAM Dissertationsreihe - 156 KW - Formgedächtnispolymere KW - Temperaturgedächtnispolymere KW - Polyester-Urethan KW - Thermomechanische Eigenschaften KW - Programmierung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-399648 SN - 978-3-9818270-5-7 SN - 1613-4249 VL - 156 SP - iii EP - 150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Zhang, Lei T1 - Microstructure-property relationship in microalloyed high-strength steel welds N2 - Hochfeste Stähle sind bevorzugte Werkstoffe für die Herstellung von sicheren und zuverlässigen Strukturen in der Industrie. Dabei ist das Schmelzschweißen die Hauptverbindungstechnologie für diese Werkstoffgruppe. Während der Entwicklung der hochfesten niedriglegierten (engl. HSLA) Stähle wurden in der Vergangenheit unterschiedliche Legierungskonzepte mit fortgeschrittenen Herstellungstechniken kombiniert und umfassend untersucht. Jedoch befassten sich nur wenige Studien damit, wie die unterschiedliche Zusammensetzung der Legierungen die Eigenschaften der hochfesten Schweißverbindungen dieser Stähle beeinflussen, selbst im Fall begrenzter Gehalte von Mikrolegierungselementen. In der Schweißpraxis dieser hochfesten Stähle sind die Herausforderungen an die sich ausbildenden Mikrostruktur und den resultierenden mechanischen Eigenschaften von sehr großem Interesse. Diesbezüglich liegt der Hauptfokus des Interesses beim Einfluss der Mikrolegierungselemente auf die Phasenumwandlung sowie die resultierende Performance der Schweißverbindung selbst. Geringes Erweichen (Softening) der Wärmeeinflusszone (WEZ) sowie ein begrenztes Austenitkörner-Wachstum sind dabei erwünschte Eigenschaften der Schweißnaht, jedoch liegt das Hauptaugenmerk auf der Sicherstellung hervorragender Zähigkeits- und Zugeigenschaften. Zum Erreichen dieses Zieles werden Mikrolegierungselemente wie Ti, Nb oder V bewusst zu diesen modernen hochfesten Stählen zulegiert. Der Fokus der vorliegenden Arbeit ist das Verständnis, wie die mechanischen Eigenschaften der Verbindungen dieser HSLA-Stähle von Unterschieden in den jeweiligen Legierungskonzepten abhängen, die durch moderne Schweißprozesse gefügt werden. Zunächst wurden dazu drei unterschiedlich mikrolegierte (Nb, Ti und Ti+V Zugabe) Stähle vom Typ S690QL untersucht. Lichtmikroskopische Untersuchungen bestätigten dabei, dass eine ähnliche Zusammensetzung aus angelassenem Bainit und Martensit in allen drei Grundwerkstoffen vorherrschte und unterschiedlich stark vergröberte Ausscheidungen der Mikrolegierungselemente beobachtet wurden. Diese Ausscheidungen wurden weiterführend mittels thermodynamischer Softwareberechnung analysiert und durch Transmissions-Elektronen-Mikroskopie (TEM) identifiziert. Die Ergebnisse der mechanischen Werkstoffprüfung zeigten, dass alle drei Stähle oberhalb der nach Norm geforderten Zähigkeits- und Zugfestigkeitswerte lagen, jedoch Unterschiede im Dehnungsverhalten aufwiesen. Die drei Stähle wurden dann anschließend unter Verwendung des gleichen Schweißzusatzes geschweißt. Dabei wurde das abgeschmolzene Schweißgut durch die Mikrolegierungselemente aus dem Grundwerkstoff infolge der hohen Aufmischung beeinflusst. Die erhöhte Aufmischung bildet dabei ein wesentliches Merkmal der verwendeten modifizierten Sprühlichtbogentechnik. Als Ergebnis zeigte der Nb-mikrolegierte Stahl eine genügend hohe Aufnahme von Legierungselementen aus dem Grundwerkstoff in das Schweißgut, um dessen Mikrostruktur im Fall steigender Abkühlraten von nadeligem Ferrit hin zu Bainit zu verändern. Dieses wiederum reduzierte die Zähigkeitseigenschaften des Schweißgutes dieses Nb-legierten Stahls. Dieses Verhalten wurde in den beiden anderen Stählen nicht beobachtet. Ein zweiter Hauptpunkt dieser Arbeit war die Ausbildung der Mikrostruktur in der Feinkorn- und Grobkorn-WEZ und deren Zähigkeitseigenschaften mit den sich verändernden Schweißparametern. Zu diesem Zweck wurden definierte Werkstoffzustände physikalisch simuliert, um die resultierende Mikrostruktur sowie das Austenitkorn-Wachstum zu charakterisieren. Die Mikrolegierungselemente bildeten dabei einen wesentlichen Faktor zur Begrenzung des Austenitkörner-Wachstums. Das Ausmaß der Austenit-Vergröberung in der WEZ war dabei stark abhängig von der Art und dem Volumenanteil der unterschiedlichen Ausscheidungen infolge der unterschiedlichen Mikrolegierung. Von allen dreiStählen zeigte die WEZ des Ti-legierten Grundwerkstoffes das geringste Kornwachstum als Folge des ausreichenden Umfangs von stabilen Ti-Ausscheidungen. Die Ausbildung von nadeligem Ferrit im Korn wurde dabei durch die Ti-Ausscheidungen unterstützt, da diese als bevorzugte Stellen der Nukleation des Ferrits dienten. Die Zähigkeit der WEZ erhöhte sich dabei infolge der Großwinkelgrenzen der feinen Ferrit-Platten. Aufgrund des kombinierten Effektes von Nb und Mo, welcher sich in der bevorzugten Ausbildung von unterem Bainit äußert, konnte die WEZ-Zähigkeit bei hohen Abkühlraten weiter verbessert werden. Im Fall eines größeren Wärmeeintrags bildete sich jedoch bevorzugt oberer Bainit, welcher wiederum die Zähigkeit reduzierte. Der abschließende experimentelle Teil der Arbeit konzentrierte sich auf das Verständnis der Mechanismen, die in bestimmten Fällen zur Erweichung (oder Softening) der WEZ führen. Dieses Erweichen äußerte sich in den unterschiedlichen Zugeigenschaften der geschweißten Verbindungen der Stähle. Dabei war die Bruchlage entweder in der erweichten WEZ oder im Grundwerkstoff, abhängig von den Schweißparametern sowie der Art des geschweißten Stahls. Im Ti-legierten Stahl führte dabei ein erhöhter Wärmeeintrag zur Vergrößerung der Erweichungszone. Dieses führte zu einer signifikanten Abnahme der Härte und anschließend zum Versagen in dieser erweichten Zone im Zugversuch. Die Veränderung der Bruchlage hin zum Grundwerkstoff wurde durch die Begrenzung des Wärmeintrags erreicht. Dieses Verhalten wurde nicht in den beiden anderen Stählen beobachtet. Dieses Verhalten zeigt, dass bereits kleine Unterschiede im Gehalt der Mikrolegierungselemente der Stähle zu großen Variationen in den Zugeigenschaften führten. Für alle drei Stähle, zeigten die Ti-enthaltenden Schweißverbindungen das am deutlichsten ausgeprägte Softening, gefolgt von den Ti+V-enthaltenden Schweißungen und schließlich den Nb-enthaltenden Schweißverbindungen. Das unterschiedliche Softening konnte dabei auf zwei Prozesse bezogen werden, die auch über zusätzliche Dilatometrie-Experimente gestützt wurden: die Phasenumwandlung und das Anlassverhalten. Im Ti-legiertem Stahl lag nach der Phasenumwandlung großformatiger Ferrit als Konsequenz der ursprünglich großen Austenitkörner vor. Dieses führte zu einer abgesenkten Härte dieses Stahls. Weiterhin resultierte die geringere Anlassbeständigkeit des Ti-legierten Stahls (gegenüber dem Nb-legierten Stahl) zu einem weiteren Softening der erweichten WEZ. Deswegen erwies sich diese Kombination aus Legierungszusammensetzung und Schweißwärmeeintrag als kritisch, gestützt durch die Experimente am gleichen S690QL Stahl. Die vorliegende Arbeit hebt den wesentlichen Einfluss der Mikrolegierungselemente auf die Schweißmikrostrukturen und die mechanischen Eigenschaften der Schweißverbindungen hervor. Die Kenntnis dieser empfindlichen Balance zwischen Legierungskonzept des entsprechenden Stahls und geeigneten Schweißparametern ist als kritisch für das fertige Produkt anzusehen. Dazu stellt diese Arbeit spezifische Empfehlungen und Ergebnisse zur Verfügung, um die korrekte Schweißpraxis zu gewährleisten als auch für die Zusammensetzung mikrolegierter hochfester Stähle. N2 - High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type of steel being joined. In Ti-containing steel, increased heat Input extended the softened zone width, which caused a significant decrease in hardness and then resulted in failure in this area. Therefore, limited heat Input was used to shift failure position to base material. But this was not observed in the other two steels. Hence, small differences in microalloy addition exhibited large variation in tensile properties. Among the three steels, Ti-containing welds were found to have the most pronounced softening, followed by Ti+V-containing welds and finally Nb-containing welds. This varied softening phenomenon was related to two significant processes supported by the results of additional dilatometry simulation: phase transformation and tempering behaviour. In the Ti-containing steel, the phase Transformation product ferrite was large-sized, as a consequence of initial large austenite grains. This led to the decreased corresponding hardness of the Ti-containing steel. Furthermore, lower tempering resistance in Ti-containing steel as compared to Nb-containing steel, resulted in additional softening effect in the softened HAZ. Therefore, steel alloy identification and heat Input during welding were critical, proven by the experimentation within the same S690QL steel grade. This work emphasised the influence of microalloy elements on weld microstructure and mechanical properties in welded joints. Knowledge of this delicate balance between steel alloy design and appropriate welding parameters is critical for the end product. Thus, this work provides specific recommendations and results to ensure proper welding practice and steel design of microalloyed high-strength steels. T3 - BAM Dissertationsreihe - 155 KW - Microalloyed steel KW - Weld microstructure KW - HAZ softening KW - Mechanical properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391574 SN - 978-3-9818270-4-0 SN - 1613-4249 VL - 155 SP - 1 EP - 183 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Oberleitner, Lidia T1 - Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization N2 - Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes. T3 - BAM Dissertationsreihe - 154 KW - Antibody KW - Coffee KW - ELISA KW - Fluorophore tracer KW - Wastewater PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392506 SN - 978-3-9818270-2-6 SN - 1613-4249 VL - 154 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kanzler, Daniel T1 - Zuverlässigkeitsanalyse von digitalen Radiographie-Systemen bei der Prüfung von realen Materialdefekten N2 - Die zerstörungsfreie Prüfung (ZfP) ist aus solchen Bereichen unseres Lebens nicht mehr wegzudenken, in denen Schäden mit hohen Folgekosten oder Gefährdungen von Menschenleben entstehen können (Beispiele: Transportwesen, Energieerzeugung, Chemieindustrie). In der Praxis kann ein Prüfsystem an seine Grenzen geraten, z.B. bei kleinen Defekten. Defekte mit kritischer Größe werden möglicherweise nicht detektiert. Daher müssen probabilistische Bewertungsverfahren das Prüfsystem beschreiben. Es wird eine objektive Qualitätskennzahl gesucht, auf deren Basis die Anwendbarkeit der Prüfmethode definiert werden soll. Die Auffindwahrscheinlichkeit (engl. probability of detection - POD) erfüllt diese Anforderung. Die POD zeigt auf Basis des Zusammenhangs und der Streuung der Daten, ob das Verfahren für die Prüftätigkeit akzeptiert werden kann oder noch verbessert werden muss. Das ursprüngliche POD-Verfahren wurde für quasi eindimensionale Defekte in dünnen Luftfahrtbauteilen entwickelt. In der industriellen Realität ist diese Bewertung ein Balanceakt zwischen Statistik und Durchführbarkeit: Die Prüfung soll mit realen Defektdaten für die spätere Produktion des Bauteils (bzw. wiederkehrende Wartungsprüfung) bewertet werden. Doch die notwendige Gegenüberstellung zwischen Schliffdaten, für die Erfassung der wahren Defektgröße von räumlich ausgeprägten Defekten und dem Signal eines ZfP-Systems stellt sich als herausfordernde und kostenintensive Aufgabe heraus. Sowohl die Aufstellung eines gemeinsamen Koordiantensystems als auch die Beschreibung und Angleichung der Daten stellen eine notwendige Vorarbeit dar. In dieser Arbeit wird ein mögliches Vorgehen entwickelt, dass im Weiteren eingesetzt werden kann. Während in der Literatur zum Thema POD häufig die Begrenzung des Einsatzes einer eindimensionalen POD (POD mit einem Defektparameter) für reale Defekte bereits erkannt wurde, soll außerdem in dieser Arbeit das Verfahren auf der Signalseite umfassender erweitert werden, um die Einbeziehung realer Defekte in die POD-Bewertung zu ermöglichen. Hierfür werden mit Hilfe dieser Arbeit zwei wesentliche Neuerungen in der POD-Bewertung eingeführt: 1. Die Anzeigenfläche wird als wichtiges Indiz zur Detektion in die Bewertung eingeführt. Dabei zeigt der Ansatz einer Observer-POD, bei dem der Detektierbarkeit eines Defekts beschrieben wird, eine Möglichkeit in die Bewertung zu erweitern. Jedoch wird die notwendige Datenanzahl die für eine Observer-POD selten mit Experimenten erreicht. Daher schlagen wir die Einführung eines Glättungsalgorithmus vor, um auch auf der Basis von wenigen Daten die Flächenabhängigkeit zu erfassen. Der Algorithmus wird hierbei durch simulierte Daten auf seine Funktionsfähigkeit überprüft, bevor er auf reale Defekte angewendet wird. Gleichzeitig helfen die simulierten Daten einen Vergleich zu den vorhergegangenen Ansätzen zu ermöglichen. 2. Darüber hinaus reichen die Daten der realen Defekte häufig nicht aus, um die statistische Forderung zu gewährleisten, so dass es notwendig, wird künstliche Defekte mit einzubeziehen. Deshalb sollen die vorhanden künstlichen Defekte in Form von Referenzdefekten mit einbezogen werden, um die statistische Grundlage zu erhöhen. Für die Prüfung von Referenzdefekten sind jedoch wichtige Einflussgrößen (z.B. Oberflächenrauhigkeit) nicht vorhanden. Wegen der unterschiedlichen Aussagekraft der Daten und zur Vermeidung einer zu optimistischen Abschätzung, ist eine einfache Mischung der Daten ausgeschlossen. Um realen Defekten eine Möglichkeit dafür zu schaffen, dass die Eigenschaften der realen Defekte angemessen auf das Ergebnis der Bewertung des Verfahrens Einfluss nehmen können, wird eine gewichtete Kombination der Defektdaten für die Bewertung vorgestellt. Das Vorgehen wird am Beispiel der radiographischen Prüfung einer elektronenstrahlgeschweißten Naht durchgeführt. Die Schweißnaht verbindet den Deckel zur Außenwand eines Kupferbehältern, der für die spätere Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken entwickelt wurde. Die Messergebnisse stammen aus von der Firma Posiva Oy, dem zuständigen Unternehmen für die Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken in Finnland. Hierbei stellt die POD-Bewertung ein wichtiges Element in der Gesamtrisikobewertung für das Endlagersystem dar. T3 - BAM Dissertationsreihe - 153 KW - Radiographie KW - POD KW - Zuverlässigkeit KW - Zerstörungsfreie Prüfung (ZfP) KW - Probabilistische Bewertung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388723 SN - 978-3-9818270-1-9 SN - 1613-4249 VL - 153 SP - iii EP - 134 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38872 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Drzymala, Sarah T1 - Instrumental analysis, metabolism and toxicity of cis- and trans-zearalenone and their biotransformation products N2 - Trans-Zearalenone(ZEN)is a non-steroidal estrogenic mycotoxin which frequently contaminates cereal grains worldwide. Ingestion of food and feed containing ZEN causes numerous mycotoxicoses in animals and possibly humans with pronounced estrogenic effects. Due to the trans-configurated double bond, ZEN isomerizes to the cis-configuration upon the influence of light. This work investigates the instrumental analysis, metabolism and toxicity of ZEN and cis- ZEN. The first part focused on the determination of ZEN in edible oils. Due to a maximum level of 400 µg/kg ZEN in the European Union (EU), reliable analytical methods are needed. A comprehensive method comparison proved dynamic covalent hydrazine chemistry (DCHC) to be the most suitable approach. Thus, an automated solid phase extraction (SPE) coupled online to high performance liquid chromatography (HPLC) was developed with the novelty of a covalent SPE step comprising the DCHC principle. The automated online system allows an accurate, selective and reliable quantification of ZEN in edible oils in compliance with EU performance criteria while significantly reducing workload and thereby personnel costs. In contrast to ZEN, reference standards and analytical methods are missing for cis- ZEN which causes a lack of data on the occurrence, fate and risks of cis-ZEN. Therefore, a native and an isotopically labeled cis-ZEN standard were synthesized and implemented in an existing stable isotope dilution analysis HPLC tandem mass spectrometry (HPLC-MS/MS) method. Using this method, a large extent of cis-ZEN formation was observed for ZEN contaminated maize germ oils when exposed to daylight which confirms that cis-ZEN can be a relevant food contaminant and should be considered in the analysis of food and feed. Furthermore, this work investigated the in vitro phase I metabolism of ZEN and cis-ZEN in rat and human liver microsomes by using HPLC-MS and -MS/MS analyses. The metabolic pathways of cis-ZEN were found to be essentially similar to ZEN including reduction and oxidation reactions generating α- and β-cis- zearalenol as well as 13- and 15-OH-cis-ZEN. A previously unidentified oxidative metabolic pathway for both isomers of ZEN results in the formation of cis-ZEN-11,12-oxide and ZEN-11,12-oxide in human liver microsomes. The estrogenicity of cis-ZEN and its reductive metabolites was assessed using the E-Screen assay. cis-ZEN proved to be slightly more estrogenic than ZEN. Biotransformation of cis-ZEN to β-cis-ZEL corresponds to a detoxification, whereas metabolism to α-cis-ZEL resembles a metabolic activation as its estrogenicity considerably exceeds that of cis-ZEN. The catecholic metabolites can be expected to show a decreased estrogenicity as demonstrated for 15-OH- ZEN. Independent of the estrogenic effects, the catecholic and epoxidic metabolites identified in this work can be expected to act genotoxic and carcinogenic. The epoxides in particular could fundamentally change the widely accepted view of ZEN causing adverse effects exclusively through endocrine disrupting actions. T3 - BAM Dissertationsreihe - 152 KW - Hydrazinchemie KW - Isotopenstandard KW - SPE-HPLC Automatisierung KW - Zearalenon KW - Isomerisierung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386016 SN - 978-3-9817853-9-5 SN - 1613-4249 VL - 152 SP - 1 EP - 160 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Herbst, Tristan T1 - Konzept zur ganzheitlichen Nachhaltigkeitsbewertung des Abbruchs und der Aufbereitung von Mauerwerk N2 - Mit der vorliegenden Arbeit wurde ein methodisches Konzept zur ganzheitlichen Nachhaltigkeitsbewertung des Abbruchs und der Aufbereitung von Mauerwerk bereitgestellt. Das Bewertungskonzept ermöglicht einen ganzheitlichen Vergleich verschiedener Szenarien für den Abbruch und die Aufbereitung von Mauerwerk unter Berücksichtigung der Anwendung von Mauerwerkbruch und aussortierter Fremdstoffe zur Verwertung. Es kombiniert die Kosten-Wirksamkeitsanalyse, die Stoffflussanalyse, die Ökobilanzierung, die Betrachtung sozialer Aspekte und Wirtschaftlichkeitsbetrachtungen bei gleichzeitiger Berücksichtigung der Materialqualitäten. Das Bewertungskonzept basiert im Kern auf der Kosten-Wirksamkeitsanalyse (KWA) mit der Erweiterung um das Gesamtwirksamkeitswert-Kosten-Verhältnis. Hiermit können sowohl monetäre als auch nicht monetäre Effekte beurteilt werden. Ausgangspunkt der KWA ist ein klar definiertes Zielsystem. Im vorliegenden Fall wurden aus der EU-Abfallrahmenrichtlinie, dem Kreislaufwirtschaftsgesetz und der EU-Bauproduktenverordnung die vier Generalziele „Mensch und Umwelt“, „Ressourcenschonung“, „Ausreichende Materialqualität“ sowie „Wirtschaftlichkeit“ abgeleitet. Die Generalziele "Mensch und Umwelt" und "Ressourcenschonung" wurden weiter in Hauptziele, Ziele und Unterziele unterteilt. Die Quantifizierung und Beurteilung dieser beiden Generalziele erfolgt im Rahmen der Wirksamkeitsanalyse. Zur Quantifizierung der abstrakten Ziele wurden konkrete und messbare Zielkriterien ausgewählt, die üblicherweise bei der Ökobilanzierung und sozialorientierten Betrachtungen verwendet werden, z. B. Umweltauswirkungen, Material- und Energieverbrauch. Nach Ermittlung einer Gesamtwirksamkeit und den anfallenden Kosten für jedes Szenario wird das Gesamtwirksamkeit-Kosten-Verhältnis je Szenario errechnet. Dieses Verhältnis bildet die Grundlage für die abschließende Reihung der untersuchten Szenarien entsprechend ihrer nachhaltigkeitsbezogenen Wertigkeit im Sinne der europäischen und deutschen Kreislaufwirtschaft. Mit dem Konzept wird zukünftigen Nutzern eine strukturierte und methodische Bewertungsgrundlage als Planungsinstrument für Abbruchprojekte an die Hand gegeben. Gleichzeitig werden die Nutzer für bestehende Gestaltungsvarianten für den Abbruch und die Aufbereitung von Mauerwerk sowie für die vielfältigen Anwendungsmöglichkeiten von Mauerwerkbruch sensibilisiert. T3 - BAM Dissertationsreihe - 151 KW - Nachhaltigkeit KW - Kosten- und Wirksamkeitsanalyse KW - Mauerwerkbruch KW - Abbruch KW - Aufbereitung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384853 SN - 978-3-9817853-8-8 SN - 1613-4249 VL - 151 SP - 1 EP - 146 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Stengel, Dominik T1 - Naturmessungen und numerische Simulationen zur Untersuchung von Freileitungsseilen im natürlichen Wind N2 - Für Tragmasten von Freileitungen ist meist die Windeinwirkung bemessungsrelevant. Mit den großen Spannweiten der Hochspannungsebene trägt dabei die Windeinwirkung auf die Leiterseile einen maßgebenden Anteil zur Gesamtbeanspruchung dieser Tragstrukturen bei. Daher ist es offensichtlich, dass das Tragverhalten der Freileitungsseile eine wichtige Rolle für die zuverlässige Bemessung bei Neubauten oder der Bewertung der Zuverlässigkeit des Bestands spielt. Hierfür sind insbesondere die Extremwindereignisse, das sog. 50-Jahres-Windereignis von Bedeutung. Bei diesen hohen Windgeschwindigkeiten treten vor allem windinduzierte Schwingungen der Leiterseile auf. Die für die Bemessung herangezogenen Konzepte basieren meist auf Übertragungsmodellen im Frequenzbereich. Diese setzen eine Linearisierung um den Arbeitspunkt der mittleren Verschiebung voraus, welche nur unter der Annahme von kleinen Schwingungsamplituden gerechtfertigt ist. Dabei kommt der Systemdämpfung eine wichtige Rolle zu. Zwar ist die Strukturdämpfung für Litzenseile vernachlässigbar gering, doch unter Windeinwirkung kann die aerodynamische Dämpfung aufgrund der Relativgeschwindigkeit zwischen Anströmung und Struktur zu beachtlicher Größe anwachsen. Die Beschreibung des Tragverhaltens im Zeitbereich erlaubt es, das nichtlineare Verhalten der Kraftübertragung, sowie der großen Verformungen zu berücksichtigen. Damit lassen sich für die Bemessung relevante Parameter identifizieren und notwendige Annahmen zur Windeinwirkung, sowie zur quasistationären Kraftübertragung überprüfen. Gerade das Verhalten von Freileitungsseilen unter Extremwindereignissen, auf das es zu Extrapolieren gilt, kann so im Rahmen der getroffenen Annahmen simuliert werden. Anhand von Naturmessungen werden die Übertragungsmodelle, sowie das Zeitbereichsmodell bei eher moderaten Windgeschwindigkeiten überprüft. Durch die Verteilung von Windsensoren entlang der Leitung kann die für die Belastung der Leiterseile maßgebende laterale Windverteilung annähernd erfasst werden. Bestehende Annahmen hierzu werden überprüft und erweitert. Für die Zeitbereichsrechnungen wird eine Methode zur Windfeldgenerierung dahingehend erweitert, dass die Windereignisse auch adäquat im Zeitbereich wiedergegeben werden können. Mit dem Ziel, eine zuverlässigere Bemessung von Freileitungen unter turbulenter Windbeanspruchung zu erreichen, werden sog. Spannweitenfaktoren abgeleitet und auf andere Leitungskonfigurationen übertragen, die die Mechanik der Leiterseile sowie die maßgebenden Eigenschaften der Windeinwirkung beinhalten. N2 - Regarding suspension towers of overhead transmission lines, wind is the most critical load case in design. Wind action on conductors significantly contributes to the overall loading of those supporting structures in case of wide spanning cables used in high voltage level. Hence it is inherent that loadbearing characteristic of conductor cables plays an important role for reliable design of new constructions or evaluation of reliability level of existing structures. Therefor extreme wind situations, a so-called 50-years wind event is of particular interest. Under such high wind velocities, mainly wind induced vibrations of conductor cables occur. Concepts employed for design purpose are mostly based on admittance functions in frequency domain. This implies linearization around the operating position of mean deflection, which is only valid for the assumption of small vibration amplitudes. Herein damping of the system becomes important. Structural damping of stranded wires is indeed negligible low, but in case of wind action aerodynamic damping increases significantly due to the relative velocity between acting wind flow and structure. The description of loadbearing characteristics in time domain allows considering nonlinear behavior of force admittance as well of large displacements. Relevant parameters for design can thereby be identified and necessary assumptions on wind action as well as quasi-steady force admittance can be validated. Just by that the behavior of overhead transmission line cables under extreme wind events which need to be extrapolated, can be simulated by means of the assumptions made. Models of admittance as well as a model in time domain are validated by means of field measurements at rather moderate wind speeds. Distributing wind sensors along an overhead transmission line, the lateral distribution of wind which is decisive for the loading of conductor cables can be captured. Existing assumptions for this are validated and extended. For calculations in time domain, a method for generation of a wind field will be extended in order to reproduce wind events adequately also in time domain. Aiming at a reliable design of overhead transmission lines under turbulent wind, so-called span reduction factors are derived and converted to other transmission line configurations which include the mechanics of overhead line conductors as well as the predominant characteristics of wind loading. T3 - BAM Dissertationsreihe - 150 KW - Hochspannungsleiter KW - Windbelastung KW - Naturmessungen KW - Windkanalversuche KW - Finite Element Methode PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-372171 SN - 978-3-9817853-7-1 SN - 1613-4249 VL - 150 SP - I EP - 126 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Häßler, Dustin T1 - Verhalten reaktiver Brandschutzsysteme auf kreisförmigen Zuggliedern aus Blank- und Baustahl N2 - Im Bauwesen werden Zugglieder aus Stahl in der Regel für Aussteifungsverbände, Abhängungen und Unterspannungen von Trägern verwendet. Die dafür verbauten, meist kreisförmigen Vollprofile dienen häufig der Stabilisierung des Tragwerks. Ein Versagen der Stahlzugglieder kann zu einem Einsturz der gesamten Konstruktion führen. Unter Brandeinwirkung verlieren ungeschützte Stahlkonstruktionen aufgrund der schnellen Erwärmung frühzeitig ihre Tragfähigkeit. Durch den Einsatz reaktiver Brandschutzsysteme auf Stahlbauteilen kann deren Erwärmung verlangsamt und dadurch der Feuerwiderstand verbessert werden. Die Optik der oftmals filigranen Stahlzugglieder bleibt dabei im Wesentlichen unverändert. Für die Anwendung reaktiver Brandschutzsysteme auf Stahlzuggliedern mit Vollquerschnitt gibt es derzeit in den allgemeinen bauaufsichtlichen Zulassungen keine Regelungen. Die an der Bundesanstalt für Materialforschung und –prüfung (BAM) durchgeführten experimentellen und numerischen Untersuchungen [35] sowie die darauf aufbauenden Erkenntnisse dieser Dissertation hinsichtlich des Verhaltens reaktiver Brandschutzsysteme auf Stahlzuggliedern mit Vollprofil bilden die Grundlage für eine Erweiterung des Anwendungsbereiches dieser Produkte. Eine Anwendung ist grundsätzlich möglich. Aufgrund der meist für Zugglieder eingesetzten filigranen Vollquerschnitte sowie der in Bezug auf die Tragfähigkeit fehlenden Umlagerungsmöglichkeit werden besonders hohe Anforderungen an die Wirksamkeit und Zuverlässigkeit von reaktiven Brandschutzsystemen gestellt. Anhand der Ergebnisse aus den Brandversuchen sowie theoretischer Betrachtungen ist festzustellen, dass das auf kreisförmigen, zugbeanspruchten Stahlprofilen aufgebrachte reaktive Brandschutzsystem aufgrund der notwendigen dreidimensionalen Ausdehnungsrichtung der höchst möglichen Beanspruchung ausgesetzt ist. Mit Hilfe von Leistungskriterien zur Bestimmung der Tragfähigkeit, welche im Rahmen der Dissertation entwickelt wurden, lassen sich die in Brandversuchen unter axialer Zugbeanspruchung getesteten Stahlzugglieder mit reaktiver Brandschutzbeschichtung in Feuerwiderstandsklassen einordnen. Für die Beurteilung der thermischen Schutzwirkung des reaktiven Brandschutzsystems werden die Erwärmungsgeschwindigkeit, die maximale Stahltemperatur sowie die Rissbildung und das Rissheilungsvermögen der Beschichtung herangezogen. Die Brandversuche haben gezeigt, dass die Profilgeometrie, die Höhe der Trockenschichtdicke der Beschichtung, die Höhe der aufgebrachten Zugbeanspruchung sowie die Orientierungsrichtung der Zugglieder einen wesentlichen Einfluss auf die thermische Schutzwirkung des reaktiven Brandschutzsystems ausüben. Zudem stehen diese Faktoren in gegenseitiger Wechselwirkung. Durch Abstimmung der genannten Einflussgrößen lässt sich die Wirkung der Brandschutzbeschichtung optimieren. Durch die Vielzahl an reaktiven Brandschutzsystemen und die in den Produkten variierende chemische Zusammensetzung ist deren Aufschäumverhalten und thermische Schutzwirkung sehr unterschiedlich und kaum vorhersagbar. Die Wirksamkeit des reaktiven Brandschutzsystems ist daher für Grenzfälle des vom Hersteller definierten Anwendungsbereichs durch Brandversuche zu überprüfen. Empfehlungen zur Durchführung dieser Versuche sind im Forschungsbericht [35] beschrieben. Bei Verwendung von kaltverformtem Blankstahl für Stahlzugglieder mit Vollprofil sind andere Hochtemperatureigenschaften als bei dem typischerweise für Träger und Stützen eingesetzten warmgewalztem Baustahl zu berücksichtigen. Kaltverformter Blankstahl weist gegenüber herkömmlichem Baustahl einen höheren Wärmeausdehnungskoeffizient und andere temperaturabhängige Abminderungsfaktoren für die Stahlfestigkeit auf. Die in experimentellen Untersuchungen für Blankstahl ermittelten Materialeigenschaften können für die Heißbemessung von Zuggliedern mit Vollprofil aus entsprechendem Material verwendet werden. In Kombination mit Temperaturdaten aus Brandversuchen lässt sich mittels eines auf der Grundlage der Finite-Elemente-Methode (FEM) entwickelten numerischen Berechnungsmodells das Trag- und Verformungsverhalten von Zuggliedern realitätsnah berechnen. Vergleiche zur Stablängsverformung von in Brandversuchen getesteten Zuggliedern zeigen eine hohe Übereinstimmung mit den Ergebnissen aus dem im Rahmen der Dissertation neu entwickelten Bemessungsmodell. T3 - BAM Dissertationsreihe - 149 KW - Brandschutz KW - Stahl KW - Reaktive Brandschutzsysteme KW - Numerische Simulation KW - Brandversuche KW - Materialuntersuchung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371495 SN - 978-3-9817853-4-0 SN - 1613-4249 VL - 149 SP - 1 EP - 226 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37149 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Rhode, Michael T1 - Hydrogen Diffusion and Effect on Degradation in Welded Microstructures of Creep-resistant Low-alloyed Steels N2 - Low-alloyed heat-resistant steels have a fundamental contribution to the currently applied steel grades in pressurized and temperature loaded components like membrane walls(water walls)or pressure vessels. Here, the main advantages of the low-alloy concept can be used in terms of superior high temperature mechanical properties, workability and decreased amounts of expensive alloy elements. The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a “critical” hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tubeto-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized with the permeation technique at room temperature and at elevated temperature ranges up to 400°C - It was investigated by interpreting the hydrogen effusion behavior with carrier gas hot extraction technique (CGHE). For realistic determination of the hydrogen diffusion coefficients, an improved method was developed encompassing accelerated specimen heating and hydrogen determination via mass spectrometer (MS). Simultaneously, the corresponding temperature dependent trapped and total hydrogen concentrations were determined. The determined experimental results showed increased susceptibility to the hydrogen affected degradation of the HAZ compared to the base material, which is independent of the investigated alloy composition. In particular, the martensitic coarse grain HAZ is the most susceptible microstructure to hydrogen-affected degradation. The results of the tensile tests allowed the definition of consistent microstructure specific failure criteria (envelope curves) versus quantified hydrogen concentrations for the reactor pressure vessel 16MND5 steel (20MnMoNi-5-5) and the creep-resistant T24 steel (7CrMoVTiB10-10). The procedure of quantifying hydrogen concentrations in HAZ microstructures is novel and supports a new method of analysis for hydrogen degradation effects. Further investigations with the T22 steel (10CrMo9-10), as compared to the creep-resistant T24 steel (7CrMoVTiB10-10), confirmed the beneficial effect of Vanadium as an alloying element to improve the resistance to degradation. In general, Mn-Mo-Ni base material grades show a higher resistance compared to Cr-Mo steels that do not include Vanadium alloying. The investigations showed the decreased diffusion coefficient of the HAZ microstructure compared to the base material microstructure. This is caused by the stronger trapping effects that are present which simultaneously increase the hydrogen solubility as well. In general, trapping effects above 100°C are negligible. It is noted that after testing the T24 grade, these trapping effects were observed above 100°C and must be considered. At elevated temperatures, the calculated hydrogen diffusion coefficients are sometimes greater than those in literature. This is primarily due to the unique applied specimen heating procedure resulting in a varied hydrogen effusion from the specimen. The significance of the obtained results can be characterized in three perspectives. First, the direct comparison of the degradation was possible in terms of microstructure-specific hydrogen effects on the mechanical properties. Second, consistent failure criteria were established to quantify degradation vs. the hydrogen concentration. Third, the determination of more accurate hydrogen diffusion coefficients is now available. From a scientific point of view, important contributions were made to further interpret the hydrogen effects on the macroscopic mechanical properties, with respect to the alloy composition and the microstructure. From a procedural standpoint, the mentioned deviation in the elevated temperature diffusion coefficients can be caused by the calculation method. This can be an explanation for the reported data scatter in the references. In terms of an economic view, the presented experimental results contribute to a safe and reliable weld workability of the steel grades. Thus, the identified temperature levels of hydrogen trapping can be applied in the definition of minimum preheat, interpass or postheat temperatures. In addition, recommendations for suitable dehydrogenation heat treatment (DHT) procedures, with accurate temperature values and holding times, can be derived from these results. In the future, the application of the mechanical and diffusion data is intended to support numerical analysis methods to provide an improved prediction of hydrogen effects on material degradation in weld microstructures. N2 - Niedriglegierte warmfeste Mn-Mo-Ni und Cr-Mo-V Stähle bilden einen wesentlichen Beitrag gegenwärtig eingesetzter Werkstoffe für druck- und temperaturführende Komponenten im Kraftwerksbau. Dies sind beispielsweise Kesselkomponenten wie Membranwände und Druckbehälter. Dabei kommen die Hauptmerkmale dieser Werkstoffgruppe (sehr gute mechanische Hochtemperatureigenschaften, Verarbeitbarkeit und niedrige Legierungskosten) zum Tragen. Die weitere Erhöhung des thermischen Wirkungsgrades ist dabei das wichtigste Ziel, der Werkstoffauswahl für die nähere Zukunft, unabhängig vom Kraftwerkskonzept. Dies trifft jedoch im Besonderen bei fossil-befeuerten Kraftwerken im Rahmen der notwendigen Reduzierung der CO2 Emissionen zu. Die schweißtechnische Komponentenfertigung ist dabei das maßgebliche Fertigungsverfahren. Das Einbringen der Schweißwärme bedingt dabei metallurgische und Gefügeveränderungen in der wärmebeeinflussten Zone des Grundwerkstoffes (WEZ) als auch im niedergeschmolzenen Schweißgut. Die Schweißverbindung kann dabei zusätzlich während oder nach dem Schweißen Wasserstoff aufnehmen. Wasserstoff hat dabei eine degradierende Wirkung auf die mechanischen Eigenschaften, die sich im Worst-Case als wasserstoffunterstützte Kaltrisse zeigen, dies vor allem auch zeitverzögert (delayed cracking) durch die temperaturabhängige Wasserstoffdiffusion. Dabei zeigt jede Schweißmikrostruktur spezifische Wasserstoffdiffusions- und Lösungscharakteristika. Die Degradation ist daher als eine Kombination sich gegenseitig beeinflussender Faktoren aus lokaler Wasserstoffkonzentration, Mikrogefüge und mechanischer Beanspruchung zu sehen. Wie aktuelle Schadensfälle in der jüngeren Vergangenheit belegten (Rissbildung bei Schweißnähten an T24 Rohr-Rohr-Verbindungen), ist Wasserstoff dabei eine potentiell zu berücksichtigende Schadensursache. Zur weiterführenden Früherkennung möglicher Schäden, ist es daher notwendig, den gefügespezifischen Wasserstoffeffekt in Schweißnähten an niedriglegierten Stählen festzustellen und zu bewerten. Die Interdependenz der mechanischen Beanspruchung und des Verbleibens einer potentiell degradierenden Wasserstoffkonzentration muss dabei für jedes Gefüge separiert werden. Daher wurden für die Charakterisierung der mechanischen Eigenschaften gefügespezifische Untersuchungen an wasserstoffbeladenen Zugproben aus Grundwerkstoffen und thermisch simulierten WEZ Gefügen untersucht. Das Diffusionsverhalten wurde mit der elektrochemischen Permeationsmethode bei Raumtemperatur und über die Interpretation des Wasserstoffeffusions-verhaltens mittels Trägergasheißextraktion bei erhöhten Temperaturen bis 400°C untersucht. Zur realistischen Abbildung des Diffusionsverhaltens, wurde dabei eine optimierte Prozedur aus Probenaufheizung und Wasserstoffeffusion entwickelt. Diese wurde zusätzlich auf ein Wasserstoffmessgerät mit gekoppeltem Massen-spektrometer (MS) übertragen. Gleichzeitig, wurden die korrespondierende getrappte, sowie die Gesamtwasserstoff-konzentration bestimmt. Die Ergebnisse zeigten, dass die WEZ eine generell erhöhte Anfälligkeit für die Degradation besitzt (im Gegensatz zum Grundwerk-stoff), unabhängig von der verwendeten Legierungsroute. Dabei nimmt die martensitische Grobkornzone die Stellung als anfälligste Mikrostruktur ein. Aus den gewonnenen Daten, konnten erstmals durchgängige gefügespezifische Kriterien(Hüllkurven) für das Versagen mit quantifizierbaren Wasserstoffkonzentrationen generiert werden. Dazu erfolgten Untersuchungen an Mn-Mo-Ni legierten Stählen (16MND5 und 20MND5 / 20MnMoNi5-5) sowie an kriechfesten Stählen T24 (7CrMoVTiB1010) und T22 (10CrMo9-10). Generell, zeigten Mn-Mo-Ni Grundwerk-stoffe eine bessere Beständigkeit als Cr-Mo(-V) Stähle. Im Fall des Cr-Mo-V Legierungskonzeptes, konnte zusätzlich die positive Wirkung von Vanadium als Legierungselement zur Erhöhung der Beständigkeit gegenüber einer Degradation bestätigt werden. Die Untersuchungen des Diffusions- und Lösungs-vermögens zeigten, dass die WEZ generell niedrigere Diffusionskoeffizienten besitzt als der Grundwerk-stoff. Dies wird durch stärkeres Trapping des Wasserstoffs beeinflusst und steigert dabei die Lösungs-fähigkeit der Mikrostruktur. Oberhalb von 100°C konnte dabei kein nennenswertes Trapping festgestellt werden, außer im Fall des T24 infolge der Zulegierung von Vanadium. Unterhalb von 100°C, zeigte sich ein deutlicher Abfall der Diffusion infolge des weiter ansteigenden Trappings. Für den betrachteten Temperatur-bereich wurden dabei effektive Wasserstoffdiffusions-koeffizienten berechnet, die zum Teil höher liegen, im Vergleich zu Literaturwerten. Dies liegt zum großen Teil in der optimierten Aufheizprozedur der Proben begründet und, daran gekoppelt, der beschleunigten Wasserstoffeffusion. Die weiterführende Bedeutung der Ergebnisse liegt in drei Bereichen begründet. Erstens, besteht jetzt die Möglichkeit der quantifizierbaren Vergleichbarkeit des gefüge-spezifischen Wasserstoff-einflusses auf die Degradation. Zweitens, wurden aus den experimentellen Daten, Kriterien für das Versagen für der spezifischen Schweißnahtgefüge abgeleitet. Drittens, stehen realistischere Diffusionskoeffizienten für eine Vielzahl von Schweißnahtgefügen zur Verfügung. Aus wissenschaftlicher Sicht ergeben sich wichtige Beiträge zur Interpretation des Wasserstoffeinflusses auf die makroskopischen mechanischen Eigenschaften hinsichtlich der Legierung bzw. Phasenzusammensetzung, wie oben angeführt. Weiterhin konnte gezeigt werden, dass Berechnungsalgorithmen in Kombination mit bestimmten experimentellen Randbedingungen, großen Einfluss auf die effektiven Wasserstoffdiffusions-koeffizienten haben. Dies kann speziell bei erhöhten Temperaturen zu Abweichungen führen, die einen weiteren Ansatz zur Erklärung (der in der Literatur) genannten Streubänder ergeben. Aus ökonomischer Sicht leisten die präsentierten Ergebnisse Beiträge zur sicheren und zuverlässigen Verarbeitung der Werkstoffe. So können anhand der identifizierten Temperaturstufen des Wasserstofftrappings Mindestvorwärm-, Zwischenlagen- bzw. Nachwärmtemperaturen für das Wasserstoffarmglühen identifiziert werden. Die Verwendung der Diffusionskoeffizienten ermöglicht zusätzlich die Abschätzung bzw. Anpassung von notwendigen Haltezeiten. Für die weitere Zukunft ist die Einbindung der mechanischen Daten in vorhandene Modelle zur numerischen Simulation und der verbesserten Vorhersage wasserstoffunterstützter Degradation von Schweißmikrostrukturen vorgesehen. T3 - BAM Dissertationsreihe - 148 KW - Hydrogen KW - Degradation of Mechanical Properties KW - Diffusion KW - Creep-resistant Steels KW - Welding PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-374027 SN - 978-3-9817853-3-3 SN - 1613-4249 VL - 148 SP - 1 EP - 302 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Voland, Katja T1 - Einfluss der Porosität von Beton auf den Ablauf einer schädigenden Alkali-Kieselsäure-Reaktion N2 - This thesis deals with the question of how the porosity of concrete influences the process of a damaging alkali-silica-reaction (“ASR”). In particular, it is examined whether the use of slip form pavers and the reduced porosity resulting from this use have an effect on the process of a damaging ASR. Since the 1980s slip form pavers have been used, which modifies the structure of concrete. However, these modifications have not yet been taken into consideration in the relevant technical guidelines. The use of slip form pavers instead of conventional concrete pavers results in a denser structure. Due to the denser structure the ductility and the porosity of the concrete decrease. Thus it is more difficult for the tensile stress to be reduced. Moreover, the space for the ASR gel to expand is reduced. These consequences promote the ASR. By contrast, the permeability of the concrete is lower. Hence, the penetration of external alkalis is reduced and the diffusion of the alkalis to the potentially reactive aggregate slowed down. Against this background the question arises whether the use of slip form pavers and the reduced porosity of the concrete increase the risk of a damaging ASR. An innovative non-destructive testing methodology is applied to answer this question. Based on variations of the porosity it is examined which damage parameters influence the process and intensity of a damaging ASR. The damaging parameters taken into consideration are the mechanical properties of the concrete, the expansion space and the transport processes within the concrete. In order to determine the influence of the relevant damaging parameters two categories of tests are conducted: one category is based on a high internal potential for damages due to ASR, the other one on a high external potential. In both cases alkali-reactive slow/late aggregates are tested. The different porosities of the concrete mainly result from a variation of the w/c-ratio. In case of a high internal potential for ASR-damages the mechanical properties and the expansion space play the most important role. Furthermore; the influence of an air-entraining agent on the process of a damaging ASR is taken into account. The high internal potential for ASR-damages is provoked by the use of cement with a high amount of alkalises for the production of the concrete samples. These samples are stored in the 40 °C fog chamber storage and the 60 °C concrete prisms test. On the one hand the expansion and the change in mass as well as the eigenfrequency are measured discontinuously in the conventional way. On the other hand the innovative testing methodology applied to these ASR-provoked stored concrete samples serves to continuously measure the expansion and the hardening as well as crack formation processes. This methodology comprises a determination of the ultrasonic velocity and of acoustic emissions as well as 3-dimensional micro X-ray computed tomography (μ-3D-CT). The high external potential for ASR-damages is provoked by the cyclic climate storage, designed by FIB. The analysis of these concretes focuses on transportation processes. T3 - BAM Dissertationsreihe - 147 KW - Alkali-Kieselsäure-Reaktion KW - µ-3D Computertomografie KW - Schallemissionsanalyse KW - Porosität KW - Laser-Induced Breakdown Spectroscopy (LIBS) PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-363551 SN - 978-3-9817853-0-2 SN - 1613-4249 VL - 147 SP - 1 EP - 385 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Pistol, Klaus T1 - Wirkungsweise von Polypropylen-Fasern in brandbeanspruchtem Hochleistungsbeton N2 - Das Hauptanliegen der Arbeit besteht in der experimentellen Erforschung der faserbedingten mikrostrukturellen Schädigungsprozesse in brandbeanspruchtem HPC. Dazu werden das thermische Degradationsverhalten von Polypropylen-Fasern (PP-Fasern) mithilfe thermoanalytischer Verfahren aus der Polymerforschung untersucht und die Wechselwirkung der schmelzenden PP-Fasern mit dem umgebenden Betongefüge unter Verwendung hochtemperaturmikroskopischer Methoden analysiert. Des Weiteren werden erstmalig akustische und röntgentomographische Methoden zur zerstörungsfreien Untersuchung der Rissgenese in thermisch beanspruchten Betonproben kombiniert. Zur Validierung der Ergebnisse und zur Visualisierung von mikroskopischen Morphologieänderungen im Faserbereich werden ergänzend Bruchflächen von thermisch geschädigten Proben rasterelektronenmikroskopisch untersucht. Die Ergebnisse zeigen, dass durch die thermische Degradation der PP-Fasern zwischen 160 und 350 °C Kapillarröhren entstehen, die durch eine bei ca. 160 °C einsetzende Mikrorissbildung netzartig verbunden werden. Durch die Mikrorissbildung werden Spannungen im Mikrogefüge des Betons abgebaut (thermomechanischer Effekt) und die Ausbildung eines netzartig verbundenen Transportwegesystems für den ausströmenden Wasserdampf (thermohydraulischer Effekt) ermöglicht. Als Synthese und Abschluss der Arbeit werden zwei Modelle entwickelt, in denen die theoretisch und experimentell gewonnenen Erkenntnisse für die Beschreibung der Wirkungsmechanismen von PP-Fasern zusammenfließen. In einem mikroporomechanischen Modell werden alle an dem Wirkmechanismus der PP-Fasern beteiligten Prozesse den Strukturelementen des Betons (Feststoff, Fluide und Porenraum) zugeordnet. Für eine weitere modellhafte Beschreibung der Wirkungsweise von PP-Fasern wird in einem einfachen thermodynamischen Modell der wassergefüllte Porenraum von HPC als thermodynamisch geschlossenes System idealisiert, bei dem das den Porenraum umgebende Feststoffgerüst die thermodynamische Systemgrenze bildet. Bei dieser Modellvorstellung wird anhand eines Temperatur-Entropie-Diagramms für Wasser gezeigt, dass durch die rissbedingte Öffnung der thermodynamischen Systemgrenze ab ca. 160 °C der thermodynamische Zustand des Porenwasser beeinflusst wird, so dass das Porenwasser bereits bei vergleichsweise niedrigem Druck und niedriger Temperatur vollständig verdampft, ohne den kritischen Grenzdruck von ca. 5 MPa (Zugfestigkeit des Betons) zu erreichen. N2 - The majority of this thesis deals with experimental investigations of Polypropylene fibre (PPfibre) induced microstructural damage processes in fire exposed HPC. For this purpose, the thermal degradation of PP-fibres is investigated by means of thermoanalytical techniques used for polymers. The interaction of the melting PP-fibres with the surrounding cement Matrix is analysed using high-temperature microscopy techniques. Furthermore, acoustic methods as well as x-ray computed tomography are combined for the first time for the nondestructive analysis of the crack formation in heated concrete samples. Additionally, fracture surfaces of thermally damaged samples are investigated by scanning electron microscopy in order to validate the results and to visualize morphological changes in the fibre region. The obtained results show that the thermal decomposition of the PP-fibres between 160 and 350 °C causes the formation of capillary tubes, which are connected by the simultaneous formation of micro-cracks at 160 °C. This enables the relief of micromechanical stresses in heated concrete (thermo-mechanical effect) and the formation of a permeable net-like transport system for the evaporating water (thermo-hydraulic effect). Combining the theoretical and experimental acquired results two models are developed as a synthesis and conclusion of the presented thesis. In a microporomechanical model all processes which are involved in the mode of action of the PP-fibers are related to the basic elements of the microstructure of concrete (solid, fluids and pore space). A further thermodynamic model idealizes the water filled pore spaces of HPC as a closed thermodynamic system. The pore space enclosing the cement matrix represents the boundary of the thermodynamic system. As a result of the micro crack formation at approximately 160 °C the boundary of the system is opening. On the basis of a Temperature-Entropy-Diagram it can be shown that due to the microcracking the thermodynamic state of the pore water is influenced. Thus, the pore water fully evaporates at a comparatively low pressure and temperature without exceeding the critical pressure of 5 MPa (tensile strength of concrete). T3 - BAM Dissertationsreihe - 146 KW - Mikrostruktur KW - Hochleistungsbeton KW - Polypropylen-Fasern KW - Brandschutz KW - Abplatzungen PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357349 SN - 978-3-9817502-8-7 SN - 1613-4249 VL - 146 SP - 1 EP - 111 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bertovic, Marija T1 - Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT T1 - Human Factors bei der zerstörungsfreien Prüfung (ZfP): Risiken und Herausforderungen mechanisierter ZfP N2 - Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safetyrelevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process, and the risks involved in this application are unknown. The overall aim of the work presented in this dissertation was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to (1) identify and analyse potential risks in mechanised NDT, (2) devise measures against them, (3) critically address the preventive measures with respect to new potential risks, and (4) suggest ways for the implementation of the preventive measures. To address the first two objectives a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted (Study 1). This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures are insufficient to defend the system from identified failures, new preventive measures were suggested. The conclusion of the study was that those preventive measures need to be carefully considered with respect to new potential risks, before they can be implemented, thus serving as a starting point for further empirical studies. To address the final two objectives, two preventive measures, i.e. human redundancy and the use of automated aids in the evaluation of NDT data, were critically assessed with regard to potential downfalls arising from the social interaction between redundant individuals and the belief in the high reliability of automated aids. The second study was concerned with the potential withdrawal of effort in sequential redundant teams when working collectively as opposed to working alone, when independence between the two redundant individuals is not present. The results revealed that the first redundant inspector, led to believe someone else will conduct the same task afterwards, invested the same amount of effort as when working alone. The redundant checker was not affected by the information about the superior experience of his predecessor and—instead of expected withdrawal of effort—exhibited better performance in the task. Both results were in contradiction to the hypotheses, the explanations for which can be found in the social loafing and social compensation effects and in the methodological limitations. The third study examined inappropriate use of the aid measured in terms of (a) agreement with the errors of the aid in connection to the frequency of verifying its results and in terms of (b) the overall performance in the task. The results showed that the information about the high reliability of the aid did not affect the perception of that aid’s performance and, hence, no differences in the actual use of the aid were to be expected. However, the participants did not use the aid appropriately: They misused it, i.e. agreed with the errors committed by the aid and disused it, i.e. disagreed with the correct information provided by the aid, thereby reducing the overall reliability of the aid in terms of sizing ability. Whereas aid’s misuse could be assigned to low propensity to take risks and reduced verification behaviour because of a bias towards automation, the disuse was assigned to the possible misunderstanding of the task. The results of these studies raised the awareness that methods used to increase reliability and safety, such as automation and human redundancy, can backfire if their implementation is not carefully considered with respect to new potential risks arising from the interaction between individuals and complex systems. In an attempt to minimise this risk, suggestions for their implementation in the NDT practice were provided. N2 - Die zerstörungsfreie Prüfung (ZfP) wird als eines der wichtigsten Qualitätssicherungsmaßnahmen für technische Systeme und deren sichere Anwendung betrachtet. Wenn die ZfP kritische Defekte in sicherheitsrelevanten Anlagen, wie z.B. in der Kerntechnik, nicht entdeckt, kann dies zu katastrophalen Folgen für die Umwelt und den Menschen führen. Deshalb muss gewährleistet sein, dass die Verfahren der ZfP zuverlässig sind, d.h. dass sie alle kritischen Defekte entdecken können. Die Zuverlässigkeit der ZfP wird von menschlichen Faktoren beeinflusst, die jedoch bisher in diesem Feld selten betrachtet wurden. Durch den verstärkten Einsatz von Automatisierung beispielsweise bei der mechanisierten Prüfung (automatisierungsunterstütze Prüfung und die zugehörige Datenbewertung) wurde die Erreichung eines höheren Zuverlässigkeitsniveaus erwartet. Menschliche Faktoren sind trotz der Automatisierung immer noch bedeutsam für den gesamten Prüfprozess. Die Risiken der stärkeren Automatisierung der Prüfungen sind nicht vollständig bekannt. Das generelle Anliegen dieser Arbeit ist die erstmalige Feststellung der Risiken der mechanisierten ZfP und das Aufzeigen von Möglichkeiten, diese zu verringern. Die konkreten Ziele dieser Arbeit sind dementsprechend (1) die potenziellen Risiken bei der mechanisierten Prüfung aufzuzeigen und zu analysieren, (2) präventive Maßnahmen für diese Risiken abzuleiten, (3) diese präventiven Maßnahmen kritisch hinsichtlich neuer Risiken zu beleuchten sowie (4) Umsetzungsvorschläge aufzuzeigen. Für die ersten zwei Ziele wurde eine Risikoabschätzung mit der Fehlzustandsart- und auswirkungsanalyse (FMEA) durchgeführt (Studie 1). Diese Analyse ergab Fehlermöglichkeiten während der Datenaufnahme und –bewertung bei der mechanisierten ZfP, die dem Menschen, der Technik und der Organisation zugeordnet werden können. Weil die vorhandenen präventiven Maßnahmen unzureichend für die Vermeidung der identifizierten Fehler waren, wurden neue präventive Maßnahmen vorgeschlagen. Die Schlussfolgerung der Studie zeigt, dass vor der Umsetzung präventiver Maßnahmen eine sorgfältige Betrachtung hinsichtlich neuer potenzieller Risiken erfolgen muss. Dies war der Ausgangspunkt für die weiteren empirischen Untersuchungen. Für die letzten beiden Ziele wurden zwei präventive Maßnahmen untersucht: die menschliche Redundanz und die Anwendung automatisierter Assistenzsysteme bei der ZfP-Datenbewertung. Im Fokus lagen potenzielle Schwachstellen, die aus sozialer Interaktion der redundanten Individuen und aus dem Vertrauen in die hohe Zuverlässigkeit der automatisierten Assistenzsysteme entstehen können. In der zweiten Studie wurde die potenzielle Reduzierung der Anstrengung in sequentiellen redundanten Teams untersucht, indem die gemeinsame Aufgabenbearbeitung in Teams der individuellen Aufgabenbearbeitung gegenüber gestellt wurde. Die Ergebnisse zeigten, dass der erste redundante Prüfer, dem mitgeteilt wurde, dass ein anderer Prüfer die Prüfaufgabe nach ihm durchführen wird, die gleiche Anstrengung investierte wie der individuelle Bearbeiter. Der zweite redundante Prüfer (redundant checker) wurde durch die Information, dass sein Vorprüfer die höherwertige Erfahrung besitzt, nicht hypothesenkonform beeinflusst - anstelle der erwarteten Rücknahme der Anstrengung - zeigte er eine bessere Leistung bei der Durchführung der Aufgabe. Beide Ergebnisse stehen in Widerspruch zu den Hypothesen und können durch social loafing und social compensation Effekte sowie durch methodische Aspekte erklärt werden. In der dritten Studie wurde die unangemessene Nutzung eines automatisierten Assistenzsystems untersucht operationalisiert als (a) die Übereinstimmung mit Fehlern des Systems verbunden mit der Überprüfungshäufigkeit seiner Ergebnisse und (b) die Leistung bei der Aufgabe. Die Ergebnisse zeigten, dass die Information über die hohe Zuverlässigkeit des Systems die Wahrnehmung der Systemleistung nicht beeinflusste und folglich keine Unterschiede in der tatsächlichen Nutzung des Systems zu finden waren. Die Probanden nutzten jedoch das System nicht angemessen: sie stimmten den Fehlern des Systems zu (automation misuse) und sie lehnten korrekte Informationen des Systems ab (automation disuse). So reduzierten sie die Gesamtzuverlässigkeit des Systems, zumeist bei der Fehlergrößenbestimmung. Während misuse mit einer niedrigen Risikobereitschaft und eingeschränkten Überprüfungsverhalten auf Grund des automation bias erklärt werden kann, wird disuse dem möglichen Missverstehen der Aufgabe zugeordnet. Die Ergebnisse dieser Studien haben das Bewusstsein dafür erhöht, dass Methoden zur Erhöhung der Zuverlässigkeit und Sicherheit sowie Automatisierung und menschliche Redundanz versagen können, wenn die potenziellen Risiken ihrer Umsetzung aufgrund der Interaktion zwischen Mensch und Technik nicht bedacht werden. Um diese Risiken bei der Anwendung präventiver Maßnahmen zu minimieren, wurden Vorschläge für die ZfP-Praxis erarbeitet. T3 - BAM Dissertationsreihe - 145 KW - Failure modes and effects analysis KW - Zuverlässigkeit KW - Menschliche Faktoren KW - Zerstörungsfreie Prüfung KW - Fehlzustandsart- und auswirkungsanalyse KW - Personelle Redundanz KW - Human factors KW - Non-destructive testing KW - Human redundancy KW - Automation bias KW - Reliability PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:83-opus4-71292 SN - 978-3-9817502-7-0 DO - https://doi.org/10.14279/depositonce-4685 SN - 1613-4249 VL - 145 SP - 1 EP - 161 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vasilić, Ksenija T1 - A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy N2 - This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. N2 - Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen. T3 - BAM Dissertationsreihe - 144 KW - porous medium KW - self-compacting concrete KW - rheology KW - numerical modelling KW - CFD KW - reinforcement KW - poröses Medium KW - selbstverdichtender Beton KW - Rheologie KW - numerische Modellierung KW - Bewehrung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357833 SN - 978-3-9817502-6-3 SN - 1613-4249 VL - 144 SP - 1 EP - 175 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Burbank, John T1 - Reactive Boundary Layers in Metallic Rolling Contacts N2 - In order to meet the goal of reducing CO2 emissions, automotive industry places significant importance on downsizing components to achieve greater efficiency through lower weight and reduced friction. As friction reductions are associated with energy efficiency and wear protection with resource conservation, ever greater attention has been given to adamantine carbon- based coatings and high-alloyed steels. Such applications are, however, associated with high production costs and energy expenditures, as well as many technical difficulties. Therefore a key issue in meeting the goals of friction reduction, wear protection and development of comprehensive lightweight strategies is whether or not the functional profiles of state-of-the art alloys can be enhanced by affordable solutions. The running-in phase of mechanical systems is inevitable and, from a tribological standpoint, critical for the lifetime of such systems, though receives little attention and is poorly understood. The growth of micro-cracks accelerates premature material failure and wear during this phase of heightened friction. With this in mind, the ultimate goal of this current work is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened steels. Two mechanisms were investigated: a. Cold work hardening and b. Chemical tribofilm formation. Steels that showed a tendency toward work hardening and tribofilm formation in previous testing were chosen for this investigation. Thorough characterization of the chosen Steels was carried out before any pre-conditioning techniques were applied. The widely used 20MnCr5, seen as a reference gear steel, underwent case-hardening and subsequent deep freezing treatments in an attempt to yield discrete sample groups with respect to residual austenite. This allowed for a more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual Austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 – 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance Steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 – 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the treated materials. The second pre-conditioning method involved the targeted generation of chemically reactive tribolayers (tribofilms) on twin disk testing rigs. The lubrication strategies were based on: a. CaCO3, which is predominant in engine oils, and b. MoDTC, which is commonly used in engine and gear oils. The films generated in pre-conditioning were analyzed by SEM-EDX with Element-Mapping, Raman spectroscopy, and XPS to elucidate their molecular composition and concentration on the sample surfaces. The combination of these methods of analysis gave a clear indication that 104 cycles were sufficient to generate stable and lasting tribofilms. CaO and CaCO3 were the main components of the tribofilm from the first lubricant package, while MoS2, MoO2 and MoO3 were the main components from the second lubricant package. Finally, slip-rolling endurance testing (T = +120 °C, 107 cycles, approximately 19 days in a factory fill engine oil) was carried out on all materials. It was shown that both pre-conditioning methods could achieve significant reductions in friction and wear during testing at up to and including P0Mean =1.94 GPa (P0Max = 2.91 GPa, FN = 2,000 N). Ultimately, this research showed that: 1. non-case-hardened high-performance steels offer competitive wear performance and better friction behaviour than the case-hardened 20MnCr5. 2. pre-conditioning led to COF reductions to under 7/10 and wear coefficient reductions to an astonishing 1/10 of the original values for the untreated steels under mixed/boundary lubrication. 3. the observed improvements to friction behaviour and wear performance are indicative of a technically simple, cost- and energy-efficient pre-conditioning strategy that may prove N2 - Die Automobilindustrie legt im Hinblick auf das Ziel der CO2-Emissionsreduktionen viel Wert auf die Erhöhung des Wirkungsgrades von mechanischen Komponenten durch Leichtbau. Eine Reduzierung der Reibung wirkt sich direkt auf die Energieeffizienz aus, währenddessen eine Verschleißminderung zu Materialeinsparungen führt. Aus diesen Gründen genießen diamantartige, kohlenstoffbasierte Beschichtungen und hochlegierten Stähle derzeit große Aufmerksamkeit. Deren Herstellung ist allerdings sowohl mit einem hohen Energie- und Kostenaufwand verbunden, als auch technisch sehr anspruchsvoll. Zur Erreichung der Ziele der Reibungsminderung, des Verschleißschutzes und der Entwicklung umfassender Leichtbaustrategien ist es daher von großer Bedeutung, ob sich das Leistungsprofil neuartiger Legierungen durch kostengünstigere Lösungen verbessern lässt. Obwohl der mechanische Einlauf aus tribologischer Sicht entscheidend für die Lebensdauer mechanischer Systeme ist, genießt er wenig Aufmerksamkeit und ist bis heute nur begrenzt verstanden. So kann die Ausbreitung von Mikrorissen während dieser Phase der erhöhten Reibung zum vorzeitigen Materialversagen führen. In diesem Sinne war es das oberste Ziel dieser Forschungsarbeit, den Einlauf in die mechanische Endbearbeitung vorzuverlegen. Neuartige Stähle wurden dabei ohne kostenintensive, thermochemische Behandlungen gezielt vorkonditioniert und ihre so verbesserten Eigenschaften mit denen von gängigen Einsatzstählen verglichen. Zu den untersuchten Vorkonditionierungsmechanismen gehören die Erzeugung von: a. Kaltverfestigungen und b. chemischen Tribofilmen. Stähle, die in Vorversuchen eine Zuneigung zur Kaltverfestigung und Tribofilmentstehung, wurden für diese Forschungsarbeit ausgewählt. Die ausgewählten Stähle urden vor jeglicher Vorkonditionierung einer gründlichen, metallurgischen Charakterisierung unterzogen. Der Referenzgetriebestahl 20MnCr5 wurde einsatzgehärtet und in getrennten Gruppen bei verschiedenen Temperaturen tiefgekühlt, um Proben in verschiedenen Nuancen des Restaustenitgehaltes zu erhalten. Damit ließ sich der Einfluss des Restaustenits auf die Materialeigenschaften genauer untersuchen. Die Hochleistungsstähle, 36NiCrMoV1-5-7 (Warmarbeitsstahl) und 45SiCrMo6 (Federstahl), wurden nach den Vorschriften der jeweiligen Hersteller wärmebehandelt, und wurden nicht einsatzgehärtet. Die Auswahl an Stählen, mit und ohne Einsatzhärtung, lässt eine Untersuchung darüber zu, ob eine Einsatzhärtung überhaupt notwendig ist, um gutes Reibungs- und Verschleißverhalten zu erzielen. Elementanalysen wurden mittels mehrerer Methoden zur Gewährleistung der bestmöglichen Genauigkeit der Ergebnisse durchgeführt. Die Restaustenitgehalte der Stähle und Eigenspannungstiefenprofile wurden an einem Röntgendiffraktometer ermittelt. Die Restaustenitgehalte des 20MnCr5 lagen zwischen 6 – 14 Vol.-% und die Restaustenitgehalte der Alternativstähle lagen unter 2 Vol.-%. Härtetiefenprofile wurden auch ermittelt. Die Aufkohlung des 20MnCr5 führte zu einer Steigerung der Härte und der Kohlenstoffkonzentration im Randbereich, sodass dieser Bereich des Stahls eher einem gehärteten SAE 52100, oder 100Cr6/102Cr6, als einem nicht einsatzgehärtetem 20MnCr5 entsprach. Eigenspannungen, die durch die mechanische Endbearbeitung entstanden, wurden direkt unter der Oberfläche detektiert. Die Hochleistungsstähle erfüllten mit Härtewerten zwischen 50 – 55 HRC und ihrem ausgeprägt martensitischen Charakter die Herstellervorgaben. Nach dem Abschluss der metallurgischen Charakterisierung wurden die Stähle vorkonditioniert. Zur ersten Vorkonditionierungsmethode gehörte die Erzeugung gezielter Kaltverfestigungen an Zweischeibenprüfständen in der Form von induzierten Grenzschichten, die die Randschicht gegen Verschleiß schützen. Die Wirksamkeit dieser Vorkonditionierung wurde anhand der Zunahme der vorteilhaften Druckeigenspannungen und der Steigerung der Oberflächenhärte nachgewiesen. Beide Eigenschaften verleihen den Stählen eine erhöhte Verschleißbeständigkeit. In einem weiteren Schritt wurden die Vorkonditionierungsparameter zur Erzeugung von Kaltverfestigung optimiert, um die evtl. Deformierung der Substratoberflächen abzumildern. In einer alternativen, zweiten Vorkonditionierung wurden zwei verschiedene Schmierstoffkonzepte implementiert, um an den Zweischeibenprüfständen chemisch reaktive Triboschichten (Tribofilme) zu generieren. Die Schmierstoffkonzepte basierten auf: a. CaCO3, was überwiegend in Motorenölen eingesetzt wird und b. MoDTC, was häufig in Motoren- und Getriebeölen eingesetzt wird. Die durch die Vorkonditionierung erzeugten Tribofilme wurden mittels REM-EDX mit Element- Mapping, Raman-Spektroskopie und XPS analysiert, um ihre molekulare Zusammensetzung und Oberflächenkonzentration zu ermitteln. Der Tribofilm aus dem ersten Schmiermittel bestand hauptsächlich aus CaO und CaCO3 und der Tribofilm aus dem zweiten Schmiermittel bestand hauptsächlich aus MoS2, MoO2 und MoO3. Aus diesen Analysen wurde ersichtlich, dass 104 Laufzyklen zur Generierung stabiler und beständiger Tribofilme vollkommen ausreichend sind. Anschließend wurden alle Stähle in Dauerwälzversuchen (T = +120 °C, 107 Zyklen, etwa 19 Tage in einem Erstbefüllungsmotorenöl) in ihrem Reibungs- und Verschleißverhalten untersucht. Es wurde gezeigt, dass durch vorkonditionierte Kaltverfestigungen oder durch vorkonditionierte Tribofilme die Reibung und der Verschleiß in Wälzkontakten bei Dauerwälzen bis P0Mean =1,94 GPa (P0Max = 2,91 GPa, FN = 2.000 N) signifikant erniedrigt werden können. Im Endeffekt wurde in dieser Arbeit gezeigt, dass: 1. nicht einsatzgehärtete Hochleistungsstähle konkurrenzfähig zu dem einsatzgehärteten 20MnCr5 sind. 2. die Vorkonditionierungen zu einer Senkung des Reibungskoeffizienten bis auf 7/10 und zu einer Senkung des Verschleißkoeffizienten bis auf 1/10 der Koeffizienten der nicht vorkonditionierten Stähle unter Misch-/Grenzreibungsbedingungen führten. 3. die Verbesserungen des Reibungs- und Verschleißverhaltens auf eine technisch einfache, energie- und kosteneffiziente Vorkonditionierungsstrategie weisen, die noch bestehende thermochemische Behandlungen ersetzen könnte. T3 - BAM Dissertationsreihe - 143 KW - Work hardening KW - Steel KW - Friction KW - Wear KW - Tribofilm PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354507 SN - 978-3-9817502-5-6 SN - 1613-4249 VL - 143 SP - 1 EP - 133 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wachsmuth, Janne T1 - Analyse der Schallemissionssignale aus Ermüdungsrisswachstum und Korrosionsprozessen Untersuchung der Möglichkeiten für die kontinuierliche Zustandsüberwachung von Transportbehältern mittels Schallemissionsprüfung N2 - Die Schädigung von Gefahrgutbehältern während ihres Transports durch Korrosion und Ermüdungsrisswachstum sind Ursache von Unfällen, die Menschenleben gefährden, die Umwelt schädigen und hohe Sachschäden verursachen. Um solchen Unfällen vorzubeugen, werden präventive Intervallprüfungen durchgeführt. Diese sind jedoch kostenintensiv, unter anderem durch die Standzeit der Transportmittel. Eine Alternative bietet die Idee einer kontinuierlichen Zustandsüberwachung mittels Schallemissionsprüfung (SEP). So sollen Materialfehler sofort nach dem Entstehen entdeckt und repariert werden können. Die Schallemissionsprüfung ist eine online Methode der Familie der zerstörungsfreien Prüfung. Schallemission (SE) wird durch Veränderungen im Material erzeugt und durch elastische Wellen als Körperschall transportiert. Erzeugt das Schallemissionsereignis genug Energie, damit sich eine elastische Welle bis zum Rand eines Bauteils ausbreiten kann, entsteht dort eine Oberflächenverschiebung im Pikometer-Bereich, die mithilfe von piezoelektrischen Sensoren detektiert werden kann. Der Sensor gibt ein elektrisches Signal aus. Aus diesem transienten SE-Signal lassen sich SE-Parameter wie die Maximalamplitude oder die Frequenz extrahieren. Durch Methoden der Signalanalyse können Signalgruppen in der Zeit- und Frequenzebene untersucht werden. Durch Wellenmodenanalysen lassen sich beispielsweise Aussagen über die Art der Quelle machen. Diese Methoden werden angewendet, um aus dem SE-Signal Rückschlüsse auf die Quelle der Schallemission zu ziehen. Werden definierte Schadensmechanismen erkannt, können Hinweise auf den Schadenszustand des Bauteils gegeben werden. Durch Schallemission, die durch den Rissfortschritt erzeugt wird, kann beispielsweise ein Zusammenhang zur Rissfortschrittsrate und zum Spannungsintensitätsfaktor geschlossen werden. Eine neue Entwicklung im Bereich der Schallemissionsprüfung ist die Mustererkennung von SESignalen. Aus den Signalen werden spezifische Merkmale extrahiert, die sie ihren Schadensmechanismen zuordnen sollen. Für die Schadensmechanismen Korrosion und Ermüdungsrisswachstum findet in dieser Arbeit eine vergleichende Analyse von SE-Signalen statt. Die Schadensmechanismen werden anwendungsnah auf großen Platten in der Wärmeeinflusszone einer Schweißnaht generiert und ihre SE-Signale definiert aufgenommen. Dafür werden Resonanzsensoren verwendet, die auf der einen Seite durch ihre Frequenzabhängigkeit sehr empfindlich die kleinste Oberflächenbewegungen reagieren und somit auch für die Anwendung in einer Zustandsüberwachung geeignet sind, jedoch andererseits frequenzbasierte Methoden der Signalanalyse erschweren. Es werden reines Ermüdungsrisswachstum, Ermüdungsrisswachstum unter dem Einfluss von Korrosion sowie reine Oberflächenkorrosion generiert. Die Signalgruppen der Schadensmechanismen werden anhand ihrer Parameter verglichen; anhand von Wellenmodenanalysen können erste Unterschiede, trotz des starken Sensoreinflusses im Frequenzbereich, festgestellt werden. Der Schadenszustand der Proben wird durch bruchmechanische Kenngrößen in Zusammenhang mit SE-Parametern der Signalgruppen gebracht. Ferner findet eine Mustererkennung der SE-Signale statt. Dafür werden zwei Methoden des überwachten Lernens verwendet: eine automatisierte Merkmalsauswahl mithilfe eines kommerziellen Mustererkennungssystems, bei dem hauptsächlich frequenzabhängige Merkmale generiert werden sowie eine parameterbasierte Mustererkennung. Bei der parameterbasierten Mustererkennung wird die Einteilung in Signalklassen aufgrund der Häufigkeitsverteilung der SE-Parameter aus den Signalen der untersuchen Schadensmechanismen vorgenommen. Dabei ergeben beide Methoden, insbesondere für die Schädigung durch Korrosion, eine gute Zuordnung der SE-Signale in die richtige Schädigungsklasse. Abschließend findet unter Berücksichtigung der Nachweisbarkeit von SE-Ereignissen und der Klassifizierbarkeit von SE-Signalen eine Einschätzung zu Chancen und Risiken der permanenten Zustandsüberwachung mittels Schallemissionsprüfung statt. Dazu werden unter anderem eigene Messungen an Tankfahrzeugen hinzugezogen sowie Ergebnisse aus zyklischer und statischer Belastung verglichen. Es wird eine Abschätzung zur Wahl der Überwachungsmethode an Gefahrgutbehältern gegeben. N2 - Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic Emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum Amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack Propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were generated application oriented, on plates within the heat affected zone of a weld. Their AE signals were recorded with resonant sensors. On the one hand resonant sensors are very sensitive and able to detect small displacements on huge structures, which makes them applicable for condition monitoring. On the other hand, resonant sensors have a great influence on the AE signals and hinder signal analyses and pattern recognition. Pure fatigue crack growth, fatigue crack growth in a corrosive environment and pure corrosion were applied. Signal groups of the damage mechanisms were compared by their AE features. Differences between signal groups could be made after wave mode analysis, despite the spectral influence of the AE sensors. The damage condition of the test plates is investigated with the combination of AE features of the signal groups and fracture mechanic parameters. Furthermore, two methods of unsupervised pattern recognition of the AE signals are being performed: A commercial classification system, where mainly frequency. based features are generated, and an AE feature based method. In the latter, classification takes place after the frequency distributions of the AE features of the signals from the examined damage mechanisms. Both methods result in an accurate classification for the AE signals, especially originating from corrosion damage mechanisms, in the correct damage class. T3 - BAM Dissertationsreihe - 142 KW - Zustandsüberwachung KW - Schallemissionsprüfung KW - Ermüdungsrisswachstum KW - zerstörungsfreie Prüfung KW - Mustererkennung KW - Korrosion KW - pattern recognition KW - corrosion KW - fatigue crack growth KW - acoustic emission testing KW - non-destructive testing KW - condition monitoring PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354823 SN - 978-3-9817502-4-9 SN - 1613-4249 VL - 142 SP - 1 EP - 265 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35482 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lenke, Karoline T1 - Kurzfaserverstärktes Polyamid — Charakterisierung der Mikroschädigungsentwicklung unter zweiachsiger mechanischer Last N2 - In der vorliegen Arbeit wird ein kurzglasfaserverstärktes Polyamid 6 unter zweiachsiger mechanischer Belastung charakterisiert. Die Analyse umfasst das einachsige und zweiachsige Ermüdungsverhalten unter Zug-, Torsions- und Zug-Torsionslast sowie die dabei auftretende charakteristische Mikroschädigungsentwicklung. Zur Beschreibung des Ermüdungsverhaltens unter zweiachsiger Axial-Torsionslast kann das auf Ermüdungslasten angepasste, nicht-differenzierende Tsai-Hill-Kriterium angewendet werden. Die Mikroschädigungsanalyse erfolgt begleitend zu den mechanischen Belastungsversuchen mit der zerstörungsfreien Prüfmethode der Röntgenrefraktionsanalyse. Durch fraktographische Analysen des Werkstoffes wird das qualitative Auftreten der im Modell angenommenen Schädigungsmechanismen abgesichert. Prinzipiell ist die Mikroschädigung kurzfaserverstärkter Werkstoffe durch Faser-Matrix-Ablösungen beziehungsweise Faserbrüche und Matrix-Mikrorissbildung geprägt. Abhängig von Faserlängenkonfiguration sowie Belastungsart und -richtung ändert sich das Auftreten beziehungsweise die quantitative Ausprägung der einzelnen Mechanismen. So tritt Matrix-Mikrorissbildung lediglich im Zusammenhang mit Zuglasten auf, während Faser-Matrix-Ablösungen unabhängig von der Belastungsart im geschädigten Werkstoff vorliegen. Die Mikroschädigungsmechanismen Faser-Matrix-Ablösung und Matrix-Mikrorissbildung korrelieren linear mit den nichtlinearelastischen Verzerrungen unter statischen und schwellenden Ermüdungslasten (R = 0;1). N2 - In the present thesis a polyamide 6, reinforced with short glass fibres, under biaxial mechanical loading is characterised. The analysis comprises the general uni- and biaxial fatigue behaviour as well as the evolution of micro damage. The fatigue behaviour of the biaxially loaded samples is described by the non-differentiating criterion of Tsai and Hill, which is adapted to fatigue loadings. Test-related analysis of micro damage by the non-destructive method of X-ray-refraction Analysis is carried out. The qualitative presence of the micro damage mechanisms supposed by the model is ensured by fractographic analysis. Generally, the micro damage of short fibre reinforced thermoplastics is characterised by debonding between fibres and matrix, fracture of fibres and micro cracking in the matrix material. Dependent on the characteristic load the presence as well as the quantity of the particular mechanism changes. Thus, matrix-micro-cracking only appears in context with axial loading. In contrast, debonding between fibre and matrix appears in the damaged material, Independent from the type of loading. The mechanisms of micro-damage, fibre-matrix-debonding and matrix-micro-cracking show a linear correlation to non-linear-elastic strains under static and fatigue loading (R = 0:1). T3 - BAM Dissertationsreihe - 141 KW - zerstörungsfreie Prüfung KW - Ermüdungsverhalten KW - Kurzfaserverstärkung KW - Thermoplaste KW - Schädigungsentwicklung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354498 SN - 978-3-9817502-2-5 SN - 1613-4249 VL - 141 SP - 1 EP - 189 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Thiele, Marc T1 - Experimentelle Untersuchung und Analyse der Schädigungsevolution in Beton unter hochzyklischen Ermüdungsbeanspruchungen N2 - Im Mittelpunkt der vorliegenden Arbeit steht das Ermüdungsverhalten von Beton unter hochzyklischen Druckschwellbeanspruchungen. Der aktuelle Wissensstand bezüglich des Ermüdungsverhaltens ist nach wie vor sehr lückenhaft. Ganz besonders trifft das auf den eigentlichen Ermüdungsprozess zu, der dem abschließenden Ermüdungsversagen vorausgeht. Dem Defizit im Wissen um das Ermüdungsverhalten steht allerdings eine zunehmende Bedeutung der Thematik in der Baupraxis gegenüber. Daher wurde im Rahmen dieser Arbeit eine systematische Untersuchung des Ermüdungsprozesses vorgenommen. Damit wird ein Beitrag geleistet, um einen tieferen Einblick und ein besseres Verständnis für den Schädigungsprozess und die damit verbundenen Vorgänge innerhalb des Betons zu gewinnen. Die experimentellen Untersuchungen bestehen im Wesentlichen aus einstufigen Dauerschwingversuchen im Druckschwellbereich an zylindrischen Probekörpern aus Normalbeton. Verwendet wurden zwei verschiedene Ermüdungslastniveaus, die Bruchlastzyklen zwischen 10⁶ und 10⁷ sowie zwischen 10³ und 10⁴ erzeugten. Die Untersuchung des Ermüdungsvorgangs erfolgte durch den Einsatz verschiedener ZfP- und ZP-Methoden, wie der Dehnungsmessung, der Messung flächiger Oberflächenverformungen, der Ultraschallmessung, der Schallemissionsmessung, der Lichtmikroskopie und des Rasterelektonenmikroskops. Zur Bewertung einiger Einflussgrößen im Zusammenhang mit dem Ermüdungsverhalten fanden zudem ergänzende Versuche zum Kriecheinfluss sowie zum Einfluss der Probengröße statt. Es konnte festgestellt werden, dass es sich bei dem Ermüdungsvorgang um eine von Beginn an einsetzende Schädigungsevolution innerhalb des Betons handelt. Diese beeinflusst die verschiedenen Materialeigenschaften des Betons in vielfältiger und sehr unterschiedlicher Weise. Die wesentlichste Feststellung in diesem Zusammenhang ist, dass die ermüdungsbedingte Materialschädigung zu einer Veränderung der gesamten Spannungs-Dehnungs-Beziehung führt, die sich ebenfalls in einem fortlaufenden Evolutionsprozess äußert. Aus den Untersuchungen konnten als entscheidende Ursache für die beobachteten Veränderungen im makroskopischen Materialverhalten Veränderungen in der Mikrorissstruktur nicht festgestellt werden. Vielmehr weisen die Ergebnisse der Untersuchungen darauf hin, dass die ermüdungsbedingten Veränderungen speziell in den Phasen I und II vorrangig das Resultat von viskosen Prozessen innerhalb des Zementsteins sind. Darüber hinaus geht aus den Versuchen hervor, dass auch das Kriechen zu relativ ähnlichen, aber weniger stark ausgeprägten Veränderungen im Material führt. Ein Einfluss der Probengröße auf das resultierende Verhalten konnte sowohl im statischen als auch im zyklischen Fall beobachtet werden. Aus den gewonnenen experimentellen Erkenntnissen wird eine Beschreibung der Vorgänge abgeleitet, die während des Ermüdungsprozesses im Materialgefüge ablaufen und zu den beobachteten makroskopischen Veränderungen führen. In diesem Zusammenhang hat sich herausgestellt, dass eine Erfassung der ermüdungsbedingten Schädigung anhand einer skalaren Größe über die Steifigkeit der tatsächlichen Veränderung der Spannungs-Dehnungs-Beziehung nicht gerecht wird. Eine Betrachtung im Hinblick auf einen zuverlässigen Schädigungsindikator im Zusammenhang mit den gemessenen Größen liefert zudem einen Überblick über die Eignung verschiedener Größen zur Erfassung des Ermüdungsschädigungsgrades im Beton. Abschließend wird ein Ansatz vorgestellt, der die beobachteten Entwicklungen entscheidender Größen im Ermüdungsvorgang abzubilden vermag. N2 - The main objective of this thesis is the fatigue behavior of concrete under high-cycle compressive loadings. Current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the process of fatigue which is preceding the fatigue failure. The leak of knowledge about fatigue behavior is opposed to the steady growing importance of this topic within the practice in civil engineering. Therefore, within this thesis a systematic and comprehensive investigation of the process of fatigue itself was done. This contributes to the better understanding of the progression of damage and the corresponding processes within the material. The experimental investigation consisted mainly of experiments with constant amplitude loadings in compression with cylindrical specimen made of normal strength concrete. Two differed load levels were used which resulted in numbers of cycles to failure of 10⁶ and 10⁷ as well as 10³ and 10⁴. The experiments were done in combination with different types of nondestructive and destructive testing methods like strain measuring, deformation of surface, ultrasonic signals, acoustic emissions, optical microscopy and also scattering electron microscopy. To access some parameters of influence in relation to the fatigue behavior additional creep tests and also several tests with different scales of specimen were done. The fatigue process of concrete is determined as an evolution of damage that starts from the beginning of the loading process. This evolution has manifold and different influences on the different material properties of concrete. In this relation a major finding was that fatigue related damage leads to a transformation of the complete stress-strain-relationship. This relationship is also subjected to an evolution process. Due to the authors observations it could not be determined that the investigated changes in macroscopic material behavior are caused by a development of micro cracks within the material structure. The results of the investigation indicated that rather the fatigue related changes in material behavior are mainly a result of viscous processes in cement stone especially in phase I and II of the fatigue process. Furthermore, it was observed that creep in concrete leads to similar but lesser changes in material behavior of concrete. Beside this, tests with different scales of specimens have shown an appreciable effect of size on the resulting material behavior under static and cyclic loadings respectively. From these experimental findings a detailed description was derived about the processes which take place within the material structure during the fatigue loading and also leads to the observed macroscopic changes in material behavior. In this context, the tests have shown that relating to stiffness reduction a scalar value could not capture the damage effect on the stress-strain-relationship caused by fatigue. A following consideration gives an overview about applicability of the different measured parameters for the detection of the degree of fatigue damage with regard to a reliable damage indicator. Finally an approach is presented which is able to describe the investigated developments of significant values within the observed fatigue process. T3 - BAM Dissertationsreihe - 140 KW - Ermüdung KW - Beton KW - Hochzyklisch KW - Schädigungsevolution KW - Fatigue KW - Concrete KW - High-cycle KW - Damage evolution PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354487 VL - 140 SP - 1 EP - 286 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gollnow, Christian T1 - Beitrag zur Ermittlung vorrangig konstruktiver Einflussgrößen auf die Heißrissinitiierung an geschweißten Bauteilen N2 - Die bisherigen Forschungsergebnisse ermöglichen, ungeachtet der Vielzahl existenter experimenteller und numerischer Ergebnisse, keine allgemeingültige Heißrisscharakterisierung und speziell Erstarrungsrisscharakterisierung. Ursächlich hierfür ist vor allem die Vielzahl von Einflussgrößen und damit die komplexe Interaktion dieser Mechanismen, die eine generelle Beschreibung des Heißrissphänomens erschwert. Die Heißrissentstehung und somit die Erstarrungsrissinitiierung werden durch die Interaktion von Schweißprozess, Metallurgie und Design beschrieben. Die Literaturrecherche zeigt, dass bei der Erstarrungsrisscharakterisierung der konstruktive Aspekt vielfach unterschätzt wird. Hierbei werden u. a. die bauteil- und fertigungsspezifischen Vorbeanspruchungen durch diverse Umformprozesse hinsichtlich der Ausführung der Schweißnaht zu selten berücksichtigt. Ferner wird der Designeinfluss bei der Heißrissentstehung durch die eingeschränkte Übertragbarkeit verschiedener Beanspruchungen auf den Labormaßstab und somit auf die jeweiligen Heißrisstests limitiert. Daraus resultiert die Komplexität bei dem Transfer der Ergebnisse zwischen Laborproben und Bauteilen sowie der grundsätzlichen Heißrisscharakterisierung. Diese Arbeit hatte das Ziel, unterschiedliche bei Bauteilschweißungen auftretende Bean-spruchungen im Labor abzubilden sowie die experimentelle Quantifizierung erstarrungs-risskritischer Größen. Diesbezüglich wurden fremdbeanspruchte Heißrisstests unter An-wendung berührungsloser Messtechniken durchgeführt, um so den Schweißprozess hin-sichtlich verschiedener designspezifischer Einflussgrößen auf die Erstarrungsrissinitiierung bei hochlegierten Stählen zu analysieren. Die Untersuchungen erfolgten an austenitischen (1.4828) und ferritischen (1.4509) Werkstoffen mit unterschiedlichen mechanischen und technologischen Eigenschaften. Zur Berücksichtigung der praxisrelevanten Beanspruchungen wurden die Proben mit verschiedenen Zug- und Biegebeanspruchungen teils vor und während des WIG-Schweißprozesses beaufschlagt. Im Hinblick auf den jeweiligen Beanspruchungsfall erfolgten lokale und schweißnahtnahe Analysen erstarrungsrisskritischer Verschiebungen und Verschiebungsraten mit exakter Zeit- und Ortsauflösung. Zusätzlich wurden Fallanalysen an Bauteilen in industriellen Fertigungsprozessen durchgeführt, um besonders den gegenseitigen Einfluss von Design und Schweißprozess zu ermit-teln und zusätzlich die Ergebnisübertragbarkeit von Laborproben und Bauteilen aus dem Fertigungsprozess zu prüfen. Die durchgeführten Untersuchungen ergeben wesentliche Erkenntnisse zur Vermeidung von Bauteilschäden durch Erstarrungsrisse. Es wurde der designspezifische Einfluss auf das Erstarrungsverhalten der Schweißnaht nachgewiesen und als Erstarrungsrisskriterium dargestellt. Die Arbeit beschreibt für diverse Beanspruchungen die Mechanismen bei der Erstarrungsrissinitiierung. Ferner zeigen die Ergebnisse wesentliche erstarrungsrissspezifische Unterschiede zwischen Vorbeanspruchungen und Beanspruchungen während des Schweißprozesses. Zudem erfolgte die Darstellung der Interaktion von Design und Schweißprozess, werkstoffspezifisch anhand in-situ detektierter Verschiebungswerte. Es wurde gezeigt, dass die ermittelten Messdaten von Bedeutung für weiterführende numerische Simulationen sind, insbesondere zur Validierung numerischer Modelle, die erstarrungsrisskritische Bauteildeformationen abbilden. N2 - The previous research results do not allow a general hot crack characterisation although a variety of experimental and numerical knowledge is available. The reason for this is mainly the large number of influencing factors that complicate a complete description of the hot cracking phenomenon and especially solidification cracking. The hot crack formation and thus the solidification crack initiation can be described by the interaction of process, metal-lurgy and design. However, the literature examination shows that in the solidifaction crack characterisation the influence of the design aspect is often underestimated. The pre-stresses of the structural components is up to now not considered as an essential cause for the formation of solidification cracks. The evaluation of the influence of the vari-ous parameters is presented partly inconsistent. In addition, the targeted presentation of the design influence with respect to the solidification cracks in the weld is because the limited transferability of the various component-specific stresses on a laboratory scale and thus to the respective hot cracking tests restricted. Hence, the difficulty to transfer the results be-tween laboratory specimen and component as well as the general hot crack characterisa-tion is given. In this work the different types of stresses from the component welding in the laboratory and to quantify experimentally the solidification crack critical values, displacements and dis-placement rates were detected. In this regard external loaded hot cracking tests were car-ried out by using the advantages of contactless measurement techniques close to the weld and to analyse the welding process with respect to various local and global design-specific factors influencing the formation of solidification cracks in high alloyed steel. These investi-gations were performed on austenitic (1.4828) and ferritic (1.4509) materials with different mechanical and technological properties. To reflect the praxis relevant load conditions from production process the specimens were treated with various tensile and bending load partly before and during TIG-welding. With regard to the respective load cases the local and two-dimensional analyses of solidification crack critical parameters were carried out close to the weld, time and spatial resolved. Additionally, case analyses on components in the pro-duction process were done in order to evaluate the primary design-specific influence to solidification cracking. The general influence of the design to the process parameters was evaluated. Furthermore, the transferability of the laboratory test results on components was examined. The performed investigations yield significant knowledge to prevent solidification cracks, especially for component manufacturing. The design-specific influence on the solidification behavior and the weld microstructure was detected which was proved as a solidification crack criterion. This work describes feasible mechanisms of different stress conditions with respect to the initiation of solidification cracks. In addition, the results show substantial solidification specific differences between pre-load and load during the welding process. It was described the mutual influence of design and welding process, material-specific based on in-situ detected displacement values. The data obtained are of importance for further numerical simulations, especially for the validation of numerical models that represent the solidification crack-critical component deformations. T3 - BAM Dissertationsreihe - 139 KW - Digital-Image-Correlation-Technik (DIC) KW - Bauteilbeanspruchung KW - Heißrisse KW - Schweißtechnik KW - In-Situ-Analyse PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5353 SN - 978-3-9817502-0-1 VL - 139 SP - 1 EP - 183 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-535 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kind, Thomas T1 - Signatur der Streuung von Radarwellen durch die Heterogenität von Beton N2 - Das Radarverfahren ist ein schnelles bildgebendes Verfahren für die Untersuchung der inneren Struktur von Stahlbeton-Bauwerken und wird seit längerem erfolgreich für die zerstörungsfreie Untersuchung von Brückenbauwerken eingesetzt. Für die Rekonstruktion der Lage der Bewehrung reicht die Annahme einer homogenen Materialeigenschaft des Betons meistens aus. Nähere Untersuchungen der empfangenen Streuungen der Radarwellen zeigen, dass neben der starken Streuung der Radarwellen an den metallischen Einbauteilen auch schwache Streuungen existieren. Diese schwachen Streuungen im Beton wurden nun erstmals in dieser Arbeit untersucht und können der Heterogenität des Betons zugeordnet werden. Die schwachen Streuungen entstehen durch den Permittivitätskontrast und die Geometrie der Gesteinskörnung im umgebenden Zementstein des Betons. Im Rahmen dieser Arbeit wurden die schwachen Streuungen im Beton für unterschiedliche Gesteinskörnungen charakterisiert und der Einfluss des Wellenlängenbereichs der Radarwellen auf die Ergebnisse untersucht. Weiter zeigt die Arbeit, dass die Streuungen an der Gesteinskörnung einen wesentlichen Einfluss auf die maximale Eindringtiefe von Radarwellen in Beton haben. N2 - The radar method is a rapid imaging technique for the study of the internal structure of reinforced concrete structures and has been used successfully since some time for non-destructive analysis of bridge structures. For the reconstruction of the position of the reinforcement, the assumption of homogeneous material properties of concrete is usually sufficient. More detailed investigations of the received scattering of the radar waves show that in addition to the strong scattering of the radar waves at the metallic mounting parts also weak scattering exists. These weak variations of scattering in the concrete were investigated for the first time in this thesis and are assigned to the heterogeneity of the concrete. The weak scattering is caused by the contrast of the permittivities and the geometry of the aggregate of the surrounding concrete cement paste. In this thesis, the weak scattering in concrete was characterized for different aggregates and the influence of the wavelength range of the radar wave on the results was investigated. Further, the thesis shows that the variations in the aggregate have an essential effect on the maximum propagation length of radar waves in concrete. T3 - BAM Dissertationsreihe - 138 KW - Heterogenität KW - Zementstein KW - zerstörungsfreie Prüfung (ZfP) KW - Gesteinskörnung KW - Interferenzmuster KW - heterogeneity KW - cement stone KW - non destructive testing (NDT) KW - aggregates KW - interference pattern PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5682 SN - 978-3-9817149-9-9 VL - 138 SP - 1 EP - 103 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-568 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Altmann, Korinna T1 - Abscheidung ultradünner funktionalgruppentragender Polymerschichten auf Metalloberflächen mittels Elektrospray Ionisation N2 - Funktionalisierte Oberflächen sind in vielen Bereichen, z. B. als Haftvermittler in Polymerkompositen, für katalytische Anwendungen oder als Sensoren von Interesse. Für viele solcher Anwendungen ist es ausreichend, den verwendeten Werkstoff mit einem ultradünnen Polymerfilm zu überziehen. Dazu gibt es bislang einige Verfahren, wie z. B. Chemical Vapour Deposition, Layer-by-Layer-Technik, Langmuir-Blodgett-Technik oder Spin-Coating, die alle bestimmte Nachteile haben. In der vorliegenden Arbeit wurden wenige Nanometer dicke Polymerschichten auf metallischen und nicht-metallischen Substraten mittels Elektrospray Ionisation abgeschieden. So wurden typischerweise etwa 10 nm dicke Schichten von Polyacrylsäure (PAA) hergestellt. Die analytische Charakterisierung der produzierten Schichten erfolgte mit der Röntgen-Photoelektronenspektroskopie. Die Atomkraft- bzw. Rasterelektronenmikroskopie gaben Auskunft über den Bedeckungsgrad und die Schichtmorphologie. Die Infrarot-Reflexions-Absorptions-Spektroskopie wurde zur Bestimmung des Restlösemittelgehaltes verwendet. Zur Optimierung der Schichtabscheidung und -struktur wurden verschiedene Parameter variiert, wie z. B. der Kapillaren-Proben-Abstand, die Beschichtungszeit oder die Beschichtungstemperatur, wobei sich herausstellte, dass die Schichtbildungsparameter für jedes Polymer individuell angepasst werden müssen. Es konnte gezeigt werden, dass Beschichtungen, bei denen sich das Substrat senkrecht zur Kapillare befindet, bei Raumtemperatur mit einem Kapillaren-Proben-Abstand von mindestens 100 mm zu lösemittelfreien PAA-Schichten führen. Dabei war die Ausbildung der Filmtopographie unabhängig sowohl von der Konzentration der Lösung als auch von der Oberflächenenergie des Substrates. N2 - Functionalized surfaces are of interest in plenty of technical fields, e.g. used as adhesion promoter for polymer composites, in catalytic applications or as sensors. For lots of these applications it is sufficient to cover the used materials with an ultra thin polymer film. All existing methods, e. g. chemical vapour pressure, layer-by-layer-technique, Langmuir-Blodgett technique or spin coating have disadvantages. The following work presents the deposition of few nanometer scale polymer layers on metallic and non-metal substrates by electrospray ionization. Most experiments were performed with poly(acrylic acid) (PAA). Layers of about 10 nm were deposited. The coverage and the morphology of the produced layers were analyzed by X-ray photoelectron spectroscopy, atomic force spectroscopy and scanning electron microscopy. The residual amount of solvent within the deposited layers was identified by infrared reflection absorption spectroscopy. Optimisation of the layer deposition was performed by varying the process parameters, e. g. distance to the sample, deposition time or deposition temperature. Based on the knowledge acquired in the experiments it was realized that the deposition parameters have to be found individually for each single polymer. It could be shown that depositions at room temperature with capillary-sample-distances higher than 100 mm, where the sample is placed vertical to the capillary, produce solvent free PAA layers. The film topography was independent of the concentration of the polymer solution and of the substrate surface energy. T3 - BAM Dissertationsreihe - 137 KW - Kapillaren-Proben-Abstand KW - Elektrospray Ionisation KW - Elektrospray Abscheidung KW - Ultradünne Schichtabscheidung KW - Polyacrylsäure KW - deposition KW - surface functionalization KW - electrospray ionisation PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5142 VL - 137 SP - 1 EP - 132 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-514 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mieller, Björn T1 - Modellierungsansätze und neue Brennhilfsmittelkonzepte für die LTCC-Drucksintertechnologie N2 - Niedrigsinternde Glas-Keramik-Komposite (LTCC, low temperature co-fired ceramics) werden erfolgreich als kompakte, mehrlagige Schaltungsträger in der Automobilindustrie und Hochfrequenztechnik eingesetzt. Dazu werden sie mit Verfahren der Folien- und Multilayertechnik verarbeitet und gemeinsam mit aufgedruckten Metallisierungen bei Temperaturen bis 900 °C co-gesintert. Besonders bei hohen Anforderungen an die Reproduzierbarkeit der Sinterschwindung hat sich das Sintern mit axialer Druckunterstützung etabliert, wodurch unter anderem die Schwindung in der Ebene der Einzelfolien unterdrückt werden kann. Ziel der vorliegenden Arbeit war es, die LTCC-Drucksintertechnologie unter zwei Gesichtspunkten weiterzuentwickeln: • Erarbeitung eines einfachen und praktikablen Verfahrens zur Modellierung und Simulation des Verfahrens, • prozessintegrierte Erzeugung maßgeschneiderter, speziell dünnfilmfähiger Oberflächenstrukturen. Für die Simulation der Sinterung wurde das Modell der Mastersinterkurve ausgewählt. Die Eignung des Modells zur Beschreibung von LTCC-Werkstoffen wird zunächst ohne Druckunterstützung nachgewiesen. Dabei werden die Mastersinterkurven von frei gesinterten Pulverpresslingen und Folienlaminaten, deren Schwindung in der Ebene unterdrückt ist, quantitativ gegenübergestellt. Außerdem wird eine Methode vorgeschlagen und experimentell bestätigt, mit der die Schwindungsfehlpassung von Werkstoffkombinationen bei druckloser Co-Sinterung von berechnet werden kann. Die Modellierung der druckunterstützten Sinterung basiert auf thermomechanischen Analysen eines verbreitet angewendeten, kommerziellen LTCC-Werkstoffs (DuPont GreenTape DP951) im Druckbereich von 2 kPa bis 500 kPa. Die Auswertung der Messwerte und Entwicklung der Mastersinterkurven erfolgt unter Berücksichtigung der Kriechverformung des Werkstoffs unter Druck und wird durch grundlegende Untersuchungen zur für dieses Modell obligatorischen Bestimmung der Aktivierungsenergie ergänzt. Mit einer konstanten Aktivierungsenergie von 400 kJ/mol werden Mastersinterkurven für verschiedene Drücke aufgestellt und mit Anpassungsfunktionen modelliert. Die mit Hilfe der Anpassungsfunktionen simulierten Sinterkurven stimmen gut mit den Messungen überein. Das Modell wird als geeignet und praktikabel bewertet. Die prozessintegrierte Erzeugung maßgeschneiderter Oberflächenstrukturen erfolgt über die im Drucksinterprozess eingesetzten Brennhilfsmittel. Zur Einstellung gewünschter Rautiefen auf den gesinterten Oberflächen werden Opferfolien aus Al2O3 mit unterschiedlichen Partikelgrößenverteilungen und eine Opferfolie aus hexagonalem BN vorgestellt, die über Rückstandsschichten auf der LTCC-Oberfläche die Oberflächenstruktur bestimmen. Der Zusammenhang von Opferfolieneigenschaften und Oberflächencharakteristika wird an verschiedenen LTCC-Werkstoffen beschrieben. Die Rauheit einer druckgesinterten LTCC-Oberfläche kann über die Partikelgröße der Opferfolien gezielt verändert werden. Zur Herstellung dünnfilmkompatibler, rückstandsfreier Oberflächen im Drucksinterprozess wird glasartiger Kohlenstoff als Brennhilfsmittel eingeführt. Damit wird eine Regelung des Sauerstoffpartialdrucks während des Brandes erforderlich. Eine vollständige thermische Entbinderung der Grünfolien ist aufgrund von Kohlenstoffrückständen auf den Partikeloberflächen erst oberhalb 500 °C möglich. Einflüsse der Prozessparameter Druck und Haltezeit auf die resultierende Oberflächenstruktur werden aufgeklärt und optimale Prozessfenster für die untersuchten Werkstoffe angegeben. Mit dem entwickelten Verfahren können zum ersten Mal verschiedene LTCC-Substrate mit dünnfilmfähigen Oberflächen nacharbeitsfrei durch Drucksintern hergestellt werden. Die Ergebnisse zur Modellierung und Simulation leisten einen wertvollen Beitrag zur Einsparung von Energie, Zeit und Kosten bei der Gestaltung von Drucksinterprozessen. Die erarbeiteten Brennhilfsmittelkonzepte können ressourcenaufwändige Nacharbeit teilweise ersetzen und eröffnen durch die Dünnfilmeignung der Oberflächen neue Anwendungsgebiete der Drucksintertechnologie in der Sensor und Mikrosystemtechnik. T3 - BAM Dissertationsreihe - 136 KW - Glaskohlenstoff KW - low temperature co-fired ceramics KW - LTCC KW - Drucksintern KW - Mastersinterkurve KW - Opferfolie PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5106 N1 - Geburtsname von Mieller, Björn: Brandt, Björn - Birth name of Mieller, Björn: Brandt, Björn VL - 136 SP - 1 EP - 119 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Seiffert, Franz T1 - Charakterisierung von Gesteinsbewuchs und -verwitterung durch einen Modellbiofilm N2 - Natürliche Gesteinsformationen und von Menschen aus Gesteinsmaterial erschaffene Gebäude oder Monumente werden bei genügend langer Inkubation von zahlreichen Mikroorganismen besiedelt, welche komplexe Ökosysteme bilden. Dies führt oft zu Verfärbungen der Gesteinsoberflächen durch Pigmente der Mikroorganismen. Zudem können die Organismen das Gestein angreifen und zusammen mit abiotischen Faktoren eine Auflösung herbeiführen, was von essenzieller Bedeutung für die Bildung von Böden und gleichzeitig kritisch für die Erhaltung von Kulturgütern ist. Ein profundes Verständnis der Primärbesiedlung auf Gesteinen ist eine Voraussetzung, um Prozesse der Sukzession und der Gesteinsverwitterung besser nachvollziehen und modellieren zu können. Mischkulturen, die aus dem phototrophen Cyanobakterium Nostoc punctiforme ATCC 29133 und dem mikrokolonialen Ascomycet Knufia petricola CBS 726.95 bestanden, wurden als Modell für die ersten Schritte der Gesteinsbesiedlung in Form von Biofilmen und hinsichtlich des biologischen Einflusses auf die Gesteinsverwitterung hin getestet. Dazu wurden unterschiedliche Gesteine als Substrate angeboten, unter verschiedenen Kultivierungs- und Witterungsbedingungen mit den Mischkulturen inkubiert und die sich bildenden Biofilme bzgl. ihrer Morphologie und Abundanz hin analysiert. Es zeigte sich, dass das Wachstum der Biofilme deutlich von den verwendeten Gesteinen und Witterungsbedingungen abhing und die Anordnung und Morphologie der Zellen und der aus diesen ausgeschiedenen polymeren Substanzen innerhalb der Biofilme sich je nach eingesetztem Gesteinssubstrat deutlich unterschieden. Der biologische Einfluss auf die Verwitterung von Gestein wurde in einem Durchfluss-System an einem Granit und in Batch-Kulturen an Calcit, Forsterit und Olivin getestet, indem nach Inkubation für 45-180 d in An- und Abwesenheit der Mikroorganismen die in der Flüssigphase angereicherten Elemente und die chemischen Veränderungen in der Mineralphase vergleichend gemessen wurden. Dabei zeigte sich, dass der Biofilm die Auflösung von Calcium, Natrium, Magnesium und Mangan aus Granit sowie von Magnesium aus Forsterit und Olivin verstärkte. Einzelkulturen von K. petricola und Mischkulturen führten zu verstärkter Magnesiumauflösung, Einzelkulturen von N. punctiforme zeigten die gleichen Effekte wie abiotische Kontrollen. Beide Mikroorganismen wuchsen deutlich besser in Mischkulturen, sodass ein indirekter biotischer Effekt auf die Mineralauflösung von N. punctiforme durch die Verstärkung des Wachstums von K. petricola innerhalb einer mutualistischen Gemeinschaft als plausibel erscheint. Der Mechanismus der biotisch induziert verstärkten Gesteinsverwitterung konnte aufgrund der hier vorliegenden Ergebnisse nicht eruiert werden. Die verwendeten Mischkulturen aus K. petricola und N. punctiforme konnten als nützliches Modell zur Untersuchung von Gesteinsbewuchs und –verwitterung etabliert werden. N2 - Natural rock formations and buildings or monuments constructed by mankind with rock materials are colonised by various microorganisms within complex ecosystems if incubated for sufficient periods of time. This often causes discolouration of rock surfaces by microbial pigments. Microorganisms can also attack the rocks and give rise to their decomposition in combination with abiotic factors being of essential importance for soil formation and critical to the conservation of cultural heritage. For the comprehension and modellizing of processes like succession and rock weathering, a profound understanding of primary colonisation is required. Mixed cultures consisting of the phototrophic cyanobacterium Nostoc punctiforme ATCC 29133 and the microcolonial ascomycete Knufia petricola CBS 726.95 were used as a model to study the first steps of rock colonisation by biofilms and the biotic influence on rock weathering. For that purpose different rocks were offered as substrates, incubation with mixed cultures was done under differing cultivation and atmospheric conditions and forming biofilms were analysed for their morphology and abundance. Results indicate that growth of the biofilms depended precisely on the offered rock substrates and atmospheric conditions. Arrangement and morphology of cells and their excreted polymeric substances within biofilms differed depending on the rock substrate. The biological influence on rock weathering was examined in a percolation system for granite and in batch cultures for calcite, forsterite and olivine. After incubation for 45-180 d with and without microorganisms accumulated elements within the liquid phase and chemical changes within the Mineral phase were measured comparatively. Results indicate that dissolution of calcium, sodium, magnesium and manganese from granite and magnesium from forsterite and olivine were enhanced in the presence of the biofilm. For some mineral experiments, biotic effects of mixed and single cultures were distinguished. K. petricola single cultures and mixed cultures enhanced magnesium dissolution, N. punctiforme single cultures showed effects comparable to the abiotic controls. Both microorganisms grew better within mixed cultures, suggesting an indirect biotic effect of N. punctiforme for mineral dissolution, acting as growth enhancing factor for K. petricola within mutualistic biofilms. The mechanism of biotically increased rock weathering could not be determined by the here presented results. Mixed cultures of K. petricola and N. punctiforme could be established as a useful model to study colonisation and weathering of rocks. T3 - BAM Dissertationsreihe - 135 KW - Gesteinsbewuchs KW - Mineralverwitterung KW - Granitverwitterung KW - Modellbiofilm KW - Gesteinsbiofilm PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5118 VL - 135 SP - 1 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-511 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lausch, Thomas T1 - Zum Einfluss der Wärmeführung auf die Rissbildung beim Spannungsarmglühen dickwandiger Bauteile aus 13CrMoV9-10 N2 - Wirtschaftliche und ökologische Aspekte führten in den letzten Jahren zu deutlich gesteigerten Anforderungen an die Effizienz und die Flexibilität petrochemischer Anlagen. Die heutzutage geforderten Prozesstemperaturen und -drücke lassen sich nur durch den Einsatz neuer warmfester Stahlgüten erreichen. Der mit Vanadium modifizierte Stahl 13CrMoV9-10 weist eine bessere Kriech und Druckwasserstoffbeständigkeit auf und wird seit Mitte der 90er Jahre im petrochemischen Reaktorbau eingesetzt. Aufgrund der niedrigen Zähigkeit und hohen Festigkeit des Schweißgutes im geschweißten, nicht spannungsarm geglühten Zustand sowie einer erhöhten Sensitivität gegenüber Spannungsrelaxationsrissen bedarf dieser Stahl allerdings einer äußerst sorgfältigen schweißtechnischen Verarbeitung. Bisherige Untersuchungen zur Rissentstehung in warmfesten Stählen konzentrierten sich vorrangig auf thermische und metallurgische Einflussfaktoren, bieten jedoch nur wenige Erkenntnisse zum Einfluss des Schweißprozesses auf die Rissbildung beim Spannungsarmglühen unter Berücksichtigung realitätsnaher Fertigungsbedingungen. Im ersten Teil wurde zunächst der Einfluss der Wärmeführung auf die mechanischen Eigenschaften anhand von frei schrumpfenden Laborproben untersucht. Während sich die Wärmeführung wesentlich auf die Schweißnahtstruktur auswirkte, war ein signifikanter Effekt auf die mechanischen Eigenschaften nicht nachweisbar. Auch traten infolge der Wärmenachbehandlung der frei schrumpfend geschweißten Proben keine Spannungsrelaxationsrisse auf. Der zweite Teil umfasste die realitätsnahe Abbildung der Fertigungsbedingungen im petrochemischen Reaktorbau. Zu diesem Zweck wurden die konstruktiven Randbedingungen während des Vorwärmens, Schweißens, des Wasserstoffarmglühens und der abschließenden Wärmenachbehandlung realitätsnah in einer speziellen 3-D-Prüfanlage zur Simulation von Bauteilschweißungen abgebildet. Unter konstruktiver Schrumpfbehinderung gelang der Nachweis der unterschiedlichen Wirkung von Vorwärm- / Zwischenlagentemperatur und Streckenenergie auf die resultierenden Kräfte, Momente und Spannungen. Die Gesamtreaktionsspannung nach dem Schweißen wurde innerhalb des untersuchten Parameterfeldes maßgeblich durch die Streckenenergie beeinflusst. Ein möglichst geringer Gesamtwärmeeintrag hat die niedrigste Bauteilbeanspruchung zur Folge. Während der Wärmenachbehandlung kam es in allen Versuchen zu Spannungsrelaxationsrissen. Deren kumulierte Länge korrelierte mit den ermittelten schweißbedingten Reaktionsspannungen. Die Detektion der Risse während der Wärmenachbehandlung im Bauteilversuch erfolgte erstmalig in-situ mittels Schallemissionsanalyse. Die Rissinitiierung fand nachweislich im Temperaturbereich von 300 °C bis 500 °C statt. Die Reaktionsspannungen nach der Wärmenachbehandlung lagen unabhängig von der Ausgangsbelastung auf einem vergleichbaren Niveau. Die Zähigkeit der Schweißverbindung nahm klar gegenüber den frei schrumpfend geschweißten Proben ab. Mittels REM- und TEM-Analysen an vergleichbaren belasteten und unbelasteten Proben wurde eine beschleunigte Alterung, durch das frühzeitige Ausscheiden von Sonderkarbiden während der Wärmenachbehandlung unter definierter Einspannung (d. h. unter Belastung), nachgewiesen. Die verstärkte Korngrenzensegregation korrelierte mit der signifikanten Abnahme der Kerbschlagarbeit der unter Einspannung geschweißten Proben. N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new heat resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a better resistance to creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. However, processing of this type of steel requires extreme care during the welding procedure due to its low toughness and high strength in the welded state when not post weld heat treated, in Addition to its increased susceptibility to cracking during stress relaxation. Previous research into crack formation in heat resistant steel has largely focussed on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment taking into account real-life manufacturing conditions. In the first part, the influence of heat control on the mechanical properties has been investigated using freely shrinking laboratory samples. Whereas heat control was clearly shown to have an impact on the structure of the weld, it had no significant effect on the mechanical properties. Furthermore, there was no stress relief cracking resulting from post weld heat treatment of the samples welded under conditions allowing free shrinkage. The second part concerns the reproduction of real-life manufacturing conditions prevailing during the construction of petrochemical reactors. To this end, the basic constructional conditions during pre-heating, welding, dehydrogenation heat treatment, and the final post weld heat treatment were realistically simulated in a special 3-D testing facility designed to prevent shrinkage during welding and subsequent heat treatments. Under conditions restricting shrinkage it was possible to show the different effects of pre-heating and interpass temperatures and heat input on the resulting forces, momentums and stresses. Within the range of parameters examined the total reaction stress applied after welding depended largely on the heat input. The lowest possible total heat input results in the lowest stress load on the building parts. In all experiments stress relief cracks were formed during post weld heat treatment. The summary length of the cracks correlated with the measured reaction stresses due to welding. In the test, detection of the cracks during post weld heat Treatment was for the first time performed in-situ using acoustic emission analysis. Crack formation was thus shown to start in the temperature range between 300 °C and 500 °C. The reaction stresses after post weld heat treatment reached a similar level regardless of the load initially applied. The toughness of the weld significantly decreased in comparison with the samples welded in conditions allowing free shrinkage. REM and TEM analyses of comparable samples with and without load showed accelerated aging as a result of early precipitation of special carbides during post weld heat treatment in defined clamping conditions. The increase in grain boundary segregation correlated with a significant decrease of the notched bar impact value of samples welded when clamped in. T3 - BAM Dissertationsreihe - 134 KW - PWHT KW - Spannungsarmglühen KW - Schrumpfbehinderung KW - Bauteilversuch KW - Stress Relief Cracking KW - 13CrMoV9-10 KW - Schweißen KW - Spannungsrelaxationsrisse PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5129 VL - 134 SP - 1 EP - 252 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-512 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bleul, Regina T1 - Herstellung, Charakterisierung und Funktionalisierung polymerer Nanopartikel und Untersuchung der Wechselwirkungen mit biologischen Systemen N2 - Die Nanomedizin beschäftigt sich unter anderen mit der Frage, wie sich die Behandlung gefährlicher Krankheiten effizienter und sicherer gestalten lässt, deren konventionelle Therapie oftmals mit schweren Nebenwirkungen einhergeht. Die Vision ist, ein theranostisches Wirkstoffträgersystem zu schaffen, das seinen therapeutischen Cargo sicher an den Wirkort transportiert, dort freisetzt und gleichzeitig in Echtzeit verfolgt werden kann, um die Therapie individuell anzupassen. Die Grundlage für die erfolgreiche Entwicklung eines Wirkstoffträgersystems bilden Untersuchungen zum Verhalten von nanopartikulären Substanzen in physiologischer Umgebung. Im Rahmen der vorliegenden Arbeit wurden polymere Nanopartikel unterschiedlicher Morphologie durch die kontrollierte Selbstorganisation amphiphiler Blockcopolymere hergestellt, charakterisiert und auf ihre Wechselwirkungen mit menschlichen Zellen und Serumproteinen untersucht. Dazu wurde eine Studie zur Geometrie- und Größenabhängigkeit der Zytoxizität von nanoskaligen Kugel- und Zylindermizellen sowie Vesikelstrukturen durchgeführt. Des Weiteren wurde das Agglomerationsverhalten von verschiedenen polymeren Nanopartikeln in Anwesenheit von Serumproteinen untersucht. Mit Hilfe eines Mikromischer-basierenden Verfahrens gelang es, kontinuierlich sehr einheitliche Polymervesikel herzustellen und diese in situ mit unterschiedlichen Komponenten zu beladen - unter anderem mit dem Wirkstoff Camptothecin sowie einer hohen Dichte an hydrophoben Eisenoxid-Nanopartikeln. Diese wirkstoffbeladenen Hybridvesikel zeigten in vitro im Vergleich zum freien Wirkstoff eine erhöhte zytotoxische Wirksamkeit gegen die Krebszelllinie PC-3. Nach einer Funktionalisierung mit einem krebszellspezifischen Targeting-Peptid und einer zusätzlichen Fluoreszenzmarkierung wurde mit Hilfe der Durchflusszytometrie und konfokalen Laser-Scanning-Mikroskopie eine rezeptor-spezifische Zellaufnahme in PC-3-Krebszellen demonstriert. Messungen zur magnetischen Charakterisierung bestätigten zudem die potenzielle Anwendung magnetischer Polymervesikel als MRT-Kontrastmittel wie auch als Tracer für das Magnetic Particle Imaging (MPI). Kontinuierlich hergestellte, wirkstoffbeladene, magnetische Polymervesikel erfüllen somit viele Grundvoraussetzungen für ein theranostisches Wirkstoffträgersystem und bieten weitere Entwicklungsmöglichkeiten im Hinblick auf Magnetfluid-Hyperthermie, magnetisches Targeting oder eine durch ein Magnetfeld induzierte Wirkstofffreisetzung. N2 - One of the main goals of nanomedicine is to improve the treatment of hazardous diseases whose conventional therapy often has serious side effects. The vision is to create a theranostic drug delivery system which is capable of safely transporting therapeutic cargo through the body to a targeted site of disease at which point the drug is released. Furthermore, it is desirable to track the carrier in real time which would allow for a personal adjustment of the therapy. Studies on the behavior of nanoparticulate substances in a physiological environment form the basis for the possibility to successfully develop a drug carrier system. In the present work, polymeric nanoparticles with different morphologies were prepared by the controlled self-assembly of amphiphilic block copolymers. The nanoparticles were subsequently characterized and their interactions with human cells and serum proteins investigated. A cytotoxicity study with spherical and cylindrical micelles as well as vesicular structures was carried out and showed a dependency of cytotoxic effects on the geometry and size of the nanoparticles. The agglomeration behavior of various polymeric nanoparticles in the presence of serum proteins was also studied. Highly uniform polymeric vesicles were continuously manufactured in a micromixer based device and in situ loading with different components was performed. In this way, dual loaded vesicles with the anticancer drug camptothecin and a high amount of hydrophobic iron oxide nanoparticles were produced. When tested in vitro, these drug-loaded vesicles showed an increased cytotoxic activity against the cancer cell line PC-3 when compared to the free drug. Specific cellular uptake in PC-3 cancer cells was demonstrated with flow cytometry and confocal laser scanning microscopy after functionalization with a cancer cell specific targeting peptide and an additional fluorescent label. Magnetic characterization of the iron oxide-loaded vesicles also confirmed the potential application as MRI contrast agents and as tracers for magnetic particle imaging (MPI). Continuously manufactured, drug-loaded, magnetic polymeric vesicles thus fulfill many prerequisites for a theranostic drug carrier system and provide opportunities for further developments in the field of magnetic fluid hyperthermia, magnetic targeting or magnetic drug release. T3 - BAM Dissertationsreihe - 133 KW - Selbstorganisation KW - Nanomedizin KW - Wirkstoffträgersystem KW - Krebstherapie KW - Theranostik PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5134 VL - 133 SP - 1 EP - 238 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-513 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ecker, Melanie T1 - Development, Characterization and Durability of Switchable Information Carriers based on Shape Memory Polymers N2 - The aim of this thesis was the development of switchable information carriers based on shape memory polymers (SMPs) and the investigation of their durability. Deployed as a new kind of security label, such technology may be an effective tool to prevent counterfeiting and product piracy. Thermoplastic as well as thermoset SMPs turned out to be applicable as a specific substrate for the fabrication of switchable information carriers. In particular, a physically cross-linked and semi-crystalline poly(ester urethane) (PEU), and a chemically cross-linked epoxy-based polymer were investigated. Both SMPs were able to undergo distinct changes in shape upon triggering, which is commonly known as the shape memory effect (SME). A key step for the fabrication of switchable information carriers was the development of a suitable technique for a surface-specific coloring of the polymeric base material. In particular, it was necessary to have a thin coat of paint in order to assure sufficient surface contrasts within the subsequently laser-engraved barcodes (e.g. quick response (QR) codes). In detail, coloring was conducted by diffusion of staining solutions, based on organic dyes, into the polymeric matrix. As a result of properly selected exposure times, homogenous layers of paint having thicknesses of about 100 μm, could be produced. In order to obtain room temperature stable, temporary shapes with non-decipherable code information, various programming procedures were applied to the information carriers. These were either based on tensile or on compressive deformation. For instance, when using plane steel plates in the course of compressive deformation, code areas were randomly distorted. By contrast, selective distortions could be achieved using a steel ball type indenter. However, the triggering of the SME resulted in almost complete shape recoveries. As a result, the information carriers could reliably be switched back to readable states. Before the developed information carriers can be brought onto the market, it is important to evaluate their durability against various environmental impacts. Artificial weathering was conducted exemplarily on blue and black colored QR code carriers based on PEU. Various scenarios were selected: exposure to UVA irradiation and aging in aqueous solution. In both cases, the durability was investigated at temperatures below and above the switching temperature of the employed SMP. It turned out, that the limiting factor for the usage of switchable information carriers was a lack of contrast and thus was dye-related. In the case of UV irradiation, the color of the dyes started fading, culminating in unreadable QR codes. For hydrolytic degradation, the non-colored code regions were stained in the course of aging. This originates from the fact that the organic dyes used for coloring were soluble in water. As a consequence, they were able to diffuse easily in and out of the swollen polymeric matrix. For both scenarios, aging at elevated temperature caused acceleration of the observed effects. However, the shape memory properties of the PEU were only slightly influenced by the applied aging scenarios. Next, an additional thermo-responsive security feature was added to the information carriers. Therefore, thermochromic pigments (T-PIGs) were embedded into a PEU matrix. However, in contrast to the organic dyes, the size of the thermochromics microcapsules was too large to diffuse into the polymeric matrix. Thus, another procedure for a surface-specific coloring of the PEU was developed. This mainly included the preparation of a PEU-paste doped with T-PIG by solution mixing. The thermochromic paste was deposited by means of a solvent casting technique as thin layer atop the PEU plaque. After solvent evaporation, tightly connected PEU/PEU-T-PIG laminates were obtained. Beyond that, the layer thickness was adjustable by using a doctor blade for the paste deposition. Subsequent laser ablation finalized the QR code carriers. These were readable at room temperature, but unreadable above the color switching temperature of the employed T-PIGs due to a lack of contrast. Hence, the obtained multifunctional information carriers were characterized by distinct shape memory properties and tunable color switching performances. Furthermore, the combination of several T-PIGs having different colors and switching temperatures resulted in surfaces with multiple and unique temperature-dependent changes in color. Besides that, information carriers with temporarily concealed information could be obtained by covering the QR code with an additional layer doped with T-PIG. N2 - Ziel der Arbeit war es, schaltbare Informationsträger aus Formgedächtnispolymer (FGP) zu entwickeln, und diese auf ihre Beständigkeit gegenüber unterschiedlichen Umwelteinflüssen zu untersuchen. Eingesetzt als neuartige Etiketten könnten diese zur fälschungssicheren Kennzeichnung von Waren verwendet werden. Sowohl thermoplastische als auch duroplastische FGPs waren geeignete Ausgangsmaterialien für solche Informationsträger. Im Speziellen wurde sowohl ein physikalisch quervernetztes, semikristallines Poly(ester urethan) (PEU), als auch ein chemisch quervernetztes, amorphes FGP auf Epoxidbasis näher untersucht. Ein wichtiger Schritt für die Entwicklung von schaltbaren Informationsträgern aus FGP war die Entwicklung eines Färberverfahrens, bei dem das Polymer nur oberflächennah eingefärbt wird. So konnten ausreichend hohe Kontraste in den anschließend mittels Lasergravur eingebrachten Barcodes (z.B. QR engl. quick response Codes) erreicht werden. Die Färbung der Polymeroberflächen durch Diffusion von organischen Färbelösungen in die Polymermatrix stellte sich als probate Methode heraus. Dabei konnte die Eindringtiefe der Farbstoffe durch die Einwirkzeit auf etwa 100 μm eingestellt werden. Um die Informationsträger in stabile, temporäre Formen mit unlesbarer Information zu überführen, wurden unterschiedliche thermomechanische Programmierungsmethoden angewendet. Sowohl Druck- als auch Zugverformung stellten sich hierfür als geeignet heraus. In beiden Fällen waren die Informationen im programmierten Zustand aufgrund zu großer Verzerrungen der QR Codes unlesbar. Durch den Einsatz von konfigurierbaren Stempelwerkzeugen während der Druckverformung war es darüber hinaus möglich, selektive Verformung der Oberfläche zu erreichen. Nach dem Auslösen des Formgedächtniseffektes kehrten die Etiketten nahezu in ihre ursprüngliche Form zurück, sodass die Information dann in jedem Fall wieder lesbar war. Um die Haltbarkeit der neu entwickelten Informationsträger gegenüber Umwelteinflüssen besser beurteilen zu können, wurden gefärbte Etiketten aus PEU künstlich bewittert. Hierfür wurden zwei Alterungsszenarien gewählt: die Degradation durch UVA-Strahlung und die Beständigkeit in wässrigem Medium. In beiden Fällen wurde die Bewitterung unterhalb und oberhalb der Schalttemperatur des Polymers durchgeführt. Die UV-Alterung führte zum Ausbleichen der Farben und somit zum Verlust der Lesbarkeit durch die Abnahme des QR Code Kontrastes. Während der Alterung in Wasser wurden die anfangs ungefärbten Domänen innerhalb des QR Codes nach und nach gefärbt, was ebenfalls zu einem Kontrastverlust führte. Das rührte daher, dass die organischen Farbstoffe wasserlöslich waren und somit in das gequollene Polymer hinein- und hinausdiffundieren konnten. Lagerung bei erhöhter Temperatur führte in beiden Fällen zu einer Beschleunigung der beobachteten Phänomene. Im Gegensatz dazu wurde während der untersuchten Alterungszenarien die Formgedächtnis-Funktionalität des Polymers kaum beeinflusst. Anschließend wurden die Informationsträger mit einem weiteren thermoresponsiven Sicherheitsmerkmal kombiniert. Die hierfür verwendeten thermochromen Pigmente (T-PIGs) waren im Vergleich zu den vorher verwendeten Farbstoffen jedoch zu groß, um in die Polymermatrix hineinzudiffundieren. Daher wurde eine weitere Methode zur oberflächenspezifischen Einfärbung von Polymeren entwickelt. Hierzu wurde zunächst eine viskose PEU-Lösung hergestellt, die im Anschluss mit den T-PIGs vermengt wurde. Die so erhaltene Paste wurde mittels der sogenannten „solvent cast“ Technik als dünner Film auf die Polymeroberfläche aufgebracht. Dabei konnte die Schichtdicke durch den Einsatz eines „doctor blades“ eingestellt werden. Nach dem vollständigen Abdampfen des Lösungsmittels wurden fest verbundene PEU/PEU-T-PIG Laminate erhalten. Die anschließende Lasergravur führte zu Informationsträgern, die bei Raumtemperatur lesbar waren. Oberhalb der Farbumschlagstemperatur der eingesetzten T-PIGs wurden diese jedoch aufgrund von Kontrastverlusten unlesbar. Die so erhaltenen multifunktionalen Informationsträger waren demzufolge neben ihren Formgedächtniseigenschaften durch einstellbare, temperaturabhängige Farbänderungen charakterisiert. Darüber hinaus war es möglich, Informationsträger mit mehreren Farbumschlägen zu erhalten, indem T-PIGs mit unterschiedlichen Farben und Farbumschlagstemperaturen während der Herstellung eingesetzt wurden. In einem weiteren Szenario wurden Informationsträger mit einer Schicht aus thermochromer Paste überdeckt. Als Folge war der Barcode bei Raumtemperatur unter dieser Schicht verborgen und wurde erst beim Erwärmen oberhalb der Schalttemperatur sichtbar und lesbar. T3 - BAM Dissertationsreihe - 132 KW - durability KW - smart materials KW - Shape memory polymers KW - QR codes KW - thermochromism PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5086 VL - 132 SP - 1 EP - 202 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hansen, Ulf T1 - Silbernanopartikel und Silberionen: Physikalisch-chemische Charakterisierung und molekulare proteomische Effekte auf humane Enterozyten N2 - Silbernanopartikel (Ag-NP) können, bedingt durch ihre wachsende Anwendung im Lebensmittelbereich, vermehrt oral aufgenommen und über den Intestinaltrakt resorbiert werden. Die Diversität der physikalisch-chemischen Eigenschaften, der in toxikologischen Studien eingesetzten Nanopartikel (NP), macht eine allgemein gültige Aussage zu ihren physiologischen Wirkungen nicht trivial. Auch die Ursachen ihrer zytotoxischen Eigenschaften werden weiterhin kontrovers diskutiert. Basierend auf diesen Fragestellungen, wird in dieser Arbeit die physikalisch-chemische Charakterisierung von toxikologisch relevanten Partikeleigenschaften vorgestellt, welche das Zellkulturmedium (ZKM) als chemische Umgebung der NP berücksichtigt. Durch in-vitro Experimente mit dem humanen Modell des Intestinaltraktes (Caco-2 Zellen) wurden anschließend die relevanten molekularen Effekte des charakterisierten Ag-NP Referenzmaterials hinsichtlich partikulärer, ionischer oder synergistischer Wirkung untersucht. Mittels einer Kombination aus Asymmetrischer-Fluss-Feldflussfraktionierung (A4F) sowie dynamischer Licht- und Röntgenkleinwinkelstreuung konnte eine Zunahme des hydrodynamischen Radius der Partikel im ZKM beobachtet werden. Dieser ließ sich durch nachfolgende energiedispersive Röntgenfluoreszenz Spektroskopie und zweidimensionale Gelelektrophorese mit der Bildung einer Proteinkorona beschreiben, die hauptsächlich aus bovinem Serumalbumin bestand. Die Trennung von ungebundenen Proteinen und Partikeln mit Korona wurde sowohl mittels A4F als auch Zentrifugation durchgeführt, wobei sich die A4F als die sensitivere Methode herausstellte. Die 24-stündige Exposition der Caco-2 Darmzellen mit jeweils zwei nicht zytotoxischen Konzentrationen des Ag-NP-Referenzmaterials sowie Silberionen aus Silbernitrat (SN) zeigte einen signifikanten Unterschied der Anzahl deregulierter Proteine zwischen partikulärer und ionischer Behandlungsgruppe. Die NP führten im Gegensatz zu den Ionen zu einer vermehrten Herunterregulation der Proteine. Die Auswertung der Proteinderegulationen deutete auf eine Inhibierung pro-inflammatorischer Proteine wie Nuclear Facor Kappa Light Chain Enhancer of Acivated B-Cells (NFκB) durch die NP Behandlungsgruppe hin. SN führte zu einer aktivierten inflammatorischen Antwort. Im Gegensatz zu den SN Behandlungsgruppen zeigten die NP eine vorhergesagte Inhibierung des Nrf2-Signalweges, der oxidativen Stress induziert. Beide NP-Konzentrationen führten in den Zellen zu einer Suppression tumorassoziierter Proteine wie z.B. ADP-sugar Pyrophosphatase (NUDT5). Die Konzentration tumorassoziierter Proteine nach Inkubation mit SN blieb entweder unverändert oder stieg leicht an. N2 - The oral uptake of silver nanoparticles (Ag-NP) and their resorption in the intestine has increased due to their widespread application in the food sector. The diverse physico-chemical properties of nanoparticles (NP) in toxicological studies make a common prediction of their physiological impact impossible. Additionally, the cause of the cytotoxicity of the NPs is discussed controversely. Based on these questions one aim of this work is to establish a physico-chemical characterization of relevant NP properties regarding the special chemical environment in cell culture medium (CCM). Cell culture experiments with human Caco-2 cells as a model for the intestine were conducted to determine whether the origin of the NP-toxicity was based on the ion release, the particles or a combination of both. An increase of the hydrodynamic particle-radius after exposure to CCM was observed using a combination of asymmetrical flow field-flow fractionation (A4F), dynamic light scattering and small angle X-ray scattering. Energy dispersive X-ray spectroscopy and two-dimensional gel electrophoresis confirmed this observation and revealed a protein corona mainly consisting of serum albumin. The separation of unbound proteins from particles with a corona was conducted with A4F as well as centrifugation resulting in less false-positive protein findings for A4F. A 24 h exposure of Caco-2 cells with two non-cytotoxic concentrations of Ag-NPs and Ag ions from silver nitrate (SN) each revealed a significant difference in protein regulation for each treatment. Ag-NPs showed prevalence for down regulated proteins compared to the ionic treatment. The analysis of the deregulation patterns revealed the inhibition of proinflammatoric proteins like Nuclear Factor Kappa Light Chain Enhancer of Acivated B-Cells (NFκB) for both NP treatments. However, both SN treatments induced inflammatory Responses and led to the activation of cytokines like TNF-α in the cells. In contrast to the SN treated cells, an inhibition of the Nrf2 pathway was detected for the NP treated cells, which indicated reduced oxidative stress. Proteins associated with cancerous cells, e.g ADP-sugar Pyrophosphatase (NUDT5), were significantly suppressed due to NP treatment, while SN treatment resulted in a slight increase of those proteins. Exposure of Caco-2 cells to Ag-NPs and SN caused the formation of a protein corona and thereby altered particle properties which have to be considered in the assessment of their toxicity. Neither did NP significantly induce inflammation nor oxidative stress, while SN induced both. Additionally, NP-treatment led to a decrease of tumor-associated proteins. Summing up, Ag-NPs and SN caused very different proteomic answers and different toxicodynamics in the intestinal cell model making a differentiated toxicological evaluation necessary. T3 - BAM Dissertationsreihe - 131 KW - Röntgenkleinwinkelstreuung KW - Feldflußfraktionierung KW - Proteomik KW - intestinale Zelllinie PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5077 SN - 978-3-9817149-1-3 VL - 131 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vöse, Markus T1 - Mikromechanische Modellierung der Korngrenzenschädigung in einer Kupferlegierung unter Kriechbeanspruchung N2 - Mit dem Ziel, die auf der Ebene der Kornstruktur ablaufenden Prozesse mit in die Beschreibung des Kriechverhaltens polykristalliner Werkstoffe einzubeziehen, wurde in der vorliegenden Arbeit zunächst die Schädigungsentwicklung einer einzelnen Korngrenze untersucht. Hierfür wurde eine spezielle Simulationsmethode verwendet, deren Lösungsansatz auf holomorphen Funktionen basiert. Die für die Simulationen berücksichtigten Mechanismen umfassten insbesondere Nukleation, Wachstum durch Korngrenzendiffusion, Zusammenwachsen und Schrumpfen bis zum vollständigen Sintern von Korngrenzenporen. Auf Grundlage der Simulationsergebnisse konnte ein vereinfachtes Porositätsmodell entwickelt werden, welches die Korngrenzenschädigung durch zwei Zustandsvariablen und die zeitliche Entwicklung durch eine Mechanismen-orientierte Ratenformulierung beschreibt. Um den Einfluss von Korngrenzen in kontinuumsmechanischen Betrachtungen von Polykristallen berücksichtigen zu können, wurde ein Grenzflächenmodell erarbeitet, welches sowohl Schädigung entsprechend dem vereinfachten Porositätsmodell als auch Korngrenzengleiten in Abhängigkeit von einer phänomenologischen Korngrenzenviskosität umfasst. Darüber hinaus wurde ein mikromechanisches Polykristallmodell entwickelt, welches es im Rahmen von Finite-Elemente-Simulationen erlaubt, das Kriechverhalten unter Einbeziehung der Gefügestruktur eines polykristallinen Werkstoffes zu simulieren. Dabei werden die Deformationen einzelner Körner durch ein viskoplastisches Einkristallmodell und die Korngrenzen durch das entwickelte Grenzflächenmodell beschrieben. Die Gefügestruktur wird durch ein Finite-Elemente-Modell abgebildet, wobei die Korngrenzen durch kohäsive Elemente modelliert werden. Durch Auswertung experimenteller Kriechdaten konnte das Polykristallmodell für eine Kupfer-Antimon-Legierung bei einer Temperatur von 823 K kalibriert werden. Die Anpassung des Einkristallmodells erfolgte dabei anhand der Kriechraten von reinen Kupfereinkristallproben. Die experimentelle Erfassung der Korngrenzenabgleitung und der Korngrenzenporosität für grobkörnige Kupfer-Antimon-Proben konnten hingegen zur Anpassung des Grenzflächenmodells genutzt werden. Das kalibrierte Polykristallmodell wurde abschließend in Kombination mit künstlich erzeugten Kornstrukturen genutzt, um zum einen numerische und modellierungstechnische Einflüsse auf die Simulationsergebnisse zu untersuchen. Dabei zeigte sich, dass die Vernetzungsfeinheit nur zu einer vergleichsweise geringen Beeinflussung des makroskopischen Kriechverhaltens führt. Aufgrund des nahezu inkompressiblen Deformationsverhaltens des Einkristallmodells war aber die Nutzung spezieller Kontinuumselementtypen notwendig, um das Auftreten von Volumenlocking zu verhindern. Zum anderen konnte das Kriechverhalten polykristalliner Werkstoffe, zu welchem insbesondere die versagensrelevante Schädigungsentwicklung zählt, für verschiedene Material- und Belastungsparameter analysiert werden. Speziell für die betrachtete Kupfer-Antimon-Legierung zeigte sich, dass das Kriechverhalten durch Korngrenzengleiten geprägt war. Insbesondere die Spannungsumlagerungen an den Korngrenzen waren vergleichbar mit dem Verhalten für ungehindertes Korngrenzengleiten. Darüber hinaus deuteten Simulationen für mehrachsige Belastungszustände darauf hin, dass die Schädigungsentwicklungmaßgeblich durch die maximale Hauptspannung und die von Mises-Spannung beeinflusst wird. N2 - In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material’s grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse-grained copper-antimony specimens, on the other hand, have been used for the adjustment of the interface model. The calibrated model has finally been used in combination with artificially generated grain structures to investigate influences resulting from numerical and modelling issues. It was found that the mesh size has only a relatively small influence on the macroscopic creep behaviour. But because of the nearly incompressible deformation behaviour of the single crystal model, the use of special purpose continuum element types was necessary to avoid the occurrence of volumetric locking. Also the creep behaviour of polycrystalline materials, which includes the damage development leading to failure, has been analysed for different material and loading parameters. Especially for the copper-antimony alloy under consideration, it becomes evident that the creep behaviour was affected by grain boundary sliding. In particular, stress redistributions at the grain boundaries were comparable to the behaviour of free grain boundary sliding. Furthermore, simulations for multiaxial loading conditions indicated that the damage development is significantly influenced by the maximum principal stress and the von Mises stress. T3 - BAM Dissertationsreihe - 130 KW - Finite-Elemente-Simulationen KW - Kriechen KW - Polykristall KW - Korngrenzenschädigung KW - Kupfer-Antimon-Legierung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5053 SN - 978-3-9817149-0-6 VL - 130 SP - 1 EP - 205 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-505 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mente, Tobias T1 - Numerische Simulation der wasserstoffunterstützten Rissbildung in austenitisch-ferritischen Duplexstählen N2 - In der Offshore-Industrie werden seit langer Zeit austenitisch-ferritische Duplexstähle eingesetzt, da sie im Vergleich zu herkömmlichen austenitischen hochlegierten Stählen bessere Festigkeitseigenschaften aufweisen und gegenüber rein ferritischen hochlegierten Stählen eine bessere Verformbarkeit bei gleichzeitig verbesserter Korrosionsbeständigkeit, auch in aggressiver Umgebung, bieten. Dennoch zeigt das Schrifttum, dass es trotz dieser guten Eigenschaften zum Versagen von Bauteilen kommen kann, bei dem Wasserstoff für die Schadensursache eine entscheidende Rolle spielt. Zur Klärung der Schädigungsmechanismen unter Einfluss von Wasserstoff kann die numerische Simulation einen entscheidenden Beitrag leisten, da sich experimentelle Ergebnisse besser deuten und zwischen Labortests bis hin zu Bauteilversuchen übertragen lassen. Bisher wurden jedoch meistens makroskopische numerische Betrachtungen zur wasserstoffunterstützten Werkstoffschädigung in Duplexstählen durchgeführt. Die Duplexstähle bestehen jedoch nahezu aus gleichen Teilen an austenitischer und ferritischer Phase, welche unterschiedliche mechanische Eigenschaften als auch Transporteigenschaften für Wasserstoff aufweisen. Zugleich bedingt dies eine unterschiedliche Empfindlichkeit für eine wasserstoffunterstützte Werkstoffschädigung. Daher bestand die Aufgabe dieser Arbeit in der Erstellung eines numerischen Mesomodells eines realen Duplexgefüges, mit dem die Abbildung des Wasserstofftransportverhaltens, der mechanischen Spannungen und Dehnungen sowie der Rissinitiierung und des Rissfortschrittes in den einzelnen Phasen möglich ist. Zudem werden moderne Röntgenbeugungsexperimente genutzt, um den Einfluss von Wasserstoff auf die phasenspezifischen mechanischen Eigenschaften zu bestimmen. Für den Transport von Wasserstoff konnte eine deutliche Abhängigkeit von der Orientierung der austenitischen und ferritischen Phase im Gefüge gezeigt werden, wobei der Wasserstofftransport vornehmlich über die ferritische Phase erfolgt und der Wasserstoff im Austenit stärker getrappt wird. Die numerische Analyse der mechanischen Spannungen und Dehnungen in den Phasen des Duplexstahls zeigte, dass bei einer makroskopisch elastischen Beanspruchung des Duplexgefüges bereits lokal in den Phasen plastische Verformungen auftreten können. Damit verbunden ist ein erhöhtes Risiko für eine wasserstoffunterstützte Werkstoffschädigung bereits im makroskopisch elastischen Bereich, wenn ausreichend hohe Wasserstoffkonzentrationen im Duplexgefüge vorliegen. Die Ergebnisse der numerischen Simulation entsprechen den experimentellen Beobachtungen zum Wasserstofftransport und den lokalen Beanspruchungen in realen Duplexgefügen. Das Modell erlaubt somit die Identifikation risskritischer Bereiche und kritischer Kombinationen von Wasserstoffkonzentration und lokaler Beanspruchung im Duplexgefüge. Die Ergebnisse der simulierten wasserstoffunterstützten Werkstofftrennung stimmen mit experimentellen Beobachtungen zugehöriger Bruchtopographien überein. Insgesamt wird erstmalig eine numerische Simulation der wasserstoffunterstützten Werkstoffschädigung im Duplexstahl, unter Berücksichtigung der lokalen Beanspruchung und Wasserstoffverteilung in den spezifischen Phasen (Austenit / δ-Ferrit), durchgeführt. Die Ergebnisse korrelieren mit experimentellen Beobachtungen und erlauben somit ein besseres Verständnis für die Mechanismen der wasserstoffunterstützten Werkstoffschädigung in Duplexstählen. Die Simulationen unterstützen die Deutung experimenteller Ergebnisse und ermöglichen die Übertragbarkeit auf reale Bauteile. N2 - Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern x-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen Diffusion strongly depends on the alignment of austenite and δ-ferrite in the Duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is macroscopically loaded in the elastic range local plastic deformation occurs in both Austenite and δ-ferrite phase. Thus, there will be an increasing risk for hydrogen-assisted damage already in the macroscopic elastic range, if sufficiently high hydrogen concentrations are present in the microstructure. The results of the numerical simulations correlate well with experimental observations of the hydrogen transport and local stresses and strains in the duplex stainless steel microstructure. Therefore, the model allows identification of crack critical areas as well as crack critical combinations of local hydrogen concentration and local phase specific mechanical load. The results of the numerical fracture analyses agrees well with experimental observations on hydrogen-assisted cracking in duplex stainless steel with corresponding fracture topographies. Altogether, hydrogen-assisted material damage at the mesoscale level was simulated for the first time taking into account the local stresses and strains as well as the hydrogen distribution in the specific phases (austenite / δ-ferrite) of the duplex stainless steels. The results correlate well with experimental observations and thus allow a better insight in the mechanism of hydrogen-assisted material damage. The numerical simulations support the interpretation of experimental results and allow transferring results of laboratory tests to real components. T3 - BAM Dissertationsreihe - 129 KW - Duplexstahl KW - Numerische Simulation KW - Finite-Elemente-Methode KW - wasserstoffunterstützte Rissbildung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5006 SN - 978-3-9816668-9-2 VL - 129 SP - 1 EP - 225 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-500 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Zur, Malte T1 - Numerische Modellierung der Kabinenluftströmung und des Stofftransports von Gefahrgut in Flugzeugfrachträumen N2 - Für den Transport flüssiger Gefahrguter im Luftverkehr werden unter anderem Kunststoffverpackungen verwendet, die Leckagen aufweisen oder Permeation unterliegen können. Aufgrund der vorhandenen Belüftungsbedingungen ist eine Ansammlung entzündlicher oder gesundheitsschädlicher Gase im Frachtraum von Flugzeugen denkbar. Die Überschreitung ausreichender Konzentrationen solcher Gase kann zu einer Gefährdung führen. Im Rahmen der vorliegenden Arbeit werden die Kabinenluftströmungen und der Stofftransport von Gefahrgut in Flugzeugfrachträumen mittels CFD untersucht. Zunächst erfolgt die Entwicklung eines geeigneten numerischen Modells auf der Grundlage eines generischen Frachtraums mit typischen Merkmalen. Die verwendeten realitätsnahen Randbedingungen entsprechen aktuellen Flugzeugmustern. Das numerische Modell wird mittels experimenteller Modellversuche im Maßstab 1/10 validiert. Das Strömungsfeld im Frachtraummodell wird mittels eines LDA-Systems vermessen. Das validierte numerische Modell wird sowohl für Simulationen im Maßstab 1/10 als auch im Maßstab 1/1 verwendet. Anhand der drei Validierungskriterien Symmetrie, Verlaufe und Beträge der betrachteten Strömungsgrößen und einer LDA-Spektralanalyse wird insgesamt eine gute qualitative und quantitative Übereinstimmung zwischen Experiment und Simulation ermittelt. Eine systematische Untersuchung zeigt den Einfluss relevanter Parameter auf das Strömungsfeld und den Stofftransport. Zunächst werden die Einlassreynoldszahl und der Einlassturbulenzgrad sowie die Wandrauigkeit und Wandunebenheit bewertet. Für kleine Reynoldszahlen werden hohe Konzentrationen und für größere Reynoldszahlen werden deutlich geringeren Konzentrationen von Gefahrgut ermittelt. Anhand einer Variation in vier Schritten wird der Einfluss des Einlassmassenstromverhältnisses aus Luft und Gefahrgut bewertet. Erst für Werte von <1000 lasst sich ein signifikanter Einfluss feststellen. Es werden die Stoffe Toluol und n-Hexan beispielhaft für brennbare Gefahrgüter der Klasse 3 verwendet. Der Einfluss der Position und Gestalt verschiedener Einlassquellen wird an vier realitätsnahen Quellentypen bewertet. Anhand vier verschiedener Transportszenarien wird die Ausbreitung von Gefahrgut im Modellmaßstab untersucht. Die Szenarien unterscheiden sich durch die Art der Belüftung und durch die Dauer des Gefahrgutaustritts. Szenarien mit aktiver Frachtraumbelüftung sind als eher unkritisch zu beurteilen. Die betrachteten Szenarien ohne aktive Frachtraumbelüftung sind als gefährlich einzustufen. Insbesondere das Szenario mit zeitlich unbegrenztem Gefahrgutmassenstrom erreicht kritische Konzentrationswerte und eine kritische Ausdehnung der Gefahrgutansammlung im Frachtraum. Diese Ergebnisse werden anhand zweier Szenarien im Maßstab 1/1 bestätigt. Die vorliegende Arbeit leistet einen Beitrag, das Verständnis der Strömungs- und Stofftransportvorgange im Flugzeugfrachtraum beim Transport von Gefahrgütern im Luftverkehr zu erweitern, um Risiken im Luftverkehr zu identifizieren. Die Allgemeingültigkeit und die Übertragbarkeit der Erkenntnisse auf Flugzeugmuster und Flugszenarien mit komplexeren Details sind zu prüfen. N2 - Liquid dangerous goods are regularly transported as air freight in commercial aircrafts. Using plastic jerrycans or plastic containers, liquids or gases can escape by leakage or permeation effects. The specific ventilation situation in the aircraft cargo compartment may lead to agglomerations of potentially flammable or harmful gas-air mixtures in the cargo compartment. Exceeding certain concentration limits of such gases may cause dangerous situations. This work presents a CFD study of the cabin air flow and the mass transport of dangerous goods in the cargo compartments of commercial airplanes. In a first step, an adequate numerical model is developed that utilizes a generic aircraft cargo compartment with typical characteristics. The realistic boundary conditions are based on modern types of aircrafts. The numerical model is validated by model experiments in 1/10 scale. As a second step, the flow field in the cargo compartment is determined using a LDA-system. The validated numerical model is employed for simulations in 1/10 and 1/1 scale. Using three validation criteria (the symmetry, the evolution and values of flow variables and a LDA spectral analysis) a good qualitative and quantitative agreement between experiment and simulation is found. As a next step, a systematic analysis of relevant parameters influencing the flow and the mass transport in the cargo compartment is conducted. The influence of the inlet Reynolds number and the inlet turbulence intensity as well as the wall roughness and geometric obstructions on the wall are evaluated. For low Reynolds numbers, high concentrations are found and for higher Reynolds numbers, significantly lower concentrations of dangerous goods are calculated. The influence of, the ratio of air and dangerous good flowing into the domain is evaluated using four different values of. Only values of <1000 show a significant influence on the concentration levels in the domain. The dangerous substances toluene and hexane are used as examples for class 3 flammable dangerous goods. The influence of the position and the shape of different inlet sources for dangerous goods are evaluated using four different types of sources. In a final step, four different transport scenarios are used to simulate and evaluate the expansion and propagation of dangerous goods in the generic cargo compartment in the model scale 1/10. The scenarios differ in the ventilation situation and the duration of the mass of dangerous goods entering the domain. Scenarios with an active cargo compartment ventilation are found to be noncritical. Scenarios without an active ventilation lead to critical concentrations of dangerous goods. In particular, a scenario with an indefinite mass inflow of a dangerous gas shows critical concentration levels and a critical expansion in the cargo compartment. These findings are confirmed by simulations of two different scenarios in a 1/1 scale. The presented work contributes to a better understanding of the cabin air flow and the mass transport of dangerous goods in aircraft cargo compartments in order to identify potential risks. The universal validity and the transferability of the findings to other, more complex aircraft cargo compartments and transportations scenarios are to be reviewed in further research. T3 - BAM Dissertationsreihe - 128 KW - CFD KW - Kabinenluftströmung KW - Stofftransport von Gasen KW - gefährliche Güter im Luftverkehr KW - LDA PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4949 SN - 978-3-9816668-8-5 VL - 128 SP - 1 EP - 170 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-494 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Brehme, Sven T1 - Neue phosphorhaltige Polyester für den halogenfreien Flammschutz von kompaktem, glasfaserverstärktem und geschäumtem Polybutylenterephthalat N2 - Phosphorhaltige Alternativen haben halogenhaltige Flammschutzmittel für PBT zunehmend verdrängt. Die meisten der verwendeten Flammschutzmittel verschlechtern jedoch die mechanischen Eigenschaften des PBT oder neigen zum Ausblühen. Trotz ihrer gängigen Verwendung fehlt ein grundlegendes Verständnis für den Einfluss der chemischen Struktur der Flammschutzmittel auf das Brandverhalten und die Eigenschaften des Werkstoffs. Ebenso lückenhaft ist das Wissen über den Einfluss der Makrostruktur des Werkstoffs auf dessen Brandverhalten und die Flammschutzanforderungen. Als Alternative zu den gängigen niedermolekularen Flammschutzadditiven werden in dieser Arbeit phosphorhaltige Polyester als Flammschutzmittel für kompaktes, glasfaserverstärktes und geschäumtes PBT vorgestellt und ihr Pyrolyse- und Brandverhalten analysiert. Nicht nur die Makrostruktur des PBT, sondern auch die chemische Struktur der phosphorhaltigen Polyester wurde gezielt variiert, um entsprechende Struktur-Eigenschaftsbeziehungen ableiten zu können. Das glasfaserverstärkte PBT zeigt eine höhere Entflammbarkeit, der PBT Integralschaum ein höheres Risiko durch Flammenausbreitung als kompaktes PBT. Das Vorhandensein von Verbrückungen und P-O-Carom.-Bindungen im Phosphorsubstituenten der phosphorhaltigen Polyester erhöht deren Rückstandsbildung bzw. Aktivität in der kondensierten Phasen. Die Art der aktiven Flammschutzmechanismen entscheidet darüber, welche Brandrisiken reduziert werden. Als einer der phosphorhaltigen Polyester bildet PET-P-DOPO einen nicht mischbaren Blend mit PBT. Es hat eine gute Flammschutzwirkung und verschlechtert die mechanischen Eigenschaften nicht so stark wie gängige Flammschutzmittel. PET-P-DOPO birgt dabei das Potential, die mechanischen Eigenschaften und die Flammschutzwirkung durch eine Verbesserung der Mischbarkeit und eine Erhöhung des Phosphorgehaltes noch weiter zu optimieren. Für PBT Integralschaum ist PET-P-DOPO weniger geeignet. In glasfaserverstärktem PBT übertrifft PET-P-DOPO die gängigen Flammschutzmittel, selbst wenn diese mit höherem Phosphorgehalt eingesetzt werden. Die Ergebnisse tragen wesentlich zum Verständnis der grundlegenden Struktur- Eigenschaftsbeziehungen im Flammschutz von Polymeren bei. Sie ermöglichen die Vorhersage spezieller Anforderungen an die Flammschutzmittel aus der Makrostruktur des Werkstoffs. Weiterhin erlauben sie eine gezieltere Auswahl und Optimierung bestehender Flammschutzmittel durch die Anpassung ihrer chemischen Struktur sowie das gezielte Design neuer Flammschutzmittel für bestimmte Anwendungen bzw. Schutzziele. Mit PET-P-DOPO wurde außerdem eine vielversprechende Alternative zu gängigen Additiven im Flammschutz von PBT gefunden. N2 - Phosphorus-containing alternatives have increasingly substituted halogen-containing flame retardants in the flame retardancy of PBT. Unfortunately, most of the flame retardants deteriorate the mechanical properties of PBT or tend to bloom. Despite their common usage, a detailed understanding of how burning behaviour and material properties are influenced by the chemical structure of the flame retardants is still missing. The knowledge about the influence of the material's macrostructure on burning behaviour and flame retardancy demands is incomplete, too. In this study, phosphorus polyesters are presented as an alternative to commonly used low-molecular additives for the flame retardancy of compact, glass fibre reinforced and foamed PBT. The pyrolysis and burning behaviour of these polyesters is discussed. The macrostructure of PBT as well as the chemical structure of the phosphorus polyesters was systematically varied to deduce the corresponding structure-property relationships. Glass fibre reinforced PBT has a higher flammability than compact PBT, while PBT integral foam has a higher risk of flame spread. The presence of bridging groups and P-O-Carom.-bonds in the phosphorus substituent of the phosphorus polyesters increases their charforming ability and their condensed-phase activity, respectively. The nature of the active flame-retardancy mechanisms determines the fire risks, which are reduced. One of the phosphorus polyesters, PET-P-DOPO, forms an immiscible blend with PBT. PET-P-DOPO has a good flame-retardancy performance and deteriorates the mechanical properties less than common flame retardants. Additionally, it still has the potential for further optimisation. An improved miscibility and a higher phosphorus Content would improve the mechanical properties and the flame-retardancy performance, respectively. PET-P-DOPO is less suited to flame retard PBT integral foam. In glass fibre reinforced PBT, however, PET-P-DOPO outperforms common flame-retardant additives even if they are used with a higher phosphorus content than PET-P-DOPO. The results essentially contribute to the understanding of fundamental structure-property relationships in flame retardancy of polymers. They permit to predict specific flameretardancy demands from the material's macrostructure. Furthermore, the results allow a more specific selection and optimisation of existing flame retardants through the modification of their chemical structure and a targeted design of new flame retardants for specific applications or protection goals, respectively. A promising alternative to common additives for the flame retardancy of PBT was found with PET-P-DOPO. T3 - BAM Dissertationsreihe - 127 KW - Struktur-Eigenschaftsbeziehung KW - Flammschutz KW - phosphorhaltige Polyester KW - Polybutylenterephthalat KW - halogenfrei PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4892 SN - 978-3-9816668-7-8 VL - 127 SP - 1 EP - 160 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-489 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gabriel, Stefan Johannes T1 - Entmischungsphänomene in lösemittelbasierenden MALDI-TOF MS Probenpräparationen N2 - Die matrixunterstützte Laser Desorptions/Ionisations Massenspektrometrie (MALDI-MS) hat sich in den letzten Jahren zu einer etablierten Methode zur Charakterisierung von synthetischen Polymeren entwickelt. Neben der Messung von Molmassen und deren Verteilungen bietet diese Technik die Möglichkeit, simultan Monomerstrukturen und Endgruppen eines Polymers zu bestimmen. Ein weiterer wesentlicher Vorteil liegt in der einfachen Probenpräparation, die überwiegend durch Auftropfen der Matrix- und Polymerlösung (engl. Dried Droplet Method) erfolgt. Anstelle eines homogenen Probenspots wird nach dem Verdampfen des Lösemittels häufig jedoch die Bildung von Eintrocknungsringen beobachtet. Dies führt zu lokal unterschiedlichen Matrix/Polymer Verhältnissen, was die Qualität und Reproduzierbarkeit der MALDI Methode erheblich beeinträchtigt. Dies ist insbesondere von Interesse, da synthetische Polymere, im Gegensatz zu biologischen Makromolekülen, eine Kettenlängen-Verteilung aufweisen, die ebenfalls Segregationseffekten unterliegen kann. Eine realistische Bestimmung von Molmassen und deren Verteilung ist demzufolge nahezu unmöglich. Auf Grund der weiten Verbreitung der Dried Droplet Methode ist es daher erforderlich, mögliche Ursachen der Segregation aufzuklären und gegebenenfalls alternative Probenpräparationstechniken, basierend auf dieser simplen Tropfenmethode zu entwickeln. Zu diesem Zweck wurde die Trocknung verschiedener Polymer/Matrix Spots bei Verwendung unterschiedlicher Lösemittel untersucht. Da die MALDI Methode auch die Möglichkeit bietet, als bildgebendes Verfahren (MALDI-Imaging Massenspektrometrie) genutzt zu werden, wurde diese Technik primär für die Untersuchung der Segregationseffekte verwendet. In Analogie zum Einsatz in biologischen Systemen, beispielsweise bei der Lokalisierung von Metaboliten oder Wirkstoffen in Gewebeproben, kann mittels MALDI-Imaging MS die laterale Verteilung von Polymeren mit unterschiedlichen Strukturen und Molmassen sowie der Matrix simultan bestimmt werden. Im Gegensatz zu den in der Literatur beschriebenen Prozessen, wie Kapillarfluss oder Marangoni Strömung, die u.a. für die Ringbildung verantwortlich gemacht wurden, zeigen die Ergebnisse der hier vorgestellten Experimente deutlich, dass die Löslichkeit von Polymer und Matrix im verwendeten Lösemittel von entscheidender Bedeutung ist. Im Verlauf des Verdampfungsprozesses findet eine Aufkonzentrierung der Moleküle im abgesetzten Tropfen statt. Beim Erreichen der Sättigungskonzentration beginnen die Polymermoleküle mit den hohen Molmassen zuerst auszufallen, während die restlichen, immer noch gelösten Homologen weiterhin den Transportvorgängen unterliegen, die beim Eintrocknen generiert werden. Bei Lösemitteln die langsam verdunsten kann das zur molmassenabhängigen Segregation von Polymerhomologen führen. Verwendet man Lösemittel die schnell verdunsten erfolgt keine Molmassen-Segregation der Polymere, sondern ausschließlich eine Entmischung von Matrix und Polymer. Auf Grund ihrer geringen Molmasse bleibt die Matrix am längsten gelöst und kann demzufolge bis unmittelbar vor dem Eintrocknen an den Tropfenrand transportiert werden. Dies erklärt die Bildung von hauptsächlich aus Matrix bestehenden Ringen bei der üblicherweise verwendeten Konzentration von 10 mg ml-1. Die Experimente haben jedoch auch gezeigt, dass die beobachtete Entmischung bei einer deutlich höheren Konzentration von 100 mg ml-1 ohne Einschränkungen in der Qualität der Spektren vermieden werden kann. Bei dieser Konzentration wird die Sättigungskonzentration der Matrix bereits vor dem ersten Ausfallen der Polymere erreicht. Dadurch entsteht eine hoch viskose Lösung, welche die folgenden Transportprozesse der Polymermoleküle behindert. Eine Entmischung kann somit nicht mehr erfolgen und man erhält eine chemisch homogene Spotoberfläche. Eine andere einfache Möglichkeit die Viskosität der Probenspots soweit zu erhöhen, dass keine Segregation erfolgen kann, bietet die Verwendung von Matrizes basierend auf ionischen Flüssigkeiten. Neben der einfachen Synthese zeichnen sich diese Verbindungen durch ihre hohe Stabilität und der Vermeidung einer Sublimation im Vakuum aus. Selbst nach 24h im Hochvakuum der MALDI-Quelle konnten reproduzierbare Spektren gemessen werden. Die Intensität der Spektren ist dabei deutlich höher als bei der Verwendung konventioneller Matrizes. Dies ermöglicht die Aufnahme von Spektren bei geringerer Bestrahlungsstärke, was wiederum zu weniger Fragmentierungen führt und insbesondere für labile Polymere interessant sein könnte. Die mit der Dried Droplet Methode und ionischen Matrizes erzeugten Spots weisen eine überragende Homogenität auf. Diese Matrixklasse stellt somit eine neue und interessante Alternative zur konventionellen Spotpräparation in der MALDI-TOF Massenspektrometrie dar. N2 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become an indispensable tool for polymer characterization. This method enables the determination of molar masses and mass distributions, monomer structures and end groups, simultaneously. Another advantage represents the simple sample spot preparation, which is typically done by spotting sample and matrix solutions on the target surface. After drying, instead of a homogenous area, often a ring is formed. This segregation leads to different matrix/polymer ratios on the spot, which dramatically affects the quality and reproducibility of the spectra. In contrast to biological macromolecules, synthetic polymers consist of different chain length, which also might be affected by segregation. Thus, a realistic determination of the molecular mass and mass distribution is almost impossible. Since the majority of sample spots are prepared by this simple and fast method, possible reasons for segregation have to be determined. Alternatively, droplet based sample preparation procedures, that avoid segregation should be developed. Therefore, the drying of various polymer/matrix spots using different solvent systems was investigated. Since MALDI can also be used as an imaging tool, this special technique was applied to monitor the segregation effects. Similar to its application in biological systems, e.g. to identify the local distribution of metabolites or drugs in tissues, MALDI Imaging MS is able to simultaneously measure the distribution of polymers with different structures and molar masses, as well as the matrix. In literature the capillary flow and the marangoni flow are considered as the major causes for ring formation. In contrast to that, the results of this thesis show that the solubility of the polymer and the matrix in the used solvent is of major importance. While evaporating, the concentration of the molecules in the droplet increases. When the saturation concentration of the polymer has been reached, molecules with higher molar masses begin to precipitate first. Lower mass polymers that are still dissolved are subjected to transport processes. When a slowly evaporating solvent is used, mass segregation of polymer homologous can occur. Using a fast evaporating solvent, a segregation of polymer homologous cannot be observed. Here, a segregation of polymer and matrix can be found. Due to its comparatively low molecular mass the matrix stays dissolved much longer than the polymer molecules, and could be transported to the rim of the spots. When a typical matrix concentration of 10 mg ml-1 is used, the rings mainly consist of matrix. However, the experiments also showed that higher matrix concentrations (100 mg ml-1) always resulted in homogeneous sample spots without any loss of the quality of the spectra. At this concentration the saturation concentration of the matrix is reached before polymers start to precipitate. The much higher matrix concentration dramatically increases the viscosity of the matrix solution. Thus, transport processes caused by the solvent evaporation are increasingly hindered and segregation could not be observed. Another possibility to increase the viscosity of the sample spots to avoid segregation is the use of ionic liquid matrices. Ionic matrices are easy to produce and stable in high vacuum. Even after 24h in the high vacuum of the MALDI source reproducible spectra could be measured. Thus, the laser irradiance can be reduced, which results in less fragmentation. This could be favorable for the investigation of labile polymers. The dried droplet sample spots show a superior homogeneity and spots can be measured several times without visible differences in the mass spectra. Ionic matrices, therefore, represent a new and promising alternative for the conventional sample spot preparation in MALDI mass spectrometry. T3 - BAM Dissertationsreihe - 126 KW - MALDI Imaging MS KW - Entmischungsphänomene KW - Ionische Flüssigkeit KW - Polymere KW - Dried Droplet PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4873 SN - 978-3-9816668-6-1 VL - 126 SP - 1 EP - 144 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-487 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Liehr, Sascha T1 - Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry N2 - Diese Arbeit beschreibt einen alternativen Ansatz zur weit verbreiteten optischen Zeitbereichsreflektometrie, engl.: optical time domain reflectometry (OTDR). Die inkohärente optische Frequenzbereichsreflektometrie, engl.: incoherent optical frequency domain reflectometry (I-OFDR), wird grundlegend analysiert und hinsichtlich ihrer Möglichkeiten zur kontinuierlich ortsaufgelösten (verteilten) Rückstreumessung in optischen Fasern sowie faseroptischen Sensoranwendungen betrachtet. Im Gegensatz zum OTDR Ansatz wird hier die Übertragungsfunktion der optischen Faser gemessen, die über die inverse Fouriertransformation mit der äquivalenten Zeitbereichsantwort verknüpft ist. Das grundsätzliche Verfahren hat gewisse Vorteile und wird bereits zur Messung nichtlinearer optischer Effekte in optischen Fasern genutzt. Die allgemeine Rückstreumesstechnik unterscheidet sich jedoch bezüglich Anforderungen und Einschränkungen und wurde bisher nicht genau untersucht. Verteilte faseroptische Sensoranwendungen mit bemerkenswerter Messauflösung basierend auf Rayleigh-Rückstreuung und Reflexionsstellen in optischen Fasern werden erstmals vorgestellt. Im ersten Teil der Arbeit wird der Frequenzbereichsansatz theoretisch beschrieben. Notwendige Signalverarbeitung und deren Einfluss auf die Zeitbereichsantwort werden dargestellt. Abweichungen von der Linearität des I-OFDR Systems werden diskutiert und ein optimierter Messaufbau wird eingeführt; der entscheidende Einfluss der spektralen Eigenschaften der optischen Quelle wird im Detail betrachtet. Geeignete Parameter des I-OFDR Ansatzes, wie Dynamikbereich und Empfindlichkeit, werden definiert und für den Laboraufbau bestimmt. Ein möglicher Ansatz zur Unterdrückung starker Störsignale wird vorgestellt. Die Vorteile des I-OFDR Ansatzes gegenüber der OTDR Technik bezüglich der Umsetzung für hohe Ortsauflösungen sowie Messauflösung und Signalstabilität werden gezeigt. Diese Vorteile und dem Frequenzansatz eigene Messmöglichkeiten werden im zweiten Teil der Arbeit für ortsaufgelöste Sensoranwendungen demonstriert: Eine dämpfungsarme polymeroptische Faser (POF) wird erstmals auf ihre Sensoreigenschaften untersucht und zur verteilten Dehnungsmessung verwendet. Die Abhängigkeit der Rückstreuleistung von der aufgebrachten Dehnung kann genutzt werden, um gedehnte Faserstrecken zu lokalisieren. Weiterhin wird ein Korrelationsalgorithmus eingeführt, der es ermöglicht ortsaufgelöst Längenänderungen entlang der Faser mit mm-Auflösung zu messen indem die starken Streuzentren in der Faser mit einer Referenzmessung korreliert werden. Untersuchungen auf Querempfindlichkeiten der Sensorfaser bezüglich Temperatur, relativer Feuchte und Modenausbreitung zeigen vernachlässigbare bzw. beherrschbare Abhängigkeiten. In Kombination mit dem hochauflösenden I-OFDR Ansatz ermöglichen die vorgestellten Sensorverfahren vielversprechende neue Messanwendungen. Spezielles Interesse besteht in Bereichen der Bauwerksüberwachung, da die Faser nahezu verlustfrei auf über 100 % gedehnt werden kann. Ein weiteres Sensorverfahren, basierend auf dem Frequenzbereichsansatz zur dynamischen und quasi-verteilten Messung von Längenänderungen und Leistungsänderungen zwischen Reflexpunkten in der Faser wird präsentiert. Basierend auf der Messung weniger Frequenzpunkte der komplexen Frequenzantwort der Messfaser können mehrere Reflexe gleichzeitig und unabhängig voneinander bezüglich Position und reflektierter optischer Leistung ausgewertet werden. Messfrequenzen bis zu 2 kHz können erreicht werden und Längenänderungsauflösungen im μm-Bereich bei kleineren Messfrequenzen sind möglich. Das Messverfahren wird auf systematische Fehlereinflüsse untersucht und anhand von Demonstratormessungen validiert. Messungen der Deformation eines Gebäudes auf einem Erdbebenversuchsstand demonstrieren die Möglichkeit der Feldanwendung des Verfahrens. Das vorgestellte I-OFDR Verfahren demonstriert konkurrenzfähige Messparameter für allgemeine und hochauflösende optische Rückstreumessungen und die vorgestellten faseroptischen Sensorprinzipien zeigen vielversprechende Perspektiven für Anwendungen z.B. in der Bauwerksüberwachung. N2 - In this thesis, an alternative approach to the well-known optical time domain reflectometry (OTDR) technique is presented. A thorough analysis regarding distributed backscatter measurement in optical fibres is provided and its prospects for optical fibre sensing applications are demonstrated and discussed. The measurement approach is referred to as incoherent optical frequency domain reflectometry (I-OFDR): the frequency response of the fibre under test is measured and transferred into its time domain equivalent using inverse Fourier transform. This general technique has been studied and used for the measurement of nonlinear scattering effects in optical fibres. The requirements, limitations and prospects for general backscatter measurement, however, are different and have not been studied in detail prior to this work. Distributed sensing using Rayleigh scattering and reflective events in the fibre is first demonstrated using I-OFDR with remarkable measurement resolution. The incoherent detection technique allows for measuring singlemode fibres as well as multimode fibres. The first part of this work deals with the theoretical analysis and optimized implementation of the frequency domain approach. Necessary signal processing and its impact on the time domain response are presented. Sources of deviation from the linearity of the I-OFDR system are identified and an optimized laboratory setup is introduced; the crucial impact of the source coherence is thoroughly discussed. Suitable system parameters for the I-OFDR approach are defined: the system dynamic range and sensitivity are determined. A technique to suppress the dynamic range-limiting signal originating from strong reflections in the fibre is suggested. It is demonstrated that the I-OFDR technique has advantages over OTDR in terms of implementation for high-resolution measurement, measurement accuracy and signal stability. These advantages and measurement possibilities specific to the frequency domain approach are utilized for spatially resolved sensing applications in the second part of this work: A low optical loss polymer optical fibre (POF) is for the first time studied and analyzed for distributed strain sensing. The backscatter level dependence on strain in the fibre can be used to detect and locate strained fibre sections. Also, a correlation algorithm is proposed and demonstrated to measure length changes along the fibre with mm-resolution by correlating the typical backscatter signature of this fibre type. The fibre type is analyzed in detail regarding cross-sensitivities to temperature, relative humidity as well as mode propagation influences. The proposed sensing principles in combination with the highresolution I-OFDR allow for promising distributed sensing applications. Special interest is expressed by the structural health monitoring (SHM) sector since the fibre can measure strain values exceeding 100 %. Another sensing technique, specific to I-OFDR, is proposed for quasi-distributed and dynamic measurement of length changes and optical power changes at reflective events along the fibre. Precise calculation of the positions and reflected powers of multiple reflections can be conducted in parallel from the measurement of a few sampling points of the complex-valued frequency response. That allows for measuring with an increased repetition rate up to 2 kHz or at μm-scale length changes resolution at lower measurement frequencies. The approach is demonstrated in the laboratory and in a field application by measuring the deformation of a masonry building on a seismic shaking table. The I-OFDR exhibits competitive performance for general high-resolution backscatter measurement and the proposed optical fibre sensor principles may have promising prospects in the structural health monitoring (SHM) sector. T3 - BAM Dissertationsreihe - 125 KW - optical fiber sensor KW - OFDR KW - distributed backscatter measurement KW - polymer optical fiber (POF) sensor KW - structural health monitoring PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4660 SN - 978-3-9816668-4-7 VL - 125 SP - 1 EP - 144 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schröter, Maria-Astrid T1 - Untersuchung schwingender Mikrostrukturen mittels dynamischer Rasterelektronenmikroskopie: Experiment und Theorie N2 - Die vorgelegte Arbeit zeigt die Ausarbeitung und die Überprüfung einer Theorie, mit welcher die Ergebnisse aus einem neu entwickelten Mess-Verfahren (DySEM-Technik) beschrieben werden können. Mit dem Begriff “DySEM“ (Dynamic Scanning Electron Microscopy) wird ein experimentelles Verfahren bezeichnet, bei dem ein Elektronenstrahl als Mess-Sonde über einem mikroskaligen Schwinger verfahren wird, wobei die Schwingung durch eingesetzte Lock-In Technik frequenzaufgelöst dargestellt werden kann. Neben dem klassischen Sekundärelektronen-Signal wird zur Bildgebung auch der Anteil aus dem Signal genutzt, der sich anregungssynchron ändert. Die DySEM-Technik ermöglicht eine direkte Visualisierung der Schwingungsdynamik der oszillierenden Struktur, da zwischen unterschiedlichen Eigenmoden (flexural, torsional) als auch den jeweiligen höheren Harmonischen optisch eindeutig unterschieden werden kann. Damit bietet sich dieses Verfahren als ein Werkzeug der Modal-Analyse mikroskaliger Schwinger an, welche in mikro- bzw. nanoelektromechanischen Systemen (MEMS bzw. NEMS) häufig Verwendung finden und bei denen eine Optimierung der Designparameter oft erst durch die Bildgebung der Schwingung zu erreichen ist. Zusätzlich zeigen die DySEM-Bilder charakteristische Amplituden-abhängige Bildmerkmale, die theoretisch verstanden werden müssen. Prinzipiell ist die DySEM-Technik nicht an den Elektronenstrahl als Mess-Sonde gekoppelt. Allerdings erweist sich gerade im Zuge fortschreitender Miniaturisierung mit immer kleinskaligeren Schwingern eine elektronenoptische Orts-Auflösung als günstig. Bei der theoretischen Analyse des Abbildungsmechanismus liegt der Fokus auf der Untersuchung der raum-zeitlichen Dynamik der Wechselwirkung zwischen Elektronenstrahl und der periodisch darunter hinweg schwingenden Mikrostruktur, für die erstmals ein umfängliches Modell abgeleitet werden konnte, wodurch die detaillierte Interpretation der experimentellen Ergebnisse möglich wurde. Zusätzlich spielen lokale Eigenschaften (Materialeigenschaften) des Schwingers eine Rolle. Ebenso müssen die Beiträge von Energieverlustmechanismen zur Bildgebung berücksichtigt werden. Um die bildgebenden Gleichungen explizit ableiten zu können, beschränkt sich die mathematische Analyse in dieser Arbeit auf die Annahme eines frei oszillierenden, einseitig geklemmten Schwingers ohne Wechselwirkung mit Materie, wie es im DySEM-Experiment durch die Bildgebung im Hochvakuum angenähert wird. Die aufgrund dieses Modells simulierten DySEM-Bilder stimmen mit den experimentell gewonnenen Ergebnissen qualitativ und quantitativ gut überein. N2 - The thesis presented shows the development and verification of a theory, with which the results of a newly developed measuring method (DySEM technique) can be described. The term ”DySEM” (Dynamic Scanning Electron Microscopy) denotes an experimental procedure for measuring the vibrational dynamics of a microscale oscillator using a scanning electron beam. In addition to the classical secondary electron (SE) signal, the dynamic part of the signal can be obtained using a lock-in amplifier synchronized to the excitation frequency. The DySEM technique enables the direct observation of freely vibrating structures, including several modes in the normal and torsional direction as well as their higher harmonics. Thus, this method is a tool of modal analysis of microscale structure in oscillation, which is frequently used in micro- and nanoelectromechanical systems (MEMS and NEMS) and where an optimization of the design parameters often only can be achieved by imaging the vibration. Additionally, the DySEM images contain characteristic amplitude-dependent image features that need to be understood theoretically. Thanks to the precise local definition of electron beam and to lock-in technique the vibration images exhibit high spatial resolution. Thus, in the framework of progressing miniaturization of vibrating structures an electron-optical resolution is proved to be advantageously. In this framework a new quantitative theoretical model is proposed for the interpretation of the characteristic properties of the obtained measurements. The model of imaging generating mechanism relates the experimental images to the spatio-temporal interaction between electron beam and periodically vibrating microstructure. So, for the first time the detailed interpretation of the experimental results was possible. In addition, local properties (material properties) of the micro-oscillator are important. Similarly, the contributions of energy loss mechanisms must be considered for imaging. To explicitly derive the imaging equations, the mathematical analysis is limited in this work to the adoption of a free oscillating unilaterally clamped oscillator without interaction with matter, as it is approximated in DySEM experiment by imaging in high vacuum. Simulated images show very good qualitatively and quantitatively correspondence to the experimental data. First the theoretical model of the imaging process makes it possible to use the DySEM-technique as a quantitative analysis tool. Without such an understanding of the relationship between image contrast and interaction geometry, a quantitative interpretation of the DySEM images is hardly possible. The advantage of DySEM technique is the ability to distinguish between artefacts based on the imaging process and features which carry relevant VII information (i.e. nonlinear mechanical behavior of the micro-oscillator). The analysis of the imaging of oscillating microstructures by means of scanning electron microscopy is thereby achieved in this work presented as a combination of experiment, theory and simulation. T3 - BAM Dissertationsreihe - 124 KW - Dynamische Rasterelektronenmikroskopie (DySEM) KW - Bildgebung schwingender Mikrostrukturen KW - Modalanalyse KW - Federbalken KW - Theoretisches Modell der Bildentstehung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4644 SN - 978-3-9816668-3-0 VL - 124 SP - 1 EP - 134 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-464 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Klippel, Alexander T1 - Investigations into the influence of dustiness on the course of vented dust explosions N2 - A new safety characteristic named “dustiness” according to the German guideline VDI 2263 – part 9 is investigated. Dustiness describes the tendency of a powder to form airborne dust by a prescribed mechanical stimulus. Dusts often behave differently in a dust/air mixture or in the case of a dust explosion, even if they have comparable physical properties such as particle size and density. In order to look into the effects of dustiness on dust cloud Formation and explosion properties experiments and simulations in a 75 L vertical dust Dispersion glass tube apparatus were carried out. In a second step industrial-scale experiments were carried out in a 50 m³ silo. Experiments showed that particle size and density are not the only factors which influence dustiness, since the chosen dusts with comparable densities and particle size distributions showed very different behavior in the flow. Other dust properties such as particle shape, specific surface area, humidity and agglomeration processes have an influence which can outweigh size and density. Preliminary explosion experiments showed that dustiness has an influence on the reduced explosion pressure and pressure rise in a vented 75 L test apparatus. In order to verify the results for applications in the process industries further tests with different settings were carried out in industrial-scale experiments. First dust concentration measurements were done in order to evaluate the reproducibility of filling processes. Experiments showed that single tests differed by 30 % and more from the average depending on dust sample and filling method. First explosion experiments with a worst-case scenario in terms of high turbulence and homogenous dust distribution showed that the maximum reduced explosion pressures were well below the calculated values. Reduced explosion pressures and rates of pressure rise of the hree tested dust were as their Explosion characteristics pmax and KSt let suggest. The Euler/Lagrange and the Euler/Euler approaches were compared simulating dust/air mixtures. Especially sedimentation and the ability of the approaches to simulate the tendency of dust to stay airborne were investigated. The Euler/Lagrange approach is better suited for simulating local dust concentrations, particle size distributions and particle forces. With the Euler/Euler method it is possible to achieve fast solutions for one specified diameter. The computational fluid dynamics code ANSYS CFX R14 was used for all simulations. N2 - Eine neue sicherheitstechnische Kennzahl, das Staubungsverhalten gemäß VDI Richtlinie VDI 2263 – Blatt 9, wird hinsichtlich ihres Nutzens für den Staubexplosionsschutz untersucht. Unter Staubungsverhalten versteht man die Tendenz eines Staubes, Wolken aufgrund eines festgelegten mechanischen Stimulus zu bilden. Stäube können sich bei vergleichbareren physikalischen Eigenschaften wie Dichte oder Partikelgrößenverteilung, teilweise sehr unterschiedlich in einem Staub/Luft-Gemisch oder im Falle einer Staubexplosion verhalten. Um den Einfluss des Staubungsverhaltens auf die Staubwolkenbildung und den Ablauf von Explosionen zu untersuchen, wurden Experimente und Simulationen in einer vertikalen 75 L Rohrapparatur durchgeführt. Mit den Erkenntnissen aus diesen Laborversuchen wurden weitere Versuche im Realmaßstab in einem 50 m³ Silo durchgeführt. Versuche im Labormaßstab in einem druckentlasteten 75 L Behälter haben gezeigt, dass das Staubungsverhalten einen Einfluss auf die reduzierten Explosionsdrücke, die zeitlichen Druckanstiege und die Flammengeschwindigkeiten hat. Um die Versuchsergebnisse für den industriellen Maßstab zu belegen, wurden Versuche in einem 50 m³ Silo durchgeführt. Dabei wurde zunächst die Reproduzierbarkeit von Befüllungsvorgängen mit Staubkonzentrationsmessungen durch mehrere Wiederholungsversuche überprüft. Dabei ergaben sich Abweichungen von 30 % und mehr im Vergleich zum Mittelwert der Versuche. Erste Explosionsversuche eines Worst-Case-Szenarios mit hoher Turbulenz und möglichst homogenen Staubwolken ergaben deutlich niedrigere reduzierte Explosionsdrücke als die mit den empirischen Gleichungen berechneten. Der Explosionsverlauf war in Übereinstimmung mit den Kenngrößen pmax und KSt. Bei der Simulation von Staub/Luft-Gemischen wurden mit dem Euler/Lagrange- und dem Euler/Euler-Ansatz verwendet. Dabei wurde vor allem untersucht inwiefern das Sedimentations- und Staubungsverhalten modelliert werden können. Es zeigte sich, dass der Euler/Lagrange-Ansatz besser geeignet ist lokale Staubkonzentrationsverteilungen, Partikelgrößenverteilungen und -kräfte zu simulieren. Der Euler/Euler-Ansatz ermöglicht generelle Aussagen in kürzerer Rechenzeit für eine definierte Partikelgröße. Der numerische Strömungslöser ANSYS CFX V14 wurde für alle Simulationen benutzt. T3 - BAM Dissertationsreihe - 123 KW - dustiness KW - Euler/Lagrange approach KW - vented dust explosion KW - dust explosion protection KW - CFD PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4635 SN - 978-3-9816668-2-3 VL - 123 SP - 1 EP - 207 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Pelkner, Matthias T1 - Entwicklung, Untersuchung und Anwendung von GMR-Sensorarrays für die Zerstörungsfreie Prüfung von ferromagnetischen Bauteilen N2 - Die Zerstörungsfreie Prüfung (ZfP) ist ein wichtiges Werkzeug zur Qualitätssicherung sowie zur Überwachung sicherheitsrelevanter Bauteile. In der industriellen ZfP ist das Interesse an innovativen, kostengünstigen und sicherheitssteigernden ZfP-Methoden sehr groß. Die klassische Streuflussmethode ist die Magnetpulverprüfung, die sehr sensitiv auf Mikrorisse ist. Eine zuverlässige, automatische Prüfung ist hier aber nur bedingt und mit großem Aufwand zu erreichen. Die Lösung liegt im Einsatz von Magnetfeldsensoren, die zudem eine Bewertung der Defektgeometrie aufgrund der gemessenen Rissstreufelder ermöglicht. Insbesondere GMR-Sensoren (giant magneto resistance) eignen sich hierfür aufgrund ihrer kleinen Sensorelemente, welche eine hohe Ortsauflösung ermöglichen, und der sehr guten Feldempfindlichkeit. Jedoch sind kommerzielle GMR-Sensoren nicht an die Bedürfnisse der ZfP angepasst. Daher wurden während dieser Arbeit GMR-Sensoren dahingehend optimiert, dass sie für eine automatisierte Prüfung infrage kommen. Neben dem Design und der Charakterisierung der angepassten Sensoren wurden Messungen zur Detektionswahrscheinlichkeit durchgeführt. Um die Praxistauglichkeit zu untermauern, erfolgte ein quantitativer Vergleich mit alternativen ZfP- Oberflächenmethoden, der Wirbelstrom-, Magnetpulver- und Thermografieprüfung. Zusätzlich konnte der erfolgreiche Einsatz der GMR-Streuflussprüfung in einer industriellen, automatisierten Prüfeinrichtung unter Beweis gestellt werden. N2 - Non-destructive testing is important for both Quality control and maintenance of safety-related components. Modern industry steadily undergoes competition and cost pressure. Therefore, new innovative testing methods are key to increase safety and cost effectiveness. The conventional magnetic flux leakage testing method (MFL) using magnetic particle inspection (MP) is a manual procedure which is very sensitive in terms of the detection of micrometer-scaled cracks. An automated reliable testing however calls for adapted magnetic field sensors. Additionally the quantification of stray fields allows an evaluation of defect geometry. GMR sensors (giant magneto resistance) are particularly well-suited for this purpose. Their low costs, excellent field sensitivity, and capacity to be miniaturized lead to high resolution test results. However, drawbacks exist for commercial GMR sensors which include nonadaption for NDT applications. To overcome this drawback one objective of this thesis was to optimize the geometry of the sensing elements for a GMR sensor array. After characterization, the new sensor arrays were used for validation and investigation of a probability of detection. In addition, by comparing GMR-MFL with other testing methods related to surface breaking defects (eddy current testing, MP, thermography), it was possible to classify in a first step GMR MFL testing in NDT. Finally, an automated GMR was tested successfully established for industrial purposes. T3 - BAM Dissertationsreihe - 122 KW - Zerstörungsfreie Prüfung KW - GMR KW - magnetischer Streufluss KW - Sensorarrays PY - 2014 SN - 978-3-9816668-0-9 SN - 1613-4249 VL - 122 SP - 1 EP - 232 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bothe, Martin T1 - Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks N2 - Formgedächtnispolymere (FGPe) können unter Einwirkung eines geeigneten Stimulus ihre Form verändern. Um dieses Verhalten zu ermöglichen, wird eine Deformation mittels ‘Programmierungs’- Verfahren fixiert, wobei das FGP eine stabile, temporäre Form einnimmt. In thermoresponsiven FGPen löst anschließendes Erwärmen entropieelastische Rückstellung in die ursprüngliche Form aus. Um thermoreversible Zweiwege-Aktuation zu realisieren, kann eine zusätzliche Formänderung beim Abkühlen durch ein Kristallisationsphänomen hervorgerufen werden. Mittels zyklischer thermomechanischer Messungen wurden (1) die Formgedächtniseigenschaften (FGEen) und (2) das thermoreversible Aktuationsverhalten sowohl unter konstanter Auflast als auch unter spannungsfreien Bedingungen quantifiziert. Sternförmige Hybridpolymernetzwerke, chemisch quervernetzt durch polyedrisches oligomeres Silsesquioxan und Polyurethan (SPOSSPU) und physikalisch quervernetzte Poly(ester urethan)-Blockcopolymere (PEUe) wurden im Bereich der Schmelz- und Kristallisationstemperaturen ihrer Polyesterweichsegmente untersucht. (1) Insbesondere die SPOSS-PUs mit hoher Quervernetzungsdichte zeigten Formfixier- und Formrückstellbarkeiten von nahezu 100%, während PEUs ausgeprägte FGEen bei hohem eichsegmentanteil aufwiesen. In zweifach programmierten SPOSS-PUs ließen sich darüber hinaus zwei thermisch separierte Rückstellungen induzieren. Selbst eine Einschnürung, die sich während der Verformung von SPOSS-PUs mit hohem Weichsegmentanteil gebildet hatte, war reversibel. (2) Global orientierte Kristallisation führte bei Abkühlung zur Expansion der PEU-Proben, vor allem bei hohem Weichsegmentanteil und nach dem Aufbringen einer starken Deformation. Schmelzen revidierte die Orientierung; die PEU-Probe kontrahierte und komplettierte damit den thermoreversiblen Aktuationszyklus. Unter Auflast konnten multiple Phasenübergänge im polymorphen Weichsegment zwei aufeinander folgende Expansions- und Kontraktionsschritte auslösen, während spannungsfrei verschiedene Formänderungen, z.B. die Zu- und Abnahme von Probenlänge und -dicke sowie Ver- und Entdrehen einer Probe experimentell belegt werden konnten. Die vorgestellte Aktuatortechnologie ermöglicht völlig neue Anwendungen, die bidirektionale, organische Bewegungen nachahmen und wiederholen können. N2 - Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a ‘programming’ procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation technology allows for entirely new applications, enabling mimicry of reversible, bidirectional and repeated organic movements. T3 - BAM Dissertationsreihe - 121 KW - Shape Memory Polymers KW - Polymorphism KW - Semicrystalline KW - Actuation KW - Training PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-372 SN - 978-3-9816668-1-6 SN - 1613-4249 VL - 121 SP - 1 EP - 139 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lothongkam, Chaiyaporn T1 - Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges N2 - Eine neue Methode zur optischen Detektion von Teilentladungen in Hoch- und Höchstspannungs- Kabelgarnituren wird vorgeschlagen. Optische Fasern, integriert in die Hochspannungseinrichtung, können hochempfindlich messen und sind gegenüber elektromagnetischen Feldern immun. Sie ermöglichen somit ein Online-Monitoring in Bereichen hoher elektromagnetischer Felder. Diese optische Detektionsmethode kann in transparenten Silikonelastomer-Isolierstoffen, die sowohl dielektrische als auch mechanische Anforderungen erfüllen und für moderne Feldsteuerteile zum Einsatz kommen, zur Früherkennung von Teilentladungen genutzt werden. In dieser Arbeit werden das dielektrische Festigkeitsverhalten und die mechanischen Eigenschaften dreier kommerziell verfügbarer Silikonelastomere unter Wechselspannungsbeanspruchung untersucht. Ein Silikonmaterial war transluzent, zwei andere waren transparent, jedoch mit unterschiedlichen Vernetzungsbedingungen. Die Messung der Reißdehnung bzw. Zugfestigkeit erfolgte gemäß Standard ISO 37. Zur Untersuchung der dielektrischen Festigkeit Eb der unmodifizierten und modifizierten Silikonelastomere wurde eine neue Untersuchungsmethodik entwickelt. Gegenüber bisherigen Methodiken erlaubt dieses Prüfverfahren Untersuchungen mit geringem Materialverbrauch bei minimalem Zeitaufwand und ist gleichermaßen zuverlässig und effizient. Kernstück dieses Untersuchungsverfahrens ist eine speziell entwickelte Prüfeinrichtung. Darüber hinaus ermöglicht diese Prüfmethode eine einfache Präparation und Handhabung hochwertiger Prüflinge. Diese sowohl technischen als auch ökonomischen Vorteile können bei der Bestimmung des für Silikonelastomere wichtigen Wertes der elektrischen Festigkeit Eb ausgenutzt werden. Wegen der kostensparenden Prüfmethodik kann diese Prüfeinrichtung auch vorteilhaft für statistische Untersuchungen in Laboratorien eingesetzt werden. Die Untersuchungsergebnisse werden mittels Weibull- Verteilung statistisch analysiert und bewertet. Die Untersuchungen zeigten, dass das transluzente unmodifizierte Silikonelastomer einen großen Elastizitätsbereich mit akzeptabler plastischer Deformation besitzt; für Prüflinge mit einer Dicke von 0,5 mm wurde für 50 Hz Wechselspannung eine dielektrische Festigkeit von annähernd 24 kV/mm gemessen. Diese Festigkeitseigenschaften des transluzenten Silikonelastomers lässt die Schlussfolgerung zu, dass dieses Material die gegenwärtig für Feldsteuerteile in Hochspannungsgarnituren genutzten lichtundurchlässigen Elastomere ersetzen können. Die Lichtdurchlässigkeit des transluzenten Materials ist allerdings gering im Vergleich zu optisch klaren (transparenten) Silikonelastomeren. Andererseits erfüllen die mechanischen Eigenschaften der unmodifizierten transparenten Silikonelastomere nicht die Anforderungen, die an Aufschiebe-Feldsteuerteile gestelltwerden; ihre Reißdehnung wird als zu gering eingeschätzt. Sie erreichen jedoch einen Wert für die Wechselspannungsfestigkeit von 28 kV/mm bzw. 29 kV/mm (0,5 mm Probendicke), der höher ist, als der für den transluzenten Typ. Es wurde des Weiteren herausgefunden, dass ein Nachvernetzen der Silikonelastomere keinen positiven Einfluss auf ihre Reißdehnung hat. Aus diesem Grund muss die Reißdehnung unmodifizierter transparenter Silikonelastomere verbessert werden, bevor sie als Isoliermaterial in Feldsteuerteilen verwendet werden können. Zusätzlich wurde auch in der Arbeit der Einfluss der Dehnungsbeanspruchung auf die dielektrische Festigkeit unmodifizierter transluzenter Silikonelastomere untersucht. Es konnte gezeigt werden, dass eine Dehnungsbeanspruchung derartiger Silikonelastomere die dielektrische Festigkeit nicht negativ beeinflusst; diese Materialien können somit unter kombinierter mechanischer und elektrischer Beanspruchung eingesetzt werden. Neben der Verbesserung der optischen Teilentladungsdetektion in transluzenten Silikonelastomer- Isolierstoffen wurde auch der Einfluss ihrer Modifikation mit Fluoreszenzfarbstoffen untersucht. Die Ergebnisse zeigen, dass das Modifizieren transluzenter Silikonpolymere mit 0,02 Gew.-% kommerziell erhältlicher Fluoreszenzfarbstoffe die dielektrische Festigkeit dieser Werkstoffe nicht negativ beeinflusst. Somit eignet sich ein optisch kompatibles Silikonelastomer sehr gut für die Herstellung neuartiger fluoreszierender Silikonfasern, die dann in modifizierte transparente Silikonelastomer-Aufschiebekörper für Hochspannungskabel-Endverschlüsse zum Zwecke der Teilentladungsdetektion integriert werden können. Im Ergebnis der Untersuchungen können experimentell verifizierte Empfehlungen für die Revision des IEC- Standards 60243-1 gegeben werden, insbesondere für die Bestimmung der Wechselspannungsfestigkeit von Silikonelastomeren. Empfehlungen für weiterzuführende Untersuchungen werden im abschließenden Kapitel dieser Arbeit gegeben. N2 - A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength Eb behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity Eb value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by statistical analysis based on the 2-parameter Weibull distribution function. The investigations revealed that the virgin translucent silicone rubber has a large elastic region with an acceptable plastic deformation and also provides an AC 50 Hz dielectric strength of approximately 24 kV/mm for 0.5 mm thickness. These values enable considering the tested translucent silicone as replacement material for an opaque elastomer that is currently used for a rubber stress cone of HV cable accessories Unfortunately, its optical transmittance is poor compared to optically clear transparent silicone rubbers. On the other hand, the mechanical properties of virgin transparent silicone rubbers do not comply with those demanded from push-on stress cones. In particular, their elongation at break is considered too low for that application. However they provide the AC dielectric strength values in either 28 kV/mm or 29 kV/mm for 0.5 mm thickness, which are higher than those of the translucent type. Moreover, it was found that the post-curing process does not provide a positive impact on the ultimate elongation of silicone rubbers. Hence, the elongation at break of virgin transparent silicone rubbers must be improved before they can be used as insulating material for a rubber stress cone. In addition, the influence of mechanical tensile stress on the dielectric strength of the virgin translucent silicone rubber was investigated. The results show that mechanical tensile stress does not negatively influence on dielectric strength of such silicone rubber, so it can be well-operated under combined electrical and mechanical stresses. Beside the improvement of optical PD detection performance in the translucent silicone insulation materials, the influence of fluorescent dye’s modification was investigated. The results indicate that the commercially available fluorescent dyes of 0.02 wt. % mixed into the translucent silicone polymer do not negatively influence on the Eb value of such silicone material. So an optically compatible silicone rubber is perfectly suitable for the fabrication of novel fluorescent silicone optical fibres, which can be integrated into the modified transparent rubber stress cones of HV cable terminations. The final outcomes of this investigation are experimentally substantiated recommendations for future revision of IEC 60243-1, especially the chapter dealing with the determination of AC dielectric strength of silicone rubbers. Recommendations and suggestions for further investigations are addressed in the final chapter of this thesis. T3 - BAM Dissertationsreihe - 120 KW - Silicone rubber KW - tensile strength KW - dielectric strength KW - IEC 60243-1 KW - fluorescent silicone rubber KW - elongation at break KW - Weibull distribution KW - dielectric breakdown test PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-381 SN - 978-3-9816380-9-7 SN - 1613-4249 VL - 120 SP - 1 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Nai, Corrado T1 - Rock-inhabiting fungi studied with the aid of the model black fungus Knufia petricola A95 and other related strains N2 - Schwarze Hefen sind jüngst beschriebene Mikroorganismen und zählen zu den widerstandsfähigsten derzeitig bekannten Eukaryonten. Diese taxonomisch sehr unterschiedlichen, jedoch morphologisch undifferenzierten filamentösen Pilze teilen zwei Hauptcharakteristika, nämlich die Melanisierung der Zellwand und die kompakte, blumenkohlartige Koloniebildung, was den Organismen passive und konstitutive Extremotoleranz verleiht. Obwohl morphologisch meist ununterscheidbar, weisen Schwarze Hefen eine ausgeprägte phylogenetische und ökologische Diversität auf. Aufgrund ihrer Beständigkeit in widrigen ökologischen Nischen, sind solche Mikroorganismen sowohl ubiquitär in Wüsten und auf Gletschern als auch dauerhafte Ansiedler von Stein- und weiteren umgebungsexponierten Oberflächen sowie anthropogenen Umgebungen wie Salzwerken, Luftbefeuchtungsanlagen und Geschirrspülern, und sind daher in der gemäßigten Klimazone weltweit verbreitet. Einige Mitglieder dieser Gruppe sind verheerende opportunistische Pathogene von Wirbellosen oder Wirbeltieren, einschließlich Menschen; für weitere Mitglieder, weisen einige Beobachtungen auf eine symbiotische Lebensweise mit gleichzeitig auftretenden Mikroorganismen an extremen Standorten hin. Neben ihrem Interesse in der Grundlagenforschung, sind Schwarze Hefen wichtig für zahlreiche angewandte Bereiche wie z.B. in der Biotechnologie, Astrobiologie, Bioremediation und im Materialschutz. Trotz neuerlicher Fortschritte in der Untersuchung solche Pilze, sind viele biologische Fragestellungen zurzeit noch abzuklären, wie z.B. hinsichtlich der molekularen Mechanismen ihrer Stresstoleranz, ihrer Physiologie und Ernährungsweise, und ihrer spezifischen Wechselwirkungen mit vermeintlichen symbiontischen Partnern. Modellorganismen für pathogene und salztolerante Schwarze Hefen sind bereits beschrieben; allerdings war noch kein passendes Modell für stein- und materialbesiedelnde Pilze vorhanden. Diese Doktorarbeit führt den Stamm Knufia petricola A95 als geeigneten Modellorganismus zur Untersuchung gesteinsbesiedelnder Lebensweise ein. Unter dieser Zielsetzung, wurde der Stamm auf physiologischer und molekularbiologischer Ebene anhand phänotypischer Microarrays, Genomanalysen, Wachstumsexperimenten und weiterer Methoden beschrieben. Zellwand-Mutanten von K. petricola A95 wurden während dieser Studie isoliert und beschrieben und in die komparative Analyse des Einflusses von Melanisierung auf Physiologie und Stresstoleranz eingeschlossen. Ein direkter Vergleich mit der phylogenetisch sehr unterschiedlichen, jedoch ökologisch, biogeographisch und morphologisch höchst ähnlichen gesteinsbesiedelnden Spezies Coniosporium apollinis wurde durchgeführt. Anfängliche Betrachtungen der Interaktionen zwischen K. petricola A95 und dem photosynthetisch aktiven Cyanobakterium Nostoc punctiforme ATCC 29133 wurden vorgestellt, um einen geeigneten Modellbiofilm aus gesteinsbesiedelnden Mikroorganismen zu etablieren. Die hier vorgestellten Ergebnisse sind ein Beitrag, um die Ökophysiologie und Extremotoleranz von Schwarzen Hefen zu verstehen. N2 - Black fungi are recently described microorganisms and amongst the most stress-tolerant eukaryotes currently known. They are a taxonomically diverse, but morphologically similar group of filamentous fungi that share two distinct signature characteristics, i.e. melanisation of the cell wall and compact colony morphology, which confer them passive, constituent extremotolerance. Albeit morphologically undifferentiated, black fungi show extensive phylogenetic and ecological diversity. Due to their persistence in unfavourable niches, they are ubiquitous on deserts and in glaciers and are permanent settlers of rock and other atmosphere-exposed material surfaces as well as man-made environments like salterns, humidifiers and dishwashers, and thus widespread in temperate regions worldwide. Some members are devastating opportunistic pathogens of invertebrates or vertebrates, including humans; others show symbiotic potentials with co-occurring microorganisms in extreme ecosystems. Beside their interest for fundamental biology, black fungi are important for several applied applications, e.g. in biotechnology, astrobiology, bioremediation and material preservation. Despite recent advances in the study of these fungi, many biological questions remain to be clarified regarding the molecular mechanisms underlying persistence, their physiology and nutritional modes, and their specific interactions with putative symbiotic partners. Models for pathogenic and halotolerant black fungi are established; however, no model was yet available for rock- and material-inhabiting ones. This thesis introduces the strain Knufia petricola A95 as a suitable model to study rockinhabiting lifestyle. For this purpose, the strain was characterised at the physiological and molecular levels by phenotype microarrays, growth experiments and genome analyses as well as further methods. Cell- wall mutants of K. petricola A95 isolated during the course of this study were described and included in the comparative analysis to investigate effect of melanisation on physiology and stress tolerance. Direct comparisons were also performed between the model strain and the phylogenetically distant but ecologically, biogeographically and morphologically highly similar rock inhabitant Coniosporium apollinis. Preliminary observations of a model biofilm of K. petricola A95 and the photosynthetic cyanobacterium Nostoc punctiforme ATCC 29133 are introduced to study symbiotic interactions of rock-inhabiting microorganisms. Data presented here are a contribution to the understanding of ecophysiology and extremotolerance of rock-inhabiting black fungi. T3 - BAM Dissertationsreihe - 119 KW - Gesteinsbesiedelnde Pilze KW - Schwarze Hefen KW - Modellorganismen KW - Stammbeschreibung KW - Biolog Phenotype MicroArrays KW - Rock-Inhabiting Fungi (RIF) KW - Black Yeast-Like Fungi KW - Model Organisms KW - Strain Characterisation PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-398 SN - 978-3-9816380-8-0 SN - 1613-4249 VL - 119 SP - 1 EP - 179 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dittrich, Bettina T1 - Graphen als Flammschutzmittel in Thermoplast-Kompositen N2 - Seit der erstmaligen erfolgreichen Isolierung von Graphen gilt das zweidimensionale Kohlenstoff Nanomaterial mit der Dicke eines Atoms als vielversprechender Füllstoff für multifunktionale Polymerwerkstoffe. Die Multifunktionalität beinhaltet auch die erwartete Flammschutzwirkung von Graphen Nanopartikeln. In der vorliegenden Arbeit wurde Graphen hinsichtlich seiner Flammschutzwirkung und seines Einflusses auf Werkstoffeigenschaften wie die elektrische Leitfähigkeit in Polymer Nanokompositen charakterisiert. Durch den Vergleich mit anderen, kommerziell erhältlichen, Kohlenstoffmaterialien mit unterschiedlicher Morphologie (sphärisch, Röhren, dicke Plättchen aus 50 bis 100 Graphen Lagen und dünne Schichten aus 10 Graphen Lagen) wurde die Effektivität von Graphen eingeordnet und Rückschlüsse über die Struktur-Eigenschafts-Beziehungen zwischen Partikelmorphologie und Nanokomposit Merkmalen gezogen. Graphen wurde mit halogenfreien Flammschutzmitteln, die Vertreter der unterschiedlichen Flammschutzmechanismen (chemische und physikalische Wirkungsweise, Gas- und Festphasenaktivität) sind, kombiniert. Dabei wurde die Einsatzmöglichkeit von Graphen als Hilfsstoff zur Verbesserung der Flammschutzwirkung der verwendeten halogenfreien Systeme untersucht. Die Untersuchungen umfassten den thermischen Abbau, die Entflammbarkeit und das Verhalten während einer erzwungenen Verbrennung, aber auch Schlüsselexperimente. Die Schlüsselexperimente führten zum tieferen Verständnis der beobachteten Brandeigenschaften durch die Aufklärung von Wirkmechanismen und Struktur-Eigenschafts-Beziehungen. Die teilweise selbstkonzipierten und –entwickelten Schlüsselexperimente umfassten das rheologische Verhalten, die Partikelverteilung, die Wärmeabsorption und –leitfähigkeit, die strukturelle Qualität des Brandrückstandes und den Temperaturverlauf innerhalb und an der Rückseite einer brennenden Probe. Der dünne Schichtpartikel Graphen war besser in der Polymermatrix dispergiert als die zu vergleichenden Kohlenstoffmaterialien. Graphen bildete bei vergleichsweise niedrigeren Konzentrationen ein zusammenhängendes Partikelnetzwerk aus, das für die elektrische Leitfähigkeit der Komposite verantwortlich ist und die Viskosität der Polymerschmelze erhöhte. Durch das Zusammenwirken von erhöhter Schmelzviskosität und dem Labyrinth Effekt des Partikelnetzwerkes verschob Graphen den Beginn des Polymerabbaus am deutlichsten zu höheren Temperaturen. In den Entflammbarkeitstests Sauerstoffindex und UL 94 führte die erhöhte Schmelzviskosität aufgrund fehlenden Abfließens und Abtropfens zur vermehrten Bereitstellung von Brennstoff und abhängig vom Matrixpolymer teilweise zu einer Verschlechterung der Einstufung. Die ausschließlich festphasenaktive Flammschutzwirkung von Graphen beruhte auf der Bildung einer Rückstandschicht, die aus den jeweiligen Kohlenstoffpartikeln bestand und als Hitzeschild wirkte. Im Vergleich zu den anderen Kohlenstoffmaterialien hatte die Rückstandsstruktur der Graphen Komposite eindeutig die höchste Qualität und reduzierte die (maximale) Wärmeabgaberate am stärksten. In Kombination mit den halogenfreien Flammschutzsystemen bestimmte das Wirkprinzip der einzelnen Systeme die Verwendbarkeit von Graphen als Hilfsmittel. Ein kommerzielles, intumeszentes Flammschutzmittelsystem reagierte sehr empfindlich auf die durch Graphen erhöhte Viskosität der kondensierten Phase und tolerierte nur sehr geringe Graphenmengen ohne Verschlechterung der Intumeszenz. In einem gasphasenaktiven Flammschutzmittel fügte Graphen durch Rückstandsbildung einen Festphasenmechanismus hinzu und senkte die Brandausbreitung und somit das Brandrisiko noch einmal deutlich. Graphen und ein rückstandsbildendes Metallhydroxid verstärkten sich synergistisch hinsichtlich der Rückstandsqualität und der Entflammbarkeitstests. Mit den erhaltenen Ergebnissen ist eine umfassende Charakterisierung der Struktur-Eigenschafts- Beziehungen zwischen Partikelmorphologie und Kompositeigenschaften und die Einordnung von Graphen in die Reihe der Kohlenstoff-Nanopartikel möglich. Die aufgeklärten Wirkprinzipien von Graphen in Nanokompositen, wie auch in Kombination mit unterschiedlichen Flammschutzsystemen, bilden die Grundlage für eine weitere Optimierung des zweidimensionalen Kohlenstoff-Nanomaterials Graphen als Flammschutzmittel. N2 - Since the first successful isolation of graphene, the two dimensional, one atom thick carbon nanomaterial is considered as promising filler for multifunctional plastic materials. This includes an expected flame retardancy effect in graphene nanocomposites caused by the nanoparticle. In this study, the flame retardancy effect of graphene was characterized as well as its influence on polymer nanocomposite properties like electrical conductivity. By comparing with other carbon nanomaterials of varying morphology (spherical, tubular, platelets of 50 to 100 single graphene layers and layers of ten single graphene layers), the efficiency of graphene was ranked and the structure-property-relationship between particle morphology and material property was revealed. Graphene was investigated as adjuvant for three halogen-free flame retardants representing different flame retardancy mechanisms (chemical and physical action, gas and condensed phase activity). The materials were investigated according to its pyrolysis behavior, reaction to small flame and burning behavior under forced flaming conditions. Additionally, partly self designed key experiments were performed like the investigation of the rheological behavior, particle dispersion, heat absorption, thermal conductivity, structural quality of residue and temperature development inside and on the backside of a burning sample. Due to the key experiments, a deeper understanding of the nanoparticles’ modes of action was obtained and the structure-property-relationships were explained. The thinly layered graphene particles showed the best particle dispersion within the group of carbon materials. An interconnected particle network of graphene was established throughout the polymer matrix at comparatively low concentrations. By overcoming the percolation threshold, electrical conductivity occurred for the nanocomposites. The particle network caused an increase in melt viscosity that hindered the diffusion of the pyrolysis gases and delayed the release. The shift of mass loss onset to higher temperatures was intensified by the labyrinth effect of the nanoparticle network. The increased viscosity provided the flame zones of oxygen index and UL 94 test with additional fuel as flowing and dripping off of the polymer melt stopped and the material was kept in the pyrolysis zone. The flame retardancy mechanism of graphene took place exclusively in the condensed phase by the formation of a residual protection layer consisting of the nanoparticles and heat shielding. Compared to the other carbon materials, the highest quality of residue structure was observed in case of the graphene nanocomposites. Consequently, graphene was the most effective flame retardant in changing the burning behavior and reducing the (peak) heat release rate the increase of condensed phase viscosity due to graphene. Only very low amounts of graphene were tolerated without inhibiting the intumescence. In an exclusively gas phase active flame retardancy system, graphene was able to add condensed phase activity by residue formation and so to reduce flame spread and fire risk. By strongly enhancing the residual structure, synergistic effects occurred between graphene and a residue forming metal hydroxide in terms of reaction to small flame. The obtained results allow characterizing the structure-property-relationship between particle morphology and composite properties comprehensively. By comparing with commercially used carbon materials, graphene was ranked according to its flame retardant and filler efficiency. Understanding of the nanoparticles’ modes of action - in nanocomposites as well as in combination with different flame retardants – gives an hint how to further optimize the use of the two dimensional carbon nanomaterial graphene as polymer filler. T3 - BAM Dissertationsreihe - 118 KW - Graphen KW - Kohlenstoffpartikel KW - Flammschutz KW - Nanokomposite KW - halogenfrei PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-406 SN - 978-3-9816380-6-6 SN - 1613-4249 VL - 118 SP - 1 EP - 137 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Yin, Huajie T1 - Thermal and Dynamic Glass Transition in Ultrathin Films of Homopolymers and a Miscible Polymer Blend N2 - Dünne Polymerschichten im nanoskaligen Bereich finden heute in vielen Gebieten z. B. für Beschichtungen, als Membranen, für Sensoren oder in diversen elektronischen Geräten ihre Anwendung. Wissenschaftliche Studien belegen, dass viele physikalische Eigenschaften (Glasübergang, Kristallisation, Entnetzung, Alterung etc.) von ultradünnen Polymerschichten (Polymere in 1-dimensionaler räumlicher Begrenzung) stark von dem Verhalten im Volumen abweichen. Da die Eigenschaften eng mit der Verwendung und Funktionalität von Polymeren verknüpft sind, müssen die beobachteten Unterschiede in nanoskaliger Begrenzung genauer untersucht werden. Die vorliegende Arbeit beschäftigt sich damit, wie die Oberfläche (Luft-Polymer- Grenzfläche), die Polymer-Substrat-Wechselwirkung und die Schichtdicke die Glasübergangstemperatur (Tg) und die segmentale Dynamik (α-Relaxationsprozess) in Homopolymeren und mischbaren Polymer-Blends in dünnen Schichten beeinflussen. Komplementäre experimentelle Methoden, wie Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Breitbandige Dielektrische Spektroskopie (BDS) und Spezifische Wärme Spektroskopie (SHS) wurden angewendet, um den Glasübergang der dünnen Polymerschichten aus der thermodynamischen und kinetischen Sicht zu untersuchen. In dieser Arbeit werden die Glasübergangstemperatur und die segmentale Dynamik von ultradünnen Polymerschichten in Abhängigkeit der Schichtdicke untersucht. Für ultradünne Polycarbonatschichten (PC-Schichten, dünner als 20 nm) zwischen zwei Aluminiumschichten wurde ein Anstieg von der Glasübergangstemperatur (Tg) als auch der Vogel Temperatur (T0) mit abnehmender Schichtdicke beobachtet. BDS-Messungen zeigten einen Anstieg der segmentalen Relaxationszeit für ultradünne PC-Schichten. In den SHS-Messungen für die Siliciumdioxid (10-192 nm) basierten PC-Schichten konnte unter Einbeziehung des experimentellen Fehlers keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke festgestellt werden. Diese Eigenschaften werden im Hinblick auf die Geometrie der dünnen Schichten und die relevanten Wechselwirkungsenergien zwischen dem Polymer und dem Substrat diskutiert. Im Falle von dünnen Polystyrolschichten (PS-Schichten) mit hohem Molekulargewicht (Mw) sinkt die Glasübergangstemperatur Tg mit Verringerung der Schichtdicke. Die segmentale Dynamik hängt jedoch nicht von der Stärke der Schichtdicke ab. Darüber hinaus werden für dünne PS-Schichten die Auswirkungen des Molekulargewichts Mw und Temperbedingungen auf Tg und die segmentale Dynamik untersucht. Im Bereich der dünnen Polyvinylmethyletherschichten (PVME-Schichten) konnte mittels SHS keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke aufgezeigt werden. Der letzte Teil dieser Arbeit beschäftigt sich mit dünnen Schichten mischbarer Polymer-Blends mit einem Gewichtsteil von 50/50 PS/PVME. Es wurde eine Beschleunigung der segmentalen Dynamik mit geringerer Schichtdicke beobachtet. Dieses Phänomen wird mit der Oberflächenanreicherung von PVME, welches eine niedrigere Oberflächenenergie als PS aufweist, in das Polymer-Blend-System erklärt. Die segmentale Dynamik der mit PVME angereicherten freien Oberflächenschicht ist schneller als die Volumen- Dynamik. Durch die Verringerung der Schichtdicke werden diese freien Oberflächeneffekte so dominant, dass sie die gesamte segmentale Dynamik der Schichten von SHS (differenzieller AC Chip- basierten Kalorimetrie) erkennbare beeinflussen. Mittels Röntgenphotoelektronenspektroskopie (XPS) konnte die Oberflächenzusammensetzung des Films ermittelt und so die Phänomene der Oberflächenanreicherung verifiziert werden. N2 - Nowadays nanoscale thin polymer films are widely used in many fields like coatings, membranes, sensors, electronic devices and so on. Meanwhile, a lot of research work has evidenced the fact that many physical properties (glass transition, crystallization, dewetting, physical aging, etc.) of ultrathin polymer films show strong deviations from their bulk behavior. Since the aforementioned properties of polymer are closely related to their application and functionality, the discrepancies motivated us to obtain a more complete understanding of how nanoscale confinement affects the physical properties of polymer. The research work presented in this thesis is focused on understanding how the free surface (air- polymer interface), the polymer-substrate interface and the film thickness influence the glass transition temperature (Tg) and the related segmental dynamics (α-relaxation process) in both homopolymers and miscible polymer blends of thin films. Complementary experimental techniques including Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) have been used to investigate the glass transition of thin polymer films from both the thermodynamic and the kinetic point of view. In the thesis the film thickness dependence of Tg and segmental dynamics of different thin polymer films have been investigated. For ultrathin polycarbonate (PC) films capped between two aluminum (Al) layers an increase of both the glass transition temperature (Tg) and Vogel temperature (T0) with decreasing film thickness (d) was observed when the thickness became lower than 20 nm. The segmental relaxation time at a fixed temperature was found to increase for the ultrathin PC film of 19 nm measured by BDS, whereas no thickness dependency of the segmental dynamics was detected within the experimental error limit for the PC films supported on silicon dioxide (SiO2) (10-192 nm) in the SHS measurements. These properties are discussed in terms of the thin film geometry and the relevant interfacial interaction between the polymer and the substrate. In the case of thin polystyrene (PS) films with high molecular weight (Mw), Tg is decreasing with reducing film thickness while the segmental dynamics is independent of film thickness. Moreover, the effects of the Mw and the annealing protocol performed on thin PS films on their Tg and segmental dynamics is studied. In the part of thin poly(vinyl methyl ether) (PVME) films, no thickness dependence of the segmental dynamics was observed in the SHS measurements. The last part of the thesis was concentrated on the thin films of a miscible polymer blend, PS/PVME with the weight fraction of 50/50. It was observed that the segmental dynamics became faster with reducing the film thickness. This phenomenon is explained in terms of surface enrichment of PVME in the polymer blend system where PVME has a lower surface energy than PS. The segmental dynamics of the PVME-enriched free surface layer are faster than the bulk dynamics. Such free surface effect becomes so predominant with reducing the film thickness that it affects the segmental dynamics of the whole films detected by SHS using differential AC chip-based calorimetry. X-ray photoelectron spectroscopy (XPS) was used to probe the surface composition in order to confirm such surface enrichment phenomena. T3 - BAM Dissertationsreihe - 117 KW - glass transition KW - specific heat spectroscopy KW - ultrathin film KW - polymer KW - broadband dielectric spectroscopy PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418 SN - 978-3-9816380-5-9 SN - 1613-4249 VL - 117 SP - 1 EP - 133 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gravenkamp, Hauke T1 - Numerical methods for the simulation of ultrasonic guided waves N2 - Ultrasonic guided waves offer a wide range of applications in fields such as non-destructive testing, structural health monitoring or material characterization. They can be excited in thin-walled structures and propagate over comparably long distances. Due to their complex and dispersive propagation behavior, numerical methods are often required in order to analyze the guided wave modes that can be excited in a given structure and to simulate their interaction with defects. In the work presented in this thesis, highly efficient numerical methods have been developed that are specifically optimized for guided wave problems. The formulation is based on the Scaled Boundary Finite Element Method (SBFEM). The SBFEM is a semi-analytical method which evolved from the concept of Finite Elements but requires the discretization of the boundary of the computational domain only. To compute dispersion curves and mode shapes of guided waves, only the cross-section of the waveguide is discretized in the Finite Element sense, while the direction of propagation is described analytically. The wavenumbers of guided wave modes and the corresponding mode shapes are obtained as the eigenvalues and eigenvectors of a frequency-dependent Hamiltonian matrix. For the discretization, higher-order spectral elements are employed, leading to very low computational costs compared to traditional Finite Elements. Particular formulations are presented for plate structures as well as axisymmetric waveguides, where only the throughthickness direction has to be discretized. For the cases where the waveguide is embedded in or coupled to a quasi-infinite medium, a dashpot boundary condition is proposed in order to account for the effect of waves being transmitted into the surrounding medium. Though this approach is not exact, it leads to sufficiently accurate results for practical applications, while the computational costs are typically reduced by several orders of magnitude compared to other Finite Element based approaches. As a particular application, an experimental set-up for material characterization is discussed, where the elastic constants of the waveguide’s material are obtained from the analysis of waves propagating through the waveguide. A novel solution procedure is proposed in this work, where each mode of interest is traced over the required frequency range. The solutions are obtained by means of inverse iteration. To demonstrate the potential of the SBFEM for non-destructive testing applications, the interaction of guided wave modes with cracks in plates is simulated in the time domain for several examples. Particularly for the modeling of cracked structures, the SBFEM is very well suited, since the side-faces of the crack do not require discretization and the stress-singularity at the crack tip does not introduce additional difficulties. Hence, the computational costs can be reduced by typically a factor 100 compared to traditional Finite Elements and the meshing is straightforward. T3 - BAM Dissertationsreihe - 116 KW - guided wave KW - numerical methods KW - scaled boundary finite element method KW - ultrasound PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428 SN - 978-3-9816380-4-2 SN - 1613-4249 VL - 116 SP - 1 EP - 195 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-42 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Eisenacher, Germar T1 - Charakteristik und Modellierung von Fichtenholz unter dynamischer Druckbelastung N2 - Fichtenholz wird häufig als energieabsorbierendes Material in Stoßdämpfern von Transportbehältern für radioaktive Stoffe eingesetzt. Bei der vorgeschriebenen Fallprüfung aus 9 m Höhe auf ein unnachgiebiges Fundament erfährt das Fichtenholz im Stoßdämpfer eine dynamische Druckbelastung, wobei die seitliche Ausdehnung durch eine Blechkapselung eingeschränkt ist. Das Ziel dieser Arbeit war es, auf der Grundlage einer experimentellen Charakterisierung ein Materialmodell für Fichtenholz zur Berechnung solcher Lastfälle zur Verfügung zu stellen. Die experimentellen Untersuchungen zur Charakterisierung von Fichtenholz bestanden aus ca. 600 Druckversuchen an würfelförmigen Fichtenholzproben mit einem Stauchgrad von bis zu 70 %. Das Material wurde dabei als transversal isotrop angenommen. Insbesondere die Querdehnungsbehinderung konnte als ein relevanter Einflussfaktor auf die Materialcharakteristik identifiziert werden: Ohne Querdehnungsbehinderung dehnt sich das Material sowohl bei Last parallel als auch senkrecht zur Faser stark seitlich aus. Die Druckkraft- Verformungs-Verläufe weisen ein vergleichsweise geringes Kraftniveau und keine bzw. eine kaum ausgeprägte Verfestigung auf. Parallel zur Faser findet außerdem nach dem linear-elastischen Bereich eine starke Entfestigung statt. Eine Behinderung der Querdehnung führt zu einem deutlichen Anstieg des Druckkraftniveaus, einer stark ausgeprägten Verfestigung und lateral wirkenden Kräften. Die Entfestigung bei Last parallel zur Faser ist vergleichsweise gering ausgeprägt. Dehnrate und Temperatur haben festigkeitssteigernde bzw. festigkeitsverringernde Einflüsse, die im für Stoßdämpfer relevanten Bereich quantifiziert wurden. Anhand der experimentellen Erkenntnisse wurde die Hypothese der entkoppelten Fließflächenevolution aufgestellt, die von einer unabhängigen Festigkeitsentwicklung bei deviatorischer und volumetrischer Verformung ausgeht. Die Hypothese konnte mit einer Modifikation des Materialmodells MAT_075 aus dem FE-Code LS-DYNA bestätigt werden. Auf dieser Basis wurde anschließend ein transversal isotropes Materialmodell für Fichtenholz neu entwickelt und in LS-DYNA implementiert. Die Charakteristika von Fichtenholz unter Druckbelastung wurden in einer 15-flächigen Fließbedingung und einer nicht-assoziierten Fließregel umgesetzt. Die Fließbedingung berücksichtigt Mehrachsigkeiten des Druckspannungszustands durch eine lineare Interpolation der aus den Druckversuchen mit und ohne Querdehnungsbehinderung abgeleiteten Festigkeiten. Nachrechnungen der Druckversuche zeigten eine gute Abbildung der grundsätzlichen Festigkeitscharakteristik von Fichtenholz durch das Modell. Der für blechgekapselte Stoßdämpfer sehr bedeutsame Einfluss der Querdehnungsbehinderung kann durch die entkoppelte Evolution der Fließfläche angemessen wiedergegeben werden. Bei Last unter spitzen Faserwinkeln werden die Festigkeiten vom Modell jedoch überschätzt, was durch eine Anpassung der Druckfließflächen verhindert werden könnte. Die Einflüsse von Dehnrate und Temperatur können grundsätzlich nachgebildet werden, die verwendeten Skalierungsfaktoren sollten aber überarbeitet werden. Die Nachrechnung eines Behälterfallversuchs mit holzgefüllten Stoßdämpfern bestätigte die grundsätzliche Anwendbarkeit des Modells und zeigte plausible Rechenergebnisse. Für ein verifiziertes Stoßdämpfermodell sind weitere experimentelle und numerische Arbeiten erforderlich, wie z. B. die Untersuchung von Reibkoefizienten und Versagensparametern. Die Arbeit leistet mit dem transversal isotropen Materialmodell einen wichtigen Beitrag für die numerische Beanspruchungsanalyse bei der sicherheitstechnischen Begutachtung von Transportbehältern für radioaktive Stoffe. T3 - BAM Dissertationsreihe - 115 KW - Transportbehälter für radioaktive Stoffe KW - Druckversuch KW - Materialmodell KW - Stoßdämpfer KW - Fichtenholz PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434 SN - 978-3-9816380-3-5 SN - 1613-4249 VL - 115 SP - 1 EP - 201 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-43 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gebhardt, Moritz Oliver T1 - Einfluss von Konstruktion und Schweißparametern auf die Erstarrungsrissentstehung beim Laser-MSG-Hybridschweißen dickwandiger Bauteile Experimentelle und numerische Analyse N2 - Die vorliegende Dissertation beschäftigt sich mit der Erstarrungsrissbildung beim einlagigen Laser- MSG-Hybridschweißen von Bauteilen mit Wandstärken zwischen 9mm und 14,5 mm. Der Fokus liegt dabei zum einen auf Einflüssen durch die Schweißparameter und zum anderen auf der Wirkung von mechanischer Randbedingungen. Dazu wurden experimentelle und numerische Untersuchungen durchgeführt. Bei den Experimenten wurden Laser-MSG-Hybridschweißungen unter Verwendung eines Scheibenlasers mit 16kW Ausgangsleistung an Rohren aus Feinkornbaustahl erstellt. Im Rahmen der statistischen Versuchsplanung wurden an Einschweißungen die Schweißparameter Schweißgeschwindigkeit, Drahtvorschubgeschwindigkeit und Laserleistung variiert und die resultierende Rissanzahl im Röntgenbild ausgewertet. Bezüglich der konstruktiven Einflüsse wurden Schweißungen mit variierenden Steifigkeiten in Nahtquerrichtung und Nahtlängsrichtung, unterschiedlichen Vorspannkräften und an verschiedenen Werkstoffen realisiert. Der Fall der Schrumpfungsbehinderung wurde durch den Vergleich von durchgeschweißten und eingeschweißten Proben analysiert. Anhand eines Schweißsimulationsmodells der Rohrschweißungen ließen sich die Spannungen und Dehnungen in den risskritischen Bereichen während der Schweißungen ermitteln. Dies erlaubt eine Interpretation der experimentell festgestellten Wirkungen der verschiedenen Einflussfaktoren. Zusätzlich wurde ein Modell von Laserstrahlschweißungen im IRCRahmen aufgebaut, mit dem ein experimenteller Fall mit sehr fester, externer Schrumpfungsbehinderung aus der Literatur näher untersucht werden konnte. Ein stark vereinfachtes Modell einer schrumpfenden Schweißnaht wurde überdies genutzt um die komplexen Reaktion sinnvoll einordnen zu können. N2 - This dissertation deals with solidification cracking in high-power single-run laser-GMA hybrid welding of parts with wall thicknesses between 9mm and 14.5 mm. It focuses on the influence of process parameters on the one hand and the effect of mechanical boundaries on the other hand. Experimental and numerical examinations were conducted. Laser-GMA hybrid welds, using a disc laser with a maximum power output of 16kW were produced on tubes made of fine grain structural steels. The influence of the process paramters was investigated by a variation of welding velocity, wire feed speed and laser beam power within a design of experiments approach. Varying longitudinal and transversal stiffnesses and different levels of applied pre-load and material strength were used to examine the effect of the mechanical boundary conditions on weld solidification cracking. The influence of restraint was analyzed by comparing full and partial penetration welds. A welding simulation model granted access to the transient stresses and strains in the critical zones during welding. This allows to interprete the experimentally acquired results. A model of laser beam welding in the IRC-test provides the opportunity to analyze a case from the literature having a high exterior restraint. Simplified models of shrinking welds helped to classify the complex reactions in the welds. T3 - BAM Dissertationsreihe - 114 KW - Feinkornbaustahl KW - Schweißen KW - Rohr KW - Heißrisse KW - Laser-MSG-Hybrid PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447 SN - 978-3-9816380-2-8 SN - 1613-4249 VL - 114 SP - 1 EP - 166 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -