TY - THES A1 - Pelkner, Matthias T1 - Entwicklung, Untersuchung und Anwendung von GMR-Sensorarrays für die Zerstörungsfreie Prüfung von ferromagnetischen Bauteilen N2 - Die Zerstörungsfreie Prüfung (ZfP) ist ein wichtiges Werkzeug zur Qualitätssicherung sowie zur Überwachung sicherheitsrelevanter Bauteile. In der industriellen ZfP ist das Interesse an innovativen, kostengünstigen und sicherheitssteigernden ZfP-Methoden sehr groß. Die klassische Streuflussmethode ist die Magnetpulverprüfung, die sehr sensitiv auf Mikrorisse ist. Eine zuverlässige, automatische Prüfung ist hier aber nur bedingt und mit großem Aufwand zu erreichen. Die Lösung liegt im Einsatz von Magnetfeldsensoren, die zudem eine Bewertung der Defektgeometrie aufgrund der gemessenen Rissstreufelder ermöglicht. Insbesondere GMR-Sensoren (giant magneto resistance) eignen sich hierfür aufgrund ihrer kleinen Sensorelemente, welche eine hohe Ortsauflösung ermöglichen, und der sehr guten Feldempfindlichkeit. Jedoch sind kommerzielle GMR-Sensoren nicht an die Bedürfnisse der ZfP angepasst. Daher wurden während dieser Arbeit GMR-Sensoren dahingehend optimiert, dass sie für eine automatisierte Prüfung infrage kommen. Neben dem Design und der Charakterisierung der angepassten Sensoren wurden Messungen zur Detektionswahrscheinlichkeit durchgeführt. Um die Praxistauglichkeit zu untermauern, erfolgte ein quantitativer Vergleich mit alternativen ZfP- Oberflächenmethoden, der Wirbelstrom-, Magnetpulver- und Thermografieprüfung. Zusätzlich konnte der erfolgreiche Einsatz der GMR-Streuflussprüfung in einer industriellen, automatisierten Prüfeinrichtung unter Beweis gestellt werden. N2 - Non-destructive testing is important for both Quality control and maintenance of safety-related components. Modern industry steadily undergoes competition and cost pressure. Therefore, new innovative testing methods are key to increase safety and cost effectiveness. The conventional magnetic flux leakage testing method (MFL) using magnetic particle inspection (MP) is a manual procedure which is very sensitive in terms of the detection of micrometer-scaled cracks. An automated reliable testing however calls for adapted magnetic field sensors. Additionally the quantification of stray fields allows an evaluation of defect geometry. GMR sensors (giant magneto resistance) are particularly well-suited for this purpose. Their low costs, excellent field sensitivity, and capacity to be miniaturized lead to high resolution test results. However, drawbacks exist for commercial GMR sensors which include nonadaption for NDT applications. To overcome this drawback one objective of this thesis was to optimize the geometry of the sensing elements for a GMR sensor array. After characterization, the new sensor arrays were used for validation and investigation of a probability of detection. In addition, by comparing GMR-MFL with other testing methods related to surface breaking defects (eddy current testing, MP, thermography), it was possible to classify in a first step GMR MFL testing in NDT. Finally, an automated GMR was tested successfully established for industrial purposes. T3 - BAM Dissertationsreihe - 122 KW - Zerstörungsfreie Prüfung KW - GMR KW - magnetischer Streufluss KW - Sensorarrays PY - 2014 SN - 978-3-9816668-0-9 SN - 1613-4249 VL - 122 SP - 1 EP - 232 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bothe, Martin T1 - Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks N2 - Formgedächtnispolymere (FGPe) können unter Einwirkung eines geeigneten Stimulus ihre Form verändern. Um dieses Verhalten zu ermöglichen, wird eine Deformation mittels ‘Programmierungs’- Verfahren fixiert, wobei das FGP eine stabile, temporäre Form einnimmt. In thermoresponsiven FGPen löst anschließendes Erwärmen entropieelastische Rückstellung in die ursprüngliche Form aus. Um thermoreversible Zweiwege-Aktuation zu realisieren, kann eine zusätzliche Formänderung beim Abkühlen durch ein Kristallisationsphänomen hervorgerufen werden. Mittels zyklischer thermomechanischer Messungen wurden (1) die Formgedächtniseigenschaften (FGEen) und (2) das thermoreversible Aktuationsverhalten sowohl unter konstanter Auflast als auch unter spannungsfreien Bedingungen quantifiziert. Sternförmige Hybridpolymernetzwerke, chemisch quervernetzt durch polyedrisches oligomeres Silsesquioxan und Polyurethan (SPOSSPU) und physikalisch quervernetzte Poly(ester urethan)-Blockcopolymere (PEUe) wurden im Bereich der Schmelz- und Kristallisationstemperaturen ihrer Polyesterweichsegmente untersucht. (1) Insbesondere die SPOSS-PUs mit hoher Quervernetzungsdichte zeigten Formfixier- und Formrückstellbarkeiten von nahezu 100%, während PEUs ausgeprägte FGEen bei hohem eichsegmentanteil aufwiesen. In zweifach programmierten SPOSS-PUs ließen sich darüber hinaus zwei thermisch separierte Rückstellungen induzieren. Selbst eine Einschnürung, die sich während der Verformung von SPOSS-PUs mit hohem Weichsegmentanteil gebildet hatte, war reversibel. (2) Global orientierte Kristallisation führte bei Abkühlung zur Expansion der PEU-Proben, vor allem bei hohem Weichsegmentanteil und nach dem Aufbringen einer starken Deformation. Schmelzen revidierte die Orientierung; die PEU-Probe kontrahierte und komplettierte damit den thermoreversiblen Aktuationszyklus. Unter Auflast konnten multiple Phasenübergänge im polymorphen Weichsegment zwei aufeinander folgende Expansions- und Kontraktionsschritte auslösen, während spannungsfrei verschiedene Formänderungen, z.B. die Zu- und Abnahme von Probenlänge und -dicke sowie Ver- und Entdrehen einer Probe experimentell belegt werden konnten. Die vorgestellte Aktuatortechnologie ermöglicht völlig neue Anwendungen, die bidirektionale, organische Bewegungen nachahmen und wiederholen können. N2 - Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a ‘programming’ procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation technology allows for entirely new applications, enabling mimicry of reversible, bidirectional and repeated organic movements. T3 - BAM Dissertationsreihe - 121 KW - Shape Memory Polymers KW - Polymorphism KW - Semicrystalline KW - Actuation KW - Training PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372 SN - 978-3-9816668-1-6 SN - 1613-4249 VL - 121 SP - 1 EP - 139 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lothongkam, Chaiyaporn T1 - Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges N2 - Eine neue Methode zur optischen Detektion von Teilentladungen in Hoch- und Höchstspannungs- Kabelgarnituren wird vorgeschlagen. Optische Fasern, integriert in die Hochspannungseinrichtung, können hochempfindlich messen und sind gegenüber elektromagnetischen Feldern immun. Sie ermöglichen somit ein Online-Monitoring in Bereichen hoher elektromagnetischer Felder. Diese optische Detektionsmethode kann in transparenten Silikonelastomer-Isolierstoffen, die sowohl dielektrische als auch mechanische Anforderungen erfüllen und für moderne Feldsteuerteile zum Einsatz kommen, zur Früherkennung von Teilentladungen genutzt werden. In dieser Arbeit werden das dielektrische Festigkeitsverhalten und die mechanischen Eigenschaften dreier kommerziell verfügbarer Silikonelastomere unter Wechselspannungsbeanspruchung untersucht. Ein Silikonmaterial war transluzent, zwei andere waren transparent, jedoch mit unterschiedlichen Vernetzungsbedingungen. Die Messung der Reißdehnung bzw. Zugfestigkeit erfolgte gemäß Standard ISO 37. Zur Untersuchung der dielektrischen Festigkeit Eb der unmodifizierten und modifizierten Silikonelastomere wurde eine neue Untersuchungsmethodik entwickelt. Gegenüber bisherigen Methodiken erlaubt dieses Prüfverfahren Untersuchungen mit geringem Materialverbrauch bei minimalem Zeitaufwand und ist gleichermaßen zuverlässig und effizient. Kernstück dieses Untersuchungsverfahrens ist eine speziell entwickelte Prüfeinrichtung. Darüber hinaus ermöglicht diese Prüfmethode eine einfache Präparation und Handhabung hochwertiger Prüflinge. Diese sowohl technischen als auch ökonomischen Vorteile können bei der Bestimmung des für Silikonelastomere wichtigen Wertes der elektrischen Festigkeit Eb ausgenutzt werden. Wegen der kostensparenden Prüfmethodik kann diese Prüfeinrichtung auch vorteilhaft für statistische Untersuchungen in Laboratorien eingesetzt werden. Die Untersuchungsergebnisse werden mittels Weibull- Verteilung statistisch analysiert und bewertet. Die Untersuchungen zeigten, dass das transluzente unmodifizierte Silikonelastomer einen großen Elastizitätsbereich mit akzeptabler plastischer Deformation besitzt; für Prüflinge mit einer Dicke von 0,5 mm wurde für 50 Hz Wechselspannung eine dielektrische Festigkeit von annähernd 24 kV/mm gemessen. Diese Festigkeitseigenschaften des transluzenten Silikonelastomers lässt die Schlussfolgerung zu, dass dieses Material die gegenwärtig für Feldsteuerteile in Hochspannungsgarnituren genutzten lichtundurchlässigen Elastomere ersetzen können. Die Lichtdurchlässigkeit des transluzenten Materials ist allerdings gering im Vergleich zu optisch klaren (transparenten) Silikonelastomeren. Andererseits erfüllen die mechanischen Eigenschaften der unmodifizierten transparenten Silikonelastomere nicht die Anforderungen, die an Aufschiebe-Feldsteuerteile gestelltwerden; ihre Reißdehnung wird als zu gering eingeschätzt. Sie erreichen jedoch einen Wert für die Wechselspannungsfestigkeit von 28 kV/mm bzw. 29 kV/mm (0,5 mm Probendicke), der höher ist, als der für den transluzenten Typ. Es wurde des Weiteren herausgefunden, dass ein Nachvernetzen der Silikonelastomere keinen positiven Einfluss auf ihre Reißdehnung hat. Aus diesem Grund muss die Reißdehnung unmodifizierter transparenter Silikonelastomere verbessert werden, bevor sie als Isoliermaterial in Feldsteuerteilen verwendet werden können. Zusätzlich wurde auch in der Arbeit der Einfluss der Dehnungsbeanspruchung auf die dielektrische Festigkeit unmodifizierter transluzenter Silikonelastomere untersucht. Es konnte gezeigt werden, dass eine Dehnungsbeanspruchung derartiger Silikonelastomere die dielektrische Festigkeit nicht negativ beeinflusst; diese Materialien können somit unter kombinierter mechanischer und elektrischer Beanspruchung eingesetzt werden. Neben der Verbesserung der optischen Teilentladungsdetektion in transluzenten Silikonelastomer- Isolierstoffen wurde auch der Einfluss ihrer Modifikation mit Fluoreszenzfarbstoffen untersucht. Die Ergebnisse zeigen, dass das Modifizieren transluzenter Silikonpolymere mit 0,02 Gew.-% kommerziell erhältlicher Fluoreszenzfarbstoffe die dielektrische Festigkeit dieser Werkstoffe nicht negativ beeinflusst. Somit eignet sich ein optisch kompatibles Silikonelastomer sehr gut für die Herstellung neuartiger fluoreszierender Silikonfasern, die dann in modifizierte transparente Silikonelastomer-Aufschiebekörper für Hochspannungskabel-Endverschlüsse zum Zwecke der Teilentladungsdetektion integriert werden können. Im Ergebnis der Untersuchungen können experimentell verifizierte Empfehlungen für die Revision des IEC- Standards 60243-1 gegeben werden, insbesondere für die Bestimmung der Wechselspannungsfestigkeit von Silikonelastomeren. Empfehlungen für weiterzuführende Untersuchungen werden im abschließenden Kapitel dieser Arbeit gegeben. N2 - A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength Eb behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity Eb value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by statistical analysis based on the 2-parameter Weibull distribution function. The investigations revealed that the virgin translucent silicone rubber has a large elastic region with an acceptable plastic deformation and also provides an AC 50 Hz dielectric strength of approximately 24 kV/mm for 0.5 mm thickness. These values enable considering the tested translucent silicone as replacement material for an opaque elastomer that is currently used for a rubber stress cone of HV cable accessories Unfortunately, its optical transmittance is poor compared to optically clear transparent silicone rubbers. On the other hand, the mechanical properties of virgin transparent silicone rubbers do not comply with those demanded from push-on stress cones. In particular, their elongation at break is considered too low for that application. However they provide the AC dielectric strength values in either 28 kV/mm or 29 kV/mm for 0.5 mm thickness, which are higher than those of the translucent type. Moreover, it was found that the post-curing process does not provide a positive impact on the ultimate elongation of silicone rubbers. Hence, the elongation at break of virgin transparent silicone rubbers must be improved before they can be used as insulating material for a rubber stress cone. In addition, the influence of mechanical tensile stress on the dielectric strength of the virgin translucent silicone rubber was investigated. The results show that mechanical tensile stress does not negatively influence on dielectric strength of such silicone rubber, so it can be well-operated under combined electrical and mechanical stresses. Beside the improvement of optical PD detection performance in the translucent silicone insulation materials, the influence of fluorescent dye’s modification was investigated. The results indicate that the commercially available fluorescent dyes of 0.02 wt. % mixed into the translucent silicone polymer do not negatively influence on the Eb value of such silicone material. So an optically compatible silicone rubber is perfectly suitable for the fabrication of novel fluorescent silicone optical fibres, which can be integrated into the modified transparent rubber stress cones of HV cable terminations. The final outcomes of this investigation are experimentally substantiated recommendations for future revision of IEC 60243-1, especially the chapter dealing with the determination of AC dielectric strength of silicone rubbers. Recommendations and suggestions for further investigations are addressed in the final chapter of this thesis. T3 - BAM Dissertationsreihe - 120 KW - Silicone rubber KW - tensile strength KW - dielectric strength KW - IEC 60243-1 KW - fluorescent silicone rubber KW - elongation at break KW - Weibull distribution KW - dielectric breakdown test PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-381 SN - 978-3-9816380-9-7 SN - 1613-4249 VL - 120 SP - 1 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Nai, Corrado T1 - Rock-inhabiting fungi studied with the aid of the model black fungus Knufia petricola A95 and other related strains N2 - Schwarze Hefen sind jüngst beschriebene Mikroorganismen und zählen zu den widerstandsfähigsten derzeitig bekannten Eukaryonten. Diese taxonomisch sehr unterschiedlichen, jedoch morphologisch undifferenzierten filamentösen Pilze teilen zwei Hauptcharakteristika, nämlich die Melanisierung der Zellwand und die kompakte, blumenkohlartige Koloniebildung, was den Organismen passive und konstitutive Extremotoleranz verleiht. Obwohl morphologisch meist ununterscheidbar, weisen Schwarze Hefen eine ausgeprägte phylogenetische und ökologische Diversität auf. Aufgrund ihrer Beständigkeit in widrigen ökologischen Nischen, sind solche Mikroorganismen sowohl ubiquitär in Wüsten und auf Gletschern als auch dauerhafte Ansiedler von Stein- und weiteren umgebungsexponierten Oberflächen sowie anthropogenen Umgebungen wie Salzwerken, Luftbefeuchtungsanlagen und Geschirrspülern, und sind daher in der gemäßigten Klimazone weltweit verbreitet. Einige Mitglieder dieser Gruppe sind verheerende opportunistische Pathogene von Wirbellosen oder Wirbeltieren, einschließlich Menschen; für weitere Mitglieder, weisen einige Beobachtungen auf eine symbiotische Lebensweise mit gleichzeitig auftretenden Mikroorganismen an extremen Standorten hin. Neben ihrem Interesse in der Grundlagenforschung, sind Schwarze Hefen wichtig für zahlreiche angewandte Bereiche wie z.B. in der Biotechnologie, Astrobiologie, Bioremediation und im Materialschutz. Trotz neuerlicher Fortschritte in der Untersuchung solche Pilze, sind viele biologische Fragestellungen zurzeit noch abzuklären, wie z.B. hinsichtlich der molekularen Mechanismen ihrer Stresstoleranz, ihrer Physiologie und Ernährungsweise, und ihrer spezifischen Wechselwirkungen mit vermeintlichen symbiontischen Partnern. Modellorganismen für pathogene und salztolerante Schwarze Hefen sind bereits beschrieben; allerdings war noch kein passendes Modell für stein- und materialbesiedelnde Pilze vorhanden. Diese Doktorarbeit führt den Stamm Knufia petricola A95 als geeigneten Modellorganismus zur Untersuchung gesteinsbesiedelnder Lebensweise ein. Unter dieser Zielsetzung, wurde der Stamm auf physiologischer und molekularbiologischer Ebene anhand phänotypischer Microarrays, Genomanalysen, Wachstumsexperimenten und weiterer Methoden beschrieben. Zellwand-Mutanten von K. petricola A95 wurden während dieser Studie isoliert und beschrieben und in die komparative Analyse des Einflusses von Melanisierung auf Physiologie und Stresstoleranz eingeschlossen. Ein direkter Vergleich mit der phylogenetisch sehr unterschiedlichen, jedoch ökologisch, biogeographisch und morphologisch höchst ähnlichen gesteinsbesiedelnden Spezies Coniosporium apollinis wurde durchgeführt. Anfängliche Betrachtungen der Interaktionen zwischen K. petricola A95 und dem photosynthetisch aktiven Cyanobakterium Nostoc punctiforme ATCC 29133 wurden vorgestellt, um einen geeigneten Modellbiofilm aus gesteinsbesiedelnden Mikroorganismen zu etablieren. Die hier vorgestellten Ergebnisse sind ein Beitrag, um die Ökophysiologie und Extremotoleranz von Schwarzen Hefen zu verstehen. N2 - Black fungi are recently described microorganisms and amongst the most stress-tolerant eukaryotes currently known. They are a taxonomically diverse, but morphologically similar group of filamentous fungi that share two distinct signature characteristics, i.e. melanisation of the cell wall and compact colony morphology, which confer them passive, constituent extremotolerance. Albeit morphologically undifferentiated, black fungi show extensive phylogenetic and ecological diversity. Due to their persistence in unfavourable niches, they are ubiquitous on deserts and in glaciers and are permanent settlers of rock and other atmosphere-exposed material surfaces as well as man-made environments like salterns, humidifiers and dishwashers, and thus widespread in temperate regions worldwide. Some members are devastating opportunistic pathogens of invertebrates or vertebrates, including humans; others show symbiotic potentials with co-occurring microorganisms in extreme ecosystems. Beside their interest for fundamental biology, black fungi are important for several applied applications, e.g. in biotechnology, astrobiology, bioremediation and material preservation. Despite recent advances in the study of these fungi, many biological questions remain to be clarified regarding the molecular mechanisms underlying persistence, their physiology and nutritional modes, and their specific interactions with putative symbiotic partners. Models for pathogenic and halotolerant black fungi are established; however, no model was yet available for rock- and material-inhabiting ones. This thesis introduces the strain Knufia petricola A95 as a suitable model to study rockinhabiting lifestyle. For this purpose, the strain was characterised at the physiological and molecular levels by phenotype microarrays, growth experiments and genome analyses as well as further methods. Cell- wall mutants of K. petricola A95 isolated during the course of this study were described and included in the comparative analysis to investigate effect of melanisation on physiology and stress tolerance. Direct comparisons were also performed between the model strain and the phylogenetically distant but ecologically, biogeographically and morphologically highly similar rock inhabitant Coniosporium apollinis. Preliminary observations of a model biofilm of K. petricola A95 and the photosynthetic cyanobacterium Nostoc punctiforme ATCC 29133 are introduced to study symbiotic interactions of rock-inhabiting microorganisms. Data presented here are a contribution to the understanding of ecophysiology and extremotolerance of rock-inhabiting black fungi. T3 - BAM Dissertationsreihe - 119 KW - Gesteinsbesiedelnde Pilze KW - Schwarze Hefen KW - Modellorganismen KW - Stammbeschreibung KW - Biolog Phenotype MicroArrays KW - Rock-Inhabiting Fungi (RIF) KW - Black Yeast-Like Fungi KW - Model Organisms KW - Strain Characterisation PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-398 SN - 978-3-9816380-8-0 SN - 1613-4249 VL - 119 SP - 1 EP - 179 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dittrich, Bettina T1 - Graphen als Flammschutzmittel in Thermoplast-Kompositen N2 - Seit der erstmaligen erfolgreichen Isolierung von Graphen gilt das zweidimensionale Kohlenstoff Nanomaterial mit der Dicke eines Atoms als vielversprechender Füllstoff für multifunktionale Polymerwerkstoffe. Die Multifunktionalität beinhaltet auch die erwartete Flammschutzwirkung von Graphen Nanopartikeln. In der vorliegenden Arbeit wurde Graphen hinsichtlich seiner Flammschutzwirkung und seines Einflusses auf Werkstoffeigenschaften wie die elektrische Leitfähigkeit in Polymer Nanokompositen charakterisiert. Durch den Vergleich mit anderen, kommerziell erhältlichen, Kohlenstoffmaterialien mit unterschiedlicher Morphologie (sphärisch, Röhren, dicke Plättchen aus 50 bis 100 Graphen Lagen und dünne Schichten aus 10 Graphen Lagen) wurde die Effektivität von Graphen eingeordnet und Rückschlüsse über die Struktur-Eigenschafts-Beziehungen zwischen Partikelmorphologie und Nanokomposit Merkmalen gezogen. Graphen wurde mit halogenfreien Flammschutzmitteln, die Vertreter der unterschiedlichen Flammschutzmechanismen (chemische und physikalische Wirkungsweise, Gas- und Festphasenaktivität) sind, kombiniert. Dabei wurde die Einsatzmöglichkeit von Graphen als Hilfsstoff zur Verbesserung der Flammschutzwirkung der verwendeten halogenfreien Systeme untersucht. Die Untersuchungen umfassten den thermischen Abbau, die Entflammbarkeit und das Verhalten während einer erzwungenen Verbrennung, aber auch Schlüsselexperimente. Die Schlüsselexperimente führten zum tieferen Verständnis der beobachteten Brandeigenschaften durch die Aufklärung von Wirkmechanismen und Struktur-Eigenschafts-Beziehungen. Die teilweise selbstkonzipierten und –entwickelten Schlüsselexperimente umfassten das rheologische Verhalten, die Partikelverteilung, die Wärmeabsorption und –leitfähigkeit, die strukturelle Qualität des Brandrückstandes und den Temperaturverlauf innerhalb und an der Rückseite einer brennenden Probe. Der dünne Schichtpartikel Graphen war besser in der Polymermatrix dispergiert als die zu vergleichenden Kohlenstoffmaterialien. Graphen bildete bei vergleichsweise niedrigeren Konzentrationen ein zusammenhängendes Partikelnetzwerk aus, das für die elektrische Leitfähigkeit der Komposite verantwortlich ist und die Viskosität der Polymerschmelze erhöhte. Durch das Zusammenwirken von erhöhter Schmelzviskosität und dem Labyrinth Effekt des Partikelnetzwerkes verschob Graphen den Beginn des Polymerabbaus am deutlichsten zu höheren Temperaturen. In den Entflammbarkeitstests Sauerstoffindex und UL 94 führte die erhöhte Schmelzviskosität aufgrund fehlenden Abfließens und Abtropfens zur vermehrten Bereitstellung von Brennstoff und abhängig vom Matrixpolymer teilweise zu einer Verschlechterung der Einstufung. Die ausschließlich festphasenaktive Flammschutzwirkung von Graphen beruhte auf der Bildung einer Rückstandschicht, die aus den jeweiligen Kohlenstoffpartikeln bestand und als Hitzeschild wirkte. Im Vergleich zu den anderen Kohlenstoffmaterialien hatte die Rückstandsstruktur der Graphen Komposite eindeutig die höchste Qualität und reduzierte die (maximale) Wärmeabgaberate am stärksten. In Kombination mit den halogenfreien Flammschutzsystemen bestimmte das Wirkprinzip der einzelnen Systeme die Verwendbarkeit von Graphen als Hilfsmittel. Ein kommerzielles, intumeszentes Flammschutzmittelsystem reagierte sehr empfindlich auf die durch Graphen erhöhte Viskosität der kondensierten Phase und tolerierte nur sehr geringe Graphenmengen ohne Verschlechterung der Intumeszenz. In einem gasphasenaktiven Flammschutzmittel fügte Graphen durch Rückstandsbildung einen Festphasenmechanismus hinzu und senkte die Brandausbreitung und somit das Brandrisiko noch einmal deutlich. Graphen und ein rückstandsbildendes Metallhydroxid verstärkten sich synergistisch hinsichtlich der Rückstandsqualität und der Entflammbarkeitstests. Mit den erhaltenen Ergebnissen ist eine umfassende Charakterisierung der Struktur-Eigenschafts- Beziehungen zwischen Partikelmorphologie und Kompositeigenschaften und die Einordnung von Graphen in die Reihe der Kohlenstoff-Nanopartikel möglich. Die aufgeklärten Wirkprinzipien von Graphen in Nanokompositen, wie auch in Kombination mit unterschiedlichen Flammschutzsystemen, bilden die Grundlage für eine weitere Optimierung des zweidimensionalen Kohlenstoff-Nanomaterials Graphen als Flammschutzmittel. N2 - Since the first successful isolation of graphene, the two dimensional, one atom thick carbon nanomaterial is considered as promising filler for multifunctional plastic materials. This includes an expected flame retardancy effect in graphene nanocomposites caused by the nanoparticle. In this study, the flame retardancy effect of graphene was characterized as well as its influence on polymer nanocomposite properties like electrical conductivity. By comparing with other carbon nanomaterials of varying morphology (spherical, tubular, platelets of 50 to 100 single graphene layers and layers of ten single graphene layers), the efficiency of graphene was ranked and the structure-property-relationship between particle morphology and material property was revealed. Graphene was investigated as adjuvant for three halogen-free flame retardants representing different flame retardancy mechanisms (chemical and physical action, gas and condensed phase activity). The materials were investigated according to its pyrolysis behavior, reaction to small flame and burning behavior under forced flaming conditions. Additionally, partly self designed key experiments were performed like the investigation of the rheological behavior, particle dispersion, heat absorption, thermal conductivity, structural quality of residue and temperature development inside and on the backside of a burning sample. Due to the key experiments, a deeper understanding of the nanoparticles’ modes of action was obtained and the structure-property-relationships were explained. The thinly layered graphene particles showed the best particle dispersion within the group of carbon materials. An interconnected particle network of graphene was established throughout the polymer matrix at comparatively low concentrations. By overcoming the percolation threshold, electrical conductivity occurred for the nanocomposites. The particle network caused an increase in melt viscosity that hindered the diffusion of the pyrolysis gases and delayed the release. The shift of mass loss onset to higher temperatures was intensified by the labyrinth effect of the nanoparticle network. The increased viscosity provided the flame zones of oxygen index and UL 94 test with additional fuel as flowing and dripping off of the polymer melt stopped and the material was kept in the pyrolysis zone. The flame retardancy mechanism of graphene took place exclusively in the condensed phase by the formation of a residual protection layer consisting of the nanoparticles and heat shielding. Compared to the other carbon materials, the highest quality of residue structure was observed in case of the graphene nanocomposites. Consequently, graphene was the most effective flame retardant in changing the burning behavior and reducing the (peak) heat release rate the increase of condensed phase viscosity due to graphene. Only very low amounts of graphene were tolerated without inhibiting the intumescence. In an exclusively gas phase active flame retardancy system, graphene was able to add condensed phase activity by residue formation and so to reduce flame spread and fire risk. By strongly enhancing the residual structure, synergistic effects occurred between graphene and a residue forming metal hydroxide in terms of reaction to small flame. The obtained results allow characterizing the structure-property-relationship between particle morphology and composite properties comprehensively. By comparing with commercially used carbon materials, graphene was ranked according to its flame retardant and filler efficiency. Understanding of the nanoparticles’ modes of action - in nanocomposites as well as in combination with different flame retardants – gives an hint how to further optimize the use of the two dimensional carbon nanomaterial graphene as polymer filler. T3 - BAM Dissertationsreihe - 118 KW - Graphen KW - Kohlenstoffpartikel KW - Flammschutz KW - Nanokomposite KW - halogenfrei PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-406 SN - 978-3-9816380-6-6 SN - 1613-4249 VL - 118 SP - 1 EP - 137 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Yin, Huajie T1 - Thermal and Dynamic Glass Transition in Ultrathin Films of Homopolymers and a Miscible Polymer Blend N2 - Dünne Polymerschichten im nanoskaligen Bereich finden heute in vielen Gebieten z. B. für Beschichtungen, als Membranen, für Sensoren oder in diversen elektronischen Geräten ihre Anwendung. Wissenschaftliche Studien belegen, dass viele physikalische Eigenschaften (Glasübergang, Kristallisation, Entnetzung, Alterung etc.) von ultradünnen Polymerschichten (Polymere in 1-dimensionaler räumlicher Begrenzung) stark von dem Verhalten im Volumen abweichen. Da die Eigenschaften eng mit der Verwendung und Funktionalität von Polymeren verknüpft sind, müssen die beobachteten Unterschiede in nanoskaliger Begrenzung genauer untersucht werden. Die vorliegende Arbeit beschäftigt sich damit, wie die Oberfläche (Luft-Polymer- Grenzfläche), die Polymer-Substrat-Wechselwirkung und die Schichtdicke die Glasübergangstemperatur (Tg) und die segmentale Dynamik (α-Relaxationsprozess) in Homopolymeren und mischbaren Polymer-Blends in dünnen Schichten beeinflussen. Komplementäre experimentelle Methoden, wie Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Breitbandige Dielektrische Spektroskopie (BDS) und Spezifische Wärme Spektroskopie (SHS) wurden angewendet, um den Glasübergang der dünnen Polymerschichten aus der thermodynamischen und kinetischen Sicht zu untersuchen. In dieser Arbeit werden die Glasübergangstemperatur und die segmentale Dynamik von ultradünnen Polymerschichten in Abhängigkeit der Schichtdicke untersucht. Für ultradünne Polycarbonatschichten (PC-Schichten, dünner als 20 nm) zwischen zwei Aluminiumschichten wurde ein Anstieg von der Glasübergangstemperatur (Tg) als auch der Vogel Temperatur (T0) mit abnehmender Schichtdicke beobachtet. BDS-Messungen zeigten einen Anstieg der segmentalen Relaxationszeit für ultradünne PC-Schichten. In den SHS-Messungen für die Siliciumdioxid (10-192 nm) basierten PC-Schichten konnte unter Einbeziehung des experimentellen Fehlers keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke festgestellt werden. Diese Eigenschaften werden im Hinblick auf die Geometrie der dünnen Schichten und die relevanten Wechselwirkungsenergien zwischen dem Polymer und dem Substrat diskutiert. Im Falle von dünnen Polystyrolschichten (PS-Schichten) mit hohem Molekulargewicht (Mw) sinkt die Glasübergangstemperatur Tg mit Verringerung der Schichtdicke. Die segmentale Dynamik hängt jedoch nicht von der Stärke der Schichtdicke ab. Darüber hinaus werden für dünne PS-Schichten die Auswirkungen des Molekulargewichts Mw und Temperbedingungen auf Tg und die segmentale Dynamik untersucht. Im Bereich der dünnen Polyvinylmethyletherschichten (PVME-Schichten) konnte mittels SHS keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke aufgezeigt werden. Der letzte Teil dieser Arbeit beschäftigt sich mit dünnen Schichten mischbarer Polymer-Blends mit einem Gewichtsteil von 50/50 PS/PVME. Es wurde eine Beschleunigung der segmentalen Dynamik mit geringerer Schichtdicke beobachtet. Dieses Phänomen wird mit der Oberflächenanreicherung von PVME, welches eine niedrigere Oberflächenenergie als PS aufweist, in das Polymer-Blend-System erklärt. Die segmentale Dynamik der mit PVME angereicherten freien Oberflächenschicht ist schneller als die Volumen- Dynamik. Durch die Verringerung der Schichtdicke werden diese freien Oberflächeneffekte so dominant, dass sie die gesamte segmentale Dynamik der Schichten von SHS (differenzieller AC Chip- basierten Kalorimetrie) erkennbare beeinflussen. Mittels Röntgenphotoelektronenspektroskopie (XPS) konnte die Oberflächenzusammensetzung des Films ermittelt und so die Phänomene der Oberflächenanreicherung verifiziert werden. N2 - Nowadays nanoscale thin polymer films are widely used in many fields like coatings, membranes, sensors, electronic devices and so on. Meanwhile, a lot of research work has evidenced the fact that many physical properties (glass transition, crystallization, dewetting, physical aging, etc.) of ultrathin polymer films show strong deviations from their bulk behavior. Since the aforementioned properties of polymer are closely related to their application and functionality, the discrepancies motivated us to obtain a more complete understanding of how nanoscale confinement affects the physical properties of polymer. The research work presented in this thesis is focused on understanding how the free surface (air- polymer interface), the polymer-substrate interface and the film thickness influence the glass transition temperature (Tg) and the related segmental dynamics (α-relaxation process) in both homopolymers and miscible polymer blends of thin films. Complementary experimental techniques including Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) have been used to investigate the glass transition of thin polymer films from both the thermodynamic and the kinetic point of view. In the thesis the film thickness dependence of Tg and segmental dynamics of different thin polymer films have been investigated. For ultrathin polycarbonate (PC) films capped between two aluminum (Al) layers an increase of both the glass transition temperature (Tg) and Vogel temperature (T0) with decreasing film thickness (d) was observed when the thickness became lower than 20 nm. The segmental relaxation time at a fixed temperature was found to increase for the ultrathin PC film of 19 nm measured by BDS, whereas no thickness dependency of the segmental dynamics was detected within the experimental error limit for the PC films supported on silicon dioxide (SiO2) (10-192 nm) in the SHS measurements. These properties are discussed in terms of the thin film geometry and the relevant interfacial interaction between the polymer and the substrate. In the case of thin polystyrene (PS) films with high molecular weight (Mw), Tg is decreasing with reducing film thickness while the segmental dynamics is independent of film thickness. Moreover, the effects of the Mw and the annealing protocol performed on thin PS films on their Tg and segmental dynamics is studied. In the part of thin poly(vinyl methyl ether) (PVME) films, no thickness dependence of the segmental dynamics was observed in the SHS measurements. The last part of the thesis was concentrated on the thin films of a miscible polymer blend, PS/PVME with the weight fraction of 50/50. It was observed that the segmental dynamics became faster with reducing the film thickness. This phenomenon is explained in terms of surface enrichment of PVME in the polymer blend system where PVME has a lower surface energy than PS. The segmental dynamics of the PVME-enriched free surface layer are faster than the bulk dynamics. Such free surface effect becomes so predominant with reducing the film thickness that it affects the segmental dynamics of the whole films detected by SHS using differential AC chip-based calorimetry. X-ray photoelectron spectroscopy (XPS) was used to probe the surface composition in order to confirm such surface enrichment phenomena. T3 - BAM Dissertationsreihe - 117 KW - glass transition KW - specific heat spectroscopy KW - ultrathin film KW - polymer KW - broadband dielectric spectroscopy PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418 SN - 978-3-9816380-5-9 SN - 1613-4249 VL - 117 SP - 1 EP - 133 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gravenkamp, Hauke T1 - Numerical methods for the simulation of ultrasonic guided waves N2 - Ultrasonic guided waves offer a wide range of applications in fields such as non-destructive testing, structural health monitoring or material characterization. They can be excited in thin-walled structures and propagate over comparably long distances. Due to their complex and dispersive propagation behavior, numerical methods are often required in order to analyze the guided wave modes that can be excited in a given structure and to simulate their interaction with defects. In the work presented in this thesis, highly efficient numerical methods have been developed that are specifically optimized for guided wave problems. The formulation is based on the Scaled Boundary Finite Element Method (SBFEM). The SBFEM is a semi-analytical method which evolved from the concept of Finite Elements but requires the discretization of the boundary of the computational domain only. To compute dispersion curves and mode shapes of guided waves, only the cross-section of the waveguide is discretized in the Finite Element sense, while the direction of propagation is described analytically. The wavenumbers of guided wave modes and the corresponding mode shapes are obtained as the eigenvalues and eigenvectors of a frequency-dependent Hamiltonian matrix. For the discretization, higher-order spectral elements are employed, leading to very low computational costs compared to traditional Finite Elements. Particular formulations are presented for plate structures as well as axisymmetric waveguides, where only the throughthickness direction has to be discretized. For the cases where the waveguide is embedded in or coupled to a quasi-infinite medium, a dashpot boundary condition is proposed in order to account for the effect of waves being transmitted into the surrounding medium. Though this approach is not exact, it leads to sufficiently accurate results for practical applications, while the computational costs are typically reduced by several orders of magnitude compared to other Finite Element based approaches. As a particular application, an experimental set-up for material characterization is discussed, where the elastic constants of the waveguide’s material are obtained from the analysis of waves propagating through the waveguide. A novel solution procedure is proposed in this work, where each mode of interest is traced over the required frequency range. The solutions are obtained by means of inverse iteration. To demonstrate the potential of the SBFEM for non-destructive testing applications, the interaction of guided wave modes with cracks in plates is simulated in the time domain for several examples. Particularly for the modeling of cracked structures, the SBFEM is very well suited, since the side-faces of the crack do not require discretization and the stress-singularity at the crack tip does not introduce additional difficulties. Hence, the computational costs can be reduced by typically a factor 100 compared to traditional Finite Elements and the meshing is straightforward. T3 - BAM Dissertationsreihe - 116 KW - guided wave KW - numerical methods KW - scaled boundary finite element method KW - ultrasound PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-428 SN - 978-3-9816380-4-2 SN - 1613-4249 VL - 116 SP - 1 EP - 195 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-42 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Eisenacher, Germar T1 - Charakteristik und Modellierung von Fichtenholz unter dynamischer Druckbelastung N2 - Fichtenholz wird häufig als energieabsorbierendes Material in Stoßdämpfern von Transportbehältern für radioaktive Stoffe eingesetzt. Bei der vorgeschriebenen Fallprüfung aus 9 m Höhe auf ein unnachgiebiges Fundament erfährt das Fichtenholz im Stoßdämpfer eine dynamische Druckbelastung, wobei die seitliche Ausdehnung durch eine Blechkapselung eingeschränkt ist. Das Ziel dieser Arbeit war es, auf der Grundlage einer experimentellen Charakterisierung ein Materialmodell für Fichtenholz zur Berechnung solcher Lastfälle zur Verfügung zu stellen. Die experimentellen Untersuchungen zur Charakterisierung von Fichtenholz bestanden aus ca. 600 Druckversuchen an würfelförmigen Fichtenholzproben mit einem Stauchgrad von bis zu 70 %. Das Material wurde dabei als transversal isotrop angenommen. Insbesondere die Querdehnungsbehinderung konnte als ein relevanter Einflussfaktor auf die Materialcharakteristik identifiziert werden: Ohne Querdehnungsbehinderung dehnt sich das Material sowohl bei Last parallel als auch senkrecht zur Faser stark seitlich aus. Die Druckkraft- Verformungs-Verläufe weisen ein vergleichsweise geringes Kraftniveau und keine bzw. eine kaum ausgeprägte Verfestigung auf. Parallel zur Faser findet außerdem nach dem linear-elastischen Bereich eine starke Entfestigung statt. Eine Behinderung der Querdehnung führt zu einem deutlichen Anstieg des Druckkraftniveaus, einer stark ausgeprägten Verfestigung und lateral wirkenden Kräften. Die Entfestigung bei Last parallel zur Faser ist vergleichsweise gering ausgeprägt. Dehnrate und Temperatur haben festigkeitssteigernde bzw. festigkeitsverringernde Einflüsse, die im für Stoßdämpfer relevanten Bereich quantifiziert wurden. Anhand der experimentellen Erkenntnisse wurde die Hypothese der entkoppelten Fließflächenevolution aufgestellt, die von einer unabhängigen Festigkeitsentwicklung bei deviatorischer und volumetrischer Verformung ausgeht. Die Hypothese konnte mit einer Modifikation des Materialmodells MAT_075 aus dem FE-Code LS-DYNA bestätigt werden. Auf dieser Basis wurde anschließend ein transversal isotropes Materialmodell für Fichtenholz neu entwickelt und in LS-DYNA implementiert. Die Charakteristika von Fichtenholz unter Druckbelastung wurden in einer 15-flächigen Fließbedingung und einer nicht-assoziierten Fließregel umgesetzt. Die Fließbedingung berücksichtigt Mehrachsigkeiten des Druckspannungszustands durch eine lineare Interpolation der aus den Druckversuchen mit und ohne Querdehnungsbehinderung abgeleiteten Festigkeiten. Nachrechnungen der Druckversuche zeigten eine gute Abbildung der grundsätzlichen Festigkeitscharakteristik von Fichtenholz durch das Modell. Der für blechgekapselte Stoßdämpfer sehr bedeutsame Einfluss der Querdehnungsbehinderung kann durch die entkoppelte Evolution der Fließfläche angemessen wiedergegeben werden. Bei Last unter spitzen Faserwinkeln werden die Festigkeiten vom Modell jedoch überschätzt, was durch eine Anpassung der Druckfließflächen verhindert werden könnte. Die Einflüsse von Dehnrate und Temperatur können grundsätzlich nachgebildet werden, die verwendeten Skalierungsfaktoren sollten aber überarbeitet werden. Die Nachrechnung eines Behälterfallversuchs mit holzgefüllten Stoßdämpfern bestätigte die grundsätzliche Anwendbarkeit des Modells und zeigte plausible Rechenergebnisse. Für ein verifiziertes Stoßdämpfermodell sind weitere experimentelle und numerische Arbeiten erforderlich, wie z. B. die Untersuchung von Reibkoefizienten und Versagensparametern. Die Arbeit leistet mit dem transversal isotropen Materialmodell einen wichtigen Beitrag für die numerische Beanspruchungsanalyse bei der sicherheitstechnischen Begutachtung von Transportbehältern für radioaktive Stoffe. T3 - BAM Dissertationsreihe - 115 KW - Transportbehälter für radioaktive Stoffe KW - Druckversuch KW - Materialmodell KW - Stoßdämpfer KW - Fichtenholz PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434 SN - 978-3-9816380-3-5 SN - 1613-4249 VL - 115 SP - 1 EP - 201 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-43 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gebhardt, Moritz Oliver T1 - Einfluss von Konstruktion und Schweißparametern auf die Erstarrungsrissentstehung beim Laser-MSG-Hybridschweißen dickwandiger Bauteile Experimentelle und numerische Analyse N2 - Die vorliegende Dissertation beschäftigt sich mit der Erstarrungsrissbildung beim einlagigen Laser- MSG-Hybridschweißen von Bauteilen mit Wandstärken zwischen 9mm und 14,5 mm. Der Fokus liegt dabei zum einen auf Einflüssen durch die Schweißparameter und zum anderen auf der Wirkung von mechanischer Randbedingungen. Dazu wurden experimentelle und numerische Untersuchungen durchgeführt. Bei den Experimenten wurden Laser-MSG-Hybridschweißungen unter Verwendung eines Scheibenlasers mit 16kW Ausgangsleistung an Rohren aus Feinkornbaustahl erstellt. Im Rahmen der statistischen Versuchsplanung wurden an Einschweißungen die Schweißparameter Schweißgeschwindigkeit, Drahtvorschubgeschwindigkeit und Laserleistung variiert und die resultierende Rissanzahl im Röntgenbild ausgewertet. Bezüglich der konstruktiven Einflüsse wurden Schweißungen mit variierenden Steifigkeiten in Nahtquerrichtung und Nahtlängsrichtung, unterschiedlichen Vorspannkräften und an verschiedenen Werkstoffen realisiert. Der Fall der Schrumpfungsbehinderung wurde durch den Vergleich von durchgeschweißten und eingeschweißten Proben analysiert. Anhand eines Schweißsimulationsmodells der Rohrschweißungen ließen sich die Spannungen und Dehnungen in den risskritischen Bereichen während der Schweißungen ermitteln. Dies erlaubt eine Interpretation der experimentell festgestellten Wirkungen der verschiedenen Einflussfaktoren. Zusätzlich wurde ein Modell von Laserstrahlschweißungen im IRCRahmen aufgebaut, mit dem ein experimenteller Fall mit sehr fester, externer Schrumpfungsbehinderung aus der Literatur näher untersucht werden konnte. Ein stark vereinfachtes Modell einer schrumpfenden Schweißnaht wurde überdies genutzt um die komplexen Reaktion sinnvoll einordnen zu können. N2 - This dissertation deals with solidification cracking in high-power single-run laser-GMA hybrid welding of parts with wall thicknesses between 9mm and 14.5 mm. It focuses on the influence of process parameters on the one hand and the effect of mechanical boundaries on the other hand. Experimental and numerical examinations were conducted. Laser-GMA hybrid welds, using a disc laser with a maximum power output of 16kW were produced on tubes made of fine grain structural steels. The influence of the process paramters was investigated by a variation of welding velocity, wire feed speed and laser beam power within a design of experiments approach. Varying longitudinal and transversal stiffnesses and different levels of applied pre-load and material strength were used to examine the effect of the mechanical boundary conditions on weld solidification cracking. The influence of restraint was analyzed by comparing full and partial penetration welds. A welding simulation model granted access to the transient stresses and strains in the critical zones during welding. This allows to interprete the experimentally acquired results. A model of laser beam welding in the IRC-test provides the opportunity to analyze a case from the literature having a high exterior restraint. Simplified models of shrinking welds helped to classify the complex reactions in the welds. T3 - BAM Dissertationsreihe - 114 KW - Feinkornbaustahl KW - Schweißen KW - Rohr KW - Heißrisse KW - Laser-MSG-Hybrid PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447 SN - 978-3-9816380-2-8 SN - 1613-4249 VL - 114 SP - 1 EP - 166 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bachmann, Marcel T1 - Numerische Modellierung einer elektromagnetischen Schmelzbadkontrolle beim Laserstrahlschweißen von nicht-ferromagnetischen Werkstoffen N2 - Die Verfügbarkeit von Laserstrahlquellen mit immer höheren Leistungsparametern ermöglicht ein effektives und schnelles Schweißen von stetig größer werdenden Blechdicken. Dabei treten Herausforderungen bezüglich der Prozessstabilität, z.B. ein Austropfen von Schmelze bei Durchschweißungen sowie die Beherrschung der Dynamik, insbesondere an den freien Oberflächen, die stark von Oberflächenspannungseffekten beeinflusst wird, in den Vordergrund. Die vorliegende Arbeit liefert einen primär numerischen Beitrag zur Anwendung oszillierender sowie zeitlich invarianter magnetischer Felder beim Hochleistungs-Laserstrahlschweißen von nicht-magnetischen Bauteilen hoher Blechdicke. Für die simulativen Untersuchungen wurden die Materialien Aluminium sowie austenitischer Stahl AISI 304 herangezogen und mit Querschliffen von exemplarisch durchgeführten Schweißungen an der Legierung AlMg3 bzw. AISI 304 verglichen. Die Simulationen wurden mit dem kommerziellen Finite- Elemente-Paket COMSOL Multiphysics durchgeführt. In diesem Rahmen wurden Strömungs- und Temperaturfelder sowie die Verteilungen der elektromagnetischen Feldgrößen berechnet. Die Bewertung der elektromagnetischen Beeinflussung des Schmelzbades erfolgte für die Anwendung oszillierender Magnetfelder zur Vermeidung des Schmelzaustropfens anhand der Druckverteilungen an unterer und oberer Schmelzbadoberflächen. Der Grad der Strömungsdämpfung durch elektromagnetische Kräfte wurde durch dimensionslose Kennzahlen unter Berücksichtigung des turbulenten Strömungszustandes bewertet. Es konnte im Rahmen der Arbeit gezeigt werden, dass durch den im Schmelzbad wirkenden vertikalen Anteil der Lorentzkraft, basierend auf einem oszillierenden magnetischen Feld unterhalb der Schweißzone und den im Werkstück induzierten elektrischen Wirbelströmen, ein Austropfen von verflüssigtem Material verhindert und somit ein sicherer Schweißprozess ermöglicht werden kann. Die hierfür benötigten elektromagnetischen Leistungen liegen für 20 mm dickes Aluminium und seinen Legierungen im Bereich mehrerer hundert Watt. Numerische Untersuchungen zur Strömungsdämpfung mittels permanentmagnetischer Felder zeigen die Möglichkeit auf, die Strömungsgeschwindigkeit und die lokale Turbulenzverteilung effektiv zu reduzieren. Dabei spielt die Polarität des quer zur Strömungsrichtung angelegten magnetischen Feldes keine Rolle für die resultierenden Kräfte. Die rechnerisch ermittelte Veränderung der Nahtform hin zu einem V-förmigen Profil konnte experimentell bestätigt werden. Die dazu notwendigen magnetischen Flussdichten für den Laborversuch liegen im Bereich kommerziell erhältlicher Neodym- Eisen-Bor Magnete bei etwa 500 mT. N2 - The availability of high power laser beam sources enables an effective and fast welding process of ever thicker metal parts. At the same time, challenges concerning the process stability appear, e.g. a drop-out of molten material in full-penetration welding as well as the control of the dynamics, especially in the vicinity of the free surfaces of the weld bead where surface tension effects dominate. The present work provides a primary numerical contribution to the application of oscillating as well as time-invariant magnetic fields to the high power laser beam welding of non-ferromagnetic metal parts of high thickness. For the simulations, the materials under investigation were aluminum and austenitic stainless steel AISI 304. The numerical results were compared to macrographs of exemplary test welds of the alloys AlMg3 and AISI 304. The simulations were conducted with the commercial finite element package COMSOL Multiphysics. In the framework of the investigations, calculations were done for the fluid flow and temperature as well as for the electromagnetic field quantities. The evaluation of the electromagnetic weld pool control for the application of oscillating magnetic fields to avoid liquid metal drop-out was carried out on the basis of pressure distribution analysis between the lower and upper weld pool surfaces. The degree of magnetic damping by Lorentz forces was calculated by dimensionless numbers also accounting for the turbulent state of the fluid flow. In this work, it could be shown, that the vertical part of the Lorentz forces, that are based on an oscillating magnetic field below the process zone and its induced eddy currents in the workpiece, prevents the liquid metal from drop-out. Thereby, a reliable welding process was made possible. The electromagnetic power used for the welding of a 20 mm thick aluminum alloy with electromagnetic support lies in the range of several hundreds Watt. Numerical investigations concerning the flow damping by permanent magnetic fields show the possibility to reduce the local flow velocity as well as the turbulence distribution effectively. The polarity of the applied magnetic field, which is aligned in horizontal direction and vertical to the welding direction, is indecisive for the direction of the developing Lorentz forces. The numerically predicted transition of the cross-sectional weld bead geometry to a V-shaped profile could also be proved experimentally. The required magnetic flux density for that was in the range of commercially available neodymium iron boron magnets of around 500 mT. T3 - BAM Dissertationsreihe - 113 KW - Schmelzbadstütze KW - Laserstrahlschweißen KW - Marangoni-Effekt KW - Hartmann-Effekt KW - numerische Simulation PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-459 SN - 978-3-9815944-9-2 SN - 1613-4249 VL - 113 SP - 1 EP - 189 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-45 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kolkoori, Sanjeevareddy T1 - Quantitative Evaluation of Ultrasonic Wave Propagation in Inhomogeneous Anisotropic Austenitic Welds using 3D Ray Tracing Method: Numerical and Experimental Validation N2 - Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non- destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austeniticweld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. Theultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb’s reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to determine the ultrasonic wave fields generated by a point source as well as finite dimension array transducers. T3 - BAM Dissertationsreihe - 112 KW - Nondestructive Testing KW - Inhomogeneous Materials KW - Austenitic Weld KW - Zerstörungsfreie Prüfung KW - 3D Ray Tracing Verfahren KW - Ultraschallfeld KW - austenitische Schweißnaht KW - inhomogene Materialien KW - 3D Ray Tracing Method KW - Ultrasonic Field PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-469 SN - 978-3-9815944-6-1 SN - 1613-4249 VL - 112 SP - 1 EP - 272 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Grasse, Fabian T1 - Beitrag zur Untersuchung des Betriebsfestigkeitsverhaltens von Rotorblättern für Windenergieanlagen im verkleinerten Maßstab N2 - Die größten Rotorblätter von Windenergieanlagen erreichen heutzutage Längen von über 75 m. Die Durchführung von Betriebsfestigkeitsuntersuchungen an Rotorblättern im Original-Maßstab ist aufwendig hinsichtlich der Größe der Bauteile und der komplexen Lastsituation. Für die Zulassung werden in der Regel nur statische Sicherheitsnachweise gefordert, dynamische Untersuchungen am Gesamtbauteil sind hingegen nicht erforderlich. Aus diesem Grund wurde ein Stellvertreter-Prüfstand zur Untersuchung von Rotorblättern im verkleinerten Maßstab entwickelt. Darüber hinaus erfolgte durch systematische Dauerschwingversuche die Validierung und Bewertung eines Condition Monitoring Systems. Für die Berechnung eines Versuchsrotorblattes werden die äußeren auf das Blatt wirkenden Lasten unter Berücksichtigung des Eigengewichts und der aerodynamischen Umströmung analysiert. Die Ergebnisse belegen eine dominierende Belastung in Schlaglast-Richtung und eine deutlich geringere Belastung in Schwenklast-Richtung. Auf den Lastannahmen basierend erfolgt die Bestimmung des inneren Spannungs- und Verzerrungszustandes für die einzelnen Strukturbauteile, wobei als Grundlage die Geometriedaten, die Materialdaten und der Laminataufbau des Originalrotorblattes herangezogen werden. Für den Aufbau des Versuchsrotorblattes kommen ausschließlich Original-Halbzeuge zum Einsatz. Die durch den Prüfstand in das Versuchsrotorblatt eingeleiteten Lasten werden derart dimensioniert, dass sich der erforderliche Spannungs- und Verzerrungszustand im Laminat einstellt. Der innere Aufbau des Versuchsrotorblattes mit zwei Stegen und vier Gurten entspricht dem des Originalrotorblattes. Die Lasteinleitung in das Versuchsrotorblatt erfolgt simultan und unabhängig für die Schlaglast- und Schwenklast-Richtung. Der Biegegemomentenverlauf des Originalrotorblattes wird bei Einleitung von jeweils drei Einzellasten pro Lastrichtung in Kombination mit der Erzeugung eines freien Momentes zur Erzeugung eines Sprungs im Querkraftverlauf sehr gut nachgebildet. Für die Realisierung eines Condition Monitoring Systems werden FBG-Sensoren verwendet, da sowohl die Möglichkeit zur Strukturintegration mit nur minimal-invasiven Störstellen als auch eine einfache Verlegung mit einer Vielzahl an FBG-Sensoren in einer einzelnen Sensorfaser gegeben ist. Die im Vergleich zu FBG-Patches durchgeführten Dauerfestigkeits-untersuchungen belegen für die strukturintegrierten Sensoren eine signifikant höhere Lebensdauer. Die Betriebsfestigkeitsuntersuchungen werden sowohl als Einstufenversuche bei Nennlast und 50a- Böenlast als auch in Lastkollektivanregung bei unabhängiger Regelung der Schlag- und Schwenklast durchgeführt. Zusätzlich erfolgt mehrfach eine Modalanalyse bei frei aufgehängtem Versuchsrotorblatt in verschiedenen Stadien des Versuchsprogramms. Da bei Einstufenbelastung mit 50a-Böenlast auf natürliche Weise keine sichtbaren Schäden entstanden sind, werden künstliche Bauteilschäden in Form eines Längsrisses an der Blatthinterkante und eines Querrisses zwischen den lasttragenden Gurten eingebracht. Diese Schäden verursachen bei 50a-Böenlast lokale Dehnungsüberhöhungen, die mit dem gewählten Condition Monitoring System gut detektierbar sind. Die lokal begrenzte Dehnungszunahme korreliert sehr gut mit den Ergebnissen der FEM-Berechnungen des Versuchsrotorblattes. Der Vergleich der berechneten und gemessenen Eigenfrequenzen weist eine hohe Übereinstimmung auf. Bei der Eigenfrequenzanalyse macht sich die Verringerung der Steifigkeit aufgrund des Querrisses in der Blattschale durch eine signifikante Verringerung der Eigenfrequenzen bemerkbar. Für einen Vergleich der numerisch berechneten und mittels Geophonen gemessenen Eigenformen wird das MAC-Kriterium herangezogen, welches für die ersten Eigenformen sowohl des ungeschädigten als auch des geschädigten Versuchsrotorblattes sehr gute Übereinstimmungen belegt. N2 - Today's largest class wind turbine rotor blades reach a length of more than 75 m. Testing fatigue strengths on full scale parts is diffcult due to the dimensions of the parts and due to the complex load situations. For certification, only a quasi static strength test to a certain load limit or to the final failure is required. The in-service strength is only accounted by calculations. For this reason, a test rig for conducting load tests on rotor blades with reduced dimensions was developed. Systematic fatigue tests for the validation and evaluation of a condition monitoring system were performed additionally. The loads for the test rotor blade are calculated based on manufacturer's data considering the tare mass of the blade and aerodynamic flow around the blade tip. The results indicate a dominant strain in flatwise load direction and a significantly lower strain level in edgewise load direction. The determination of the inner stress and strain conditions for each structural component is based on the design loads considering the geometry, material data and the Laminate structure of the original rotor blade. The inner structure is designed according to the original blade with a reduced number of layers using the original semi finished materials. The induced loads are dimensioned to realise the required inner stress and strain conditions in the laminate of the test rotor blade. The internal structure consisting of two webs and four straps corresponds to the original rotor blade. The test rig allows inducing flatwise and edgewise loads simultaneously and forced vibrations independently in two axis on the test rotor blade. The bending moment of the original rotor blade is reproduced suffciently with three discrete Forces in each flatwise and edgewise direction in combination with a free moment to create a jump in the shear force curve. FBG sensors are appropriate to realise a condition monitoring system due to the minimally invasive application and the simple installation with a variety of FBG sensors in a single sensor fiber. In comparison to FBG patches the structure-integrated sensors show a significantly longer service life. The in-service strength tests are carried out both as single step fatigue tests for nominal load and 50 year gust load and for load spectrum tests by independent control of flatwise and edgewise loads. In addition, the analysis of the eigenfrequencies is performed several times at various stages of the test program. Visible damages did not occur naturally at 50 year gust load. Therefore, artificial damages were implemented (disjuncture of the bonding of the trailing edge and transverse crack in the blade shell between the front and rear strap). These damages cause local strain increases at 50 year gust load that are well detectable with the chosen condition monitoring system. The locally limited strain increase correlates very well with the results of FEM calculations of the scale-reduced rotor blade. The comparison of the calculated and measured eigenfrequencies shows a good correlation. The analysis of the eigenfrequencies shows the reduction in stiffness due to the transverse crack in the blade shell by a significant reduction in the eigenfrequencies. For a comparison of the numerically calculated and measured eigenmodes (geophone sensors) the MAC criterion is used. This shows a very good agreement for the first eigenmodes of the undamaged and the damaged test rotor blade. T3 - BAM Dissertationsreihe - 110 KW - Betriebsfestigkeit KW - Faserbragg-Sensorik KW - Faserverstärkte Kunststoffe KW - Rotorblätter KW - Windenergieanlagen PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486 SN - 978-3-9815944-5-4 SN - 1613-4249 VL - 110 SP - 1 EP - 152 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -