TY - THES A1 - Hauswaldt, Sebastian T1 - Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall T2 - BAM-Dissertationsreihe N2 - Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften. Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt. Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt. Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert. Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert. Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen. Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen. Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT 1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden. N2 - The non-linear and rate-dependent2 material behaviour of steel becomes particularly visible at high temperatures. For finite-element-simulations of steel structures in the event of fire, plastic and rate- dependent material behaviour should therefore be described. With this in mind, this thesis looks at previous material investigations and makes suggestions for three-dimensional material models with the corresponding properties. The phenomenological properties of structural steel are analysed on the basis of a literature study, whereby increased attention is paid to the material behaviour under loads and heating processes, as can be expected in the event of fire. The stress-strain-relation of the EC 3-1-2 used for the design of steel structures is examined. The advantages of this description, but also the missing properties for the development of a continuum-mechanical material formulation, are shown. A non-linear-elastic continuum mechanical material model of the deformation theory of plasticity is adapted in such a way that it describes the stress-strain curves according to EC 3-1-2 in the state of uniaxial stress. Furthermore, a thermoelastic-viscoplastic model is presented which is able to describe creep and relaxation during heating and cooling processes. The structure of this material model is chosen in such a way that the parameters can be easily identified using certain measurement results. The deviatoric part of the model consists of a rate-independent, plastic part and a rate-dependent, vis- coelastic part. The rate-independent, plastic part was formulated as a differential equation based on the endochronic theory of plasticity. The parameters of this material model are identified on the basis of the measurement results of stationary hot tensile tests on structural steel specimens. Both the non-linear-elastic EC 3-1-2 material model and the thermoelastic-viscoplastic material model with the material parameters adapted to mild steel are prepared numerically for use with finite- element-programs and implemented as UMAT-subroutines for ABAQUS in the FORTRAN code. Particular emphasis is placed on the provision of consistent tangent operators to enable efficient numerical calculation when using the material models. Finally, first finite-element-simulations are presented in order to show the possibilities of the deve- loped and implemented material models for simulations of steel constructions in case of fire. Keywords: Fire prevention, steel, fire behaviour, finite element method, material model, Eurocode 3- 1-2, UMAT 2 If the material behaviour is dependent on the process rate, it is referred to as rate-dependent. Processes can be controlled by strain, stress or temperature. The terms time-dependent and time-independent are avoided here, as these are associated with aging in materials science. T3 - BAM Dissertationsreihe - 167 KW - Brandschutz KW - Stahl KW - Brandverhalten KW - Finite-Elemente-Methode KW - Materialmodell KW - Eurocode 3-1-2 KW - UMAT KW - Fire prevention KW - Steel KW - Fire behaviour KW - Finite element method KW - Material model KW - Eurocode 3-1-2 KW - UMAT PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507662 SN - 1613-4249 VL - 167 SP - i EP - 206 PB - Bundesanstalt für Materailforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50766 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Eisenacher, Germar T1 - Charakteristik und Modellierung von Fichtenholz unter dynamischer Druckbelastung N2 - Fichtenholz wird häufig als energieabsorbierendes Material in Stoßdämpfern von Transportbehältern für radioaktive Stoffe eingesetzt. Bei der vorgeschriebenen Fallprüfung aus 9 m Höhe auf ein unnachgiebiges Fundament erfährt das Fichtenholz im Stoßdämpfer eine dynamische Druckbelastung, wobei die seitliche Ausdehnung durch eine Blechkapselung eingeschränkt ist. Das Ziel dieser Arbeit war es, auf der Grundlage einer experimentellen Charakterisierung ein Materialmodell für Fichtenholz zur Berechnung solcher Lastfälle zur Verfügung zu stellen. Die experimentellen Untersuchungen zur Charakterisierung von Fichtenholz bestanden aus ca. 600 Druckversuchen an würfelförmigen Fichtenholzproben mit einem Stauchgrad von bis zu 70 %. Das Material wurde dabei als transversal isotrop angenommen. Insbesondere die Querdehnungsbehinderung konnte als ein relevanter Einflussfaktor auf die Materialcharakteristik identifiziert werden: Ohne Querdehnungsbehinderung dehnt sich das Material sowohl bei Last parallel als auch senkrecht zur Faser stark seitlich aus. Die Druckkraft- Verformungs-Verläufe weisen ein vergleichsweise geringes Kraftniveau und keine bzw. eine kaum ausgeprägte Verfestigung auf. Parallel zur Faser findet außerdem nach dem linear-elastischen Bereich eine starke Entfestigung statt. Eine Behinderung der Querdehnung führt zu einem deutlichen Anstieg des Druckkraftniveaus, einer stark ausgeprägten Verfestigung und lateral wirkenden Kräften. Die Entfestigung bei Last parallel zur Faser ist vergleichsweise gering ausgeprägt. Dehnrate und Temperatur haben festigkeitssteigernde bzw. festigkeitsverringernde Einflüsse, die im für Stoßdämpfer relevanten Bereich quantifiziert wurden. Anhand der experimentellen Erkenntnisse wurde die Hypothese der entkoppelten Fließflächenevolution aufgestellt, die von einer unabhängigen Festigkeitsentwicklung bei deviatorischer und volumetrischer Verformung ausgeht. Die Hypothese konnte mit einer Modifikation des Materialmodells MAT_075 aus dem FE-Code LS-DYNA bestätigt werden. Auf dieser Basis wurde anschließend ein transversal isotropes Materialmodell für Fichtenholz neu entwickelt und in LS-DYNA implementiert. Die Charakteristika von Fichtenholz unter Druckbelastung wurden in einer 15-flächigen Fließbedingung und einer nicht-assoziierten Fließregel umgesetzt. Die Fließbedingung berücksichtigt Mehrachsigkeiten des Druckspannungszustands durch eine lineare Interpolation der aus den Druckversuchen mit und ohne Querdehnungsbehinderung abgeleiteten Festigkeiten. Nachrechnungen der Druckversuche zeigten eine gute Abbildung der grundsätzlichen Festigkeitscharakteristik von Fichtenholz durch das Modell. Der für blechgekapselte Stoßdämpfer sehr bedeutsame Einfluss der Querdehnungsbehinderung kann durch die entkoppelte Evolution der Fließfläche angemessen wiedergegeben werden. Bei Last unter spitzen Faserwinkeln werden die Festigkeiten vom Modell jedoch überschätzt, was durch eine Anpassung der Druckfließflächen verhindert werden könnte. Die Einflüsse von Dehnrate und Temperatur können grundsätzlich nachgebildet werden, die verwendeten Skalierungsfaktoren sollten aber überarbeitet werden. Die Nachrechnung eines Behälterfallversuchs mit holzgefüllten Stoßdämpfern bestätigte die grundsätzliche Anwendbarkeit des Modells und zeigte plausible Rechenergebnisse. Für ein verifiziertes Stoßdämpfermodell sind weitere experimentelle und numerische Arbeiten erforderlich, wie z. B. die Untersuchung von Reibkoefizienten und Versagensparametern. Die Arbeit leistet mit dem transversal isotropen Materialmodell einen wichtigen Beitrag für die numerische Beanspruchungsanalyse bei der sicherheitstechnischen Begutachtung von Transportbehältern für radioaktive Stoffe. T3 - BAM Dissertationsreihe - 115 KW - Transportbehälter für radioaktive Stoffe KW - Druckversuch KW - Materialmodell KW - Stoßdämpfer KW - Fichtenholz PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434 SN - 978-3-9816380-3-5 SN - 1613-4249 VL - 115 SP - 1 EP - 201 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-43 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -