TY - THES A1 - Sprengel, Maximilian Franz-Arthur T1 - Study on the determination and the assessment of the residual stress in laser powder bed fused stainless steel structures N2 - Additive manufacturing processes offer extensive advantages for the design freedom of structures through layer-by-layer production. This enables high weight savings as well as the integration of functions such as cooling channels. This technology thus offers great potential to contribute to a sustainable future. The pioneer among these manufacturing processes is the powder bed fusion of metals with laser beams (PBF-LB/M). This process is characterised by high laser scanning speeds and highly localised heat input, which have a strong effect on the microstructure and thus also on the mechanical properties. For example, the austenitic steel 316L exhibits a cellular structure at the subgrain level. This microstructure feature leads to higher yield strengths and comparable ductility to conventionally processed 316L. In addition to the traditional applications of 316L steel in the petrochemical and nuclear industries, this enables new applications such as medical stents or bipolar plates for fuel cells with proton exchange membranes. However, the layer-by-layer production with high scanning speeds and localised heat input induces cooling rates in the order of 106 K.s-1. The large temperature gradients and the shrinkage restraints of each weld bead and layer lead to the development of complex residual stress fields. These reduce the material performance and can even lead to premature failure. Thus, the fatigue properties are severely affected by rapid crack growth or prematurely developing cracks. Furthermore, specimens may warp during PBF-LB/M or immediately when the components are separated from the build plate. Therefore, residual stress is one of the main disadvantages of PBF-LB/M, making it difficult for this technology to be more widely accepted in the industry. Based on the current state of the literature, the procedure for determining residual stress employing diffraction methods, the influence of the component geometry, as well as the inter-layertime (ILT) on residual stress and, lastly, suitable heat treatment strategies for relaxing residual stress in PBF-LB/M/316L, were identified as insufficiently researched areas. Determining residual stress is a major challenge. X-ray and neutron diffraction are particularly suitable for filigree structures, which can preferably be produced using PBF-LB/M. Here, the microscopic strain of the lattice planes is used to calculate the macroscopic residual stress. These methods are nondestructive and allow the spatial resolution of the bi-axial and tri-axial residual stress. In the present work, in-situ neutron diffraction tensile tests were performed to analyse the micromechanical behaviour of PBF-LB/M/316L. The suitability of the lattice planes for calculating the macroscopic residual stress was investigated. The (311) lattice plane was found to be the best option for determining the macroscopic residual stress in PBF-LB/M/316L. Furthermore, it was shown that the Kröner model can be used to calculate the X-ray diffraction constants despite the texture. Currently, both aspects are common practices in the determination of residual stress. The results presented here support the validity of this approach and increase the confidence in the experimentally determined residual stress, which has a positive effect on the assessment of quality concerning the safety of a component manufactured by PBF-LB/M. The geometry of a structure manufactured by PBF-LB/M determines the component stiffness and influences the thermal gradients during manufacture and ultimately the residual stress. The effect of smaller or larger dimensions (larger than 10 mm) on the residual stress is rarely considered. To investigate this aspect, representative test specimens with different thicknesses and lengths were produced. Hence, the influence of the geometry i.e., component stiffness on the residual stress was evaluated. The residual stress was determined using X-ray and neutron diffraction. The analysis of the residual stress showed that an increase in thickness leads to overall higher residual stress. In addition, it was shown that increasing the sample dimension leads to smaller residual stress gradients. Above a threshold value of a few millimetres, no significant change in the residual stress was observed. The ILT is inherent in every PBF-LB/M construction job and influences the thermal gradients during production and thus the residual stress. A change in wall thickness in a geometrically complex structure or a variation in the number of specimens in the construction process leads directly to a change in the ILT. To simulate this, specimens with different ILT were produced. The residual stress was determined by X-ray and neutron diffraction. The use of a short ILT resulted in higher surface residual stress, but lower volume residual stress. Here, the surface residual stress and the residual stress in the volume showed contrary behaviour. This was attributed to the complex heat conduction during the process, as shown by the thermographic measurements. To avoid distortion of the specimens or real components upon separation from the build plate or during post-processing steps, stress relief annealing is usually performed after the PBF-LB/M process. Based on standards for heat treatment of welded austenitic steels, heat treatments were performed at low (450 °C for four hours) and high (800 °C and 900 °C for one hour) temperatures. The results show that the heat treatment at 450 °C relaxed the residual stress by only 5 %. This low relaxation is due to the stability of the cell structures. The high-temperature heat treatment showed that 900 °C is required to dissolve the cell structure and achieve a relaxation of about 85 %. This result is in good agreement with the standards for stress relief annealing of welded austenitic steels. N2 - Additive Fertigungsverfahren bieten durch die schichtweise Herstellung weitreichende Vorteile für die Gestaltungsfreiheit von Strukturen und ermöglichen somit hohe Gewichtseinsparungen. Auch die Integration von Funktionen, beispielsweise Kühlkanäle, können unmittelbar während der Herstellung eingebracht werden. Damit bietet diese Technologie ein hohes Potential zu einer nachhaltigen Zukunft beizutragen. Der Vorreiter unter diesen Fertigungsprozessen ist das Pulverbettbasierte Schmelzen von Metallen mittels Laserstrahlen (PBF-LB/M). Dieser Prozess zeichnet sich durch hohe Laserscangeschwindigkeiten und eine stark lokalisierte Wärmeeinbringung aus, welche sich auf die Mikrostruktur und damit auch auf die mechanischen Eigenschaften auswirken. So weist der austenitische Stahl 316L eine zelluläre Struktur auf Subkornniveau auf, welche zu höheren Streckgrenzen jedoch nicht verringerter Duktilität im Vergleich zu konventionell verarbeitetem 316L führt. Dies ermöglicht, neben den traditionellen Einsatzgebieten des Stahls 316L in der petrochemischen und nuklearen Industrie, neue Anwendungen wie medizinische Stents oder Bipolarplatten für Brennstoffzellen mit Protonenaustauschmembran. Die schichtweise Fertigung mit hohen Scangeschwindigkeiten und lokaler Wärmeeinbringung bedingt jedoch Abkühlraten in der Größenordnung von 106 K.s-1. Die hohen Temperaturgradienten im Zusammenspiel mit den Schrumpfbehinderungen jeder Schweißraupe und Lage sorgen für die Entstehung komplexer Eigenspannungsfelder. Diese verringern die Beanspruchbarkeit des Materials und können sogar zu einem vorläufigen Versagen führen. So sind die Ermüdungseigenschaften durch ein rapides Risswachstum bzw. ein vorzeitig entstehender Riss durch Eigenspannungen stark beeinträchtigt. Des Weiteren kommt es vor, dass sich die Proben während des PBF-LB/M oder unmittelbar bei der Trennung der Bauteile von der Bauplatte verziehen. Daher sind die Eigenspannungen eines der Hauptnachteile des PBF-LB/M, die eine breitere Akzeptanz dieses Verfahrens in der Industrie erschweren. Ausgehend vom aktuellen Literaturstand, wurde die Vorgehensweise bei der Bestimmung der Eigenspannungen mittels Beugungsmethoden, der Einfluss der Bauteilgeometrie bzw. Bauteilsteifigkeit sowie der Zwischenlagenzeit auf die Eigenspannungen und zuletzt geeignete Wärmebehandlungsstrategien zur Relaxation der Eigenspannungen in PBF-LB/M/316L als unzureichend erforschte Bereiche identifiziert. Die Bestimmung der Eigenspannung ist eine große Herausforderung. Insbesondere bei filigranen Strukturen, welche vorzugsweise mittels PBF-LB/M hergestellt werden können, eignen sich die Röntgen- und Neutronenbeugung. Hierbei wird die mikroskopische Dehnung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung verwendet. Diese Methoden sind zerstörungsfrei und ermöglichen die räumliche Auflösung der bi-axialen und tri-axialen Eigenspannungen. In der vorliegenden Arbeit wurden in-situ Neutronenbeugungszugversuche durchgeführt, um das mikromechanische Verhalten des PBF-LB/M/316L zu analysieren. Die Eignung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung wurde untersucht. Die (311) Gitterebene erwies sich als die beste Option für die Bestimmung der makroskopischen Eigenspannung in PBF-LB/M/316L. Darüber hinaus wurde gezeigt, dass das Kröner-Modell trotz Textur zur Berechnung der Röntgenbeugungskonstanten verwendet werden kann. Derzeit werden beide Aspekte in der Bestimmung der Eigenspannungen standardmäßig angewandt. Die hier präsentierten Ergebnisse untermauern die Gültigkeit dieses Vorgehens und erhöhen das Vertrauen in den experimentell bestimmten Eigenspannungen, welches sich positiv auf die Beurteilung der Qualität hinsichtlich der Sicherheit eines durch PBF-LB/M gefertigten Bauteils auswirkt. Die Geometrie einer durch PBF-LB/M hergestellten Struktur bestimmt maßgeblich die Bauteilsteifigkeit und beeinflusst die thermischen Gradienten während der Herstellung und letztendlich die Eigenspannungen. Die Auswirkung kleinerer oder größerer Abmessungen (größer 10 mm) auf die Eigenspannungen wird derzeit oft nicht berücksichtigt. Um diesen Aspekt zu untersuchen, wurden repräsentative Probekörper mit unterschiedlichen Dicken und Längen hergestellt. Damit konnte der Einfluss der Geometrie bzw. Bauteilsteifigkeit auf die Eigenspannungen gezielt bewertet werden. Die Eigenspannungen wurden mittels Röntgen- als auch Neutronenbeugung bestimmt. Die Analyse der Eigenspannungen ergab, dass eine Erhöhung der Dicke zu insgesamt höheren Eigenspannungen führt. Zusätzlich wurde gezeigt, dass eine Vergrößerung der Probenabmessung zu kleineren Eigenspannungsgradienten führt. Oberhalb eines Schwellenwerts von wenigen Millimetern ändern sich die Eigenspannungen nicht mehr signifikant. Die sogenannte Zwischenlagenzeit (ILT) ist jedem PBF-LB/M-Bauauftrag inhärent und beeinflusst die thermischen Gradienten während der Herstellung und damit maßgeblich die Eigenspannungen. Ein Wanddickensprung in einer geometrisch komplexen Struktur bzw. einer Variation der Probenanzahl im Bauprozess führt unmittelbar zu einer Änderung der ILT. Um dies nachzubilden, wurden Proben mit unterschiedlichen ILT hergestellt. Die Eigenspannungen wurden mittels Röntgen- und Neutronenbeugung bestimmt. Die Verwendung einer kurzen ILT hat zu höheren Oberflächeneigenspannungen geführt, jedoch zu geringeren Volumeneigenspannungen. Hierbei zeigten die Oberflächeneigenspannungen und die Eigenspannungen im Volumen ein konträres Verhalten. Dies wurde auf die komplexe Wärmeleitung während des Prozesses zurückgeführt, wie die thermografischen Messungen zeigten. Um den Verzug der hergestellten Probekörper oder realen Bauteile bei der Abtrennung der Bauplatte oder in Nachbearbeitungsschritten zu vermeiden, wird in der Regel ein Spannungsarmglühen nach dem PBF-LB/M Prozess durchgeführt. Basierend auf Standards für die Wärmebehandlung von geschweißten austenitischen Stählen, wurden Wärmebehandlungen bei niedrigen (450 °C für vier Stunden) und hohen (800 °C bzw. 900 °C für eine Stunde) Temperaturen durchgeführt. Die Ergebnisse zeigen, dass die Wärmebehandlung bei 450 °C die Eigenspannungen um lediglich 5 % relaxierte. Diese geringe Relaxation ist auf die Stabilität der Zellstrukturen zurückzuführen. Die Hochtemperatur-Wärmebehandlung zeigte, dass 900 °C erforderlich sind, um die Zellstruktur aufzulösen und eine Relaxation von etwa 85 % zu erreichen. Dieses Ergebnis steht in guter Übereinstimmung mit den Standards für das Spannungsarmglühen geschweißter austenitischer Stähle. T3 - BAM Dissertationsreihe - 173 KW - Residual Stress KW - Powder Bed Fusion of Metals with Laser Beams KW - Austenitic Stainless Steel KW - Diffraction KW - Heat Treatment KW - Eigenspannungen KW - Pulverbettbasiertes Laserstrahlschmelzen KW - Austenitischer Rostfreier Stahl KW - Beugung KW - Wärmbehandlung PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579802 SN - 1613-4249 VL - 173 SP - 1 EP - 256 PB - Eigenverlag CY - Berlin AN - OPUS4-57980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Steppan, Enrico T1 - Zur Analyse der Eigenschaftsdegradation und des Bindungsverhaltens von Wasserstoff in höherfesten Feinkornbaustählen N2 - Der Stahlbedarf in Deutschland wird maßgeblich neben dem Automobilsektor vom Maschinenbau und allgemeinen Bauwesen geprägt. In diesen Segmenten werden qualitativ hochwertige Stähle mit höchsten Ansprüchen an Festigkeit, Verformungsfähigkeit, schweißtechnische Verarbeitung und sicherheitsrelevante Aspekte gestellt. Wichtige Vertreter, welche diesen Ansprüchen gerecht werden, sind die heutigen modernen höherfesten FKB. Aus der Entwicklung dieser Stähle kristallisierten sich in den letzten Jahrzehnten verschiedene Legierungskonzepte und Herstellungsrouten heraus. Dem liegt neben essentiellen Eigenschaften, z.B. Streck- und Zugfestigkeit, noch weitere Anforderungen, bspw. Kaltumformbarkeit, Kerbschlagzähigkeit und Verschleißfestigkeit, zugrunde. Zunehmend werden im genormten Bereich mit Streckgrenzen bis 700 MPa neben den vergüteten Stählen (Q) auch thermomechanische Stähle (M) eingesetzt. Ein immerwährender paralleler Begleiter während der Stahlherstellung und -verarbeitung ist Wasserstoff. Wasserstoff wird in den nächsten Jahren als Schlüsselelement für eine nachhaltige Energiewirtschaft angesehen. Aus heutiger Sicht ist Wasserstoff ein Hoffnungsträger für eine klimafreundliche Energiewirtschaft und zukunftsfähige Industrie. Forschung und Industrie arbeiten intensiv an der Erschließung und Weiterentwicklung des enormen Potentials, um eine höhere Nutzbarkeit zu erreichen. Die Gründe liegen zum einen darin, dass Wasserstoff als Brennstoff unproblematisch (Umweltverträglichkeit und Verfügbarkeit) ist und zum anderen ein hervorragender Energieträger ist. Wasserstoff ist durch seine gebundene Form erst nach dem Lösen aus chemischen Verbindungen zugänglich. Dies geschieht für eine Nutzbarmachung in einer zukunftsfähigen Energiewirtschaft gezielt. Demgegenüber stehen Prozesse, wodurch Wasserstoff aus seiner chemischen Verbindung gelöst wird und aufgrund seiner Größe bzw. geringsten Atommasse von Werkstoffen aufgenommen wird. Damit verbunden interagiert der aufgenommene Wasserstoff mit dem Gefüge und kann zu einer negativen Beeinflussung der Eigenschaften des Werkstoffs führen. Wasserstoff kann Degradationsprozesse in Stählen verursachen, die sich insbesondere auf die mechanischen Eigenschaften auswirken. Diese Mechanismen können wasserstoffunterstützte Risse in höherfesten Stählen während der Herstellung oder im industriellen Einsatz verursachen. Elektrochemisch beladene Zugproben zeigen ein unterschiedliches Degradationsverhalten in ihren Eigenschaften. Die vorliegende Arbeit beschreibt die Wechselwirkungen zwischen Wasserstoff und Gitterdefekten in unterschiedlichen mikrolegierten Systemen und wärmebeeinflussten Zonen in den schweißbaren Feinkornbaustählen. Die Ergebnisse zeigen eine klare Abhängigkeit zwischen Mikrolegierung und Herstellungsprozess dieser Stahlsorten, respektive ihrer simulierten wärmebeeinflussten Bereiche. N2 - In addition to the automotive sector, demand for steel in Germany is dominated by mechanical engineering and general construction. These segments demand high-quality steels with the highest requirements in terms of strength, formability, welding processing and safety aspects. Important representatives that meet these requirements are today's more modern high-strength FKB. In the development of these steels, various alloying concepts and production routes have crystallized in recent decades. In addition to essential properties, e.g. yield and tensile strength, this is also based on other requirements, e.g. cold formability, notched impact strength and wear resistance. Increasingly, thermomechanical steels (M) are being used in addition to quenched and tempered steels (Q) in the standardized range with yield strengths up to 700 MPa. An ever-present parallel companion during steel production and processing is hydrogen. Hydrogen is seen as a key element for a sustainable energy economy in the coming years. From today's perspective, hydrogen is a beacon of hope for a climate-friendly energy economy and sustainable industry. Research and industry are working intensively on tapping and further developing the enormous potential in order to achieve greater usability. The reasons are, on the one hand, that hydrogen is unproblematic as a fuel (environmental compatibility and availability) and, on the other hand, that it is an excellent energy carrier. Due to its bonded form, hydrogen is only accessible after dissolution from chemical compounds. This is done in a targeted manner for utilization in a sustainable energy economy. In contrast, there are processes by which hydrogen is released from its chemical compound and absorbed by materials due to its size or lowest atomic mass. In connection with this, the absorbed hydrogen interacts with the microstructure and can lead to a negative influence on the properties of the material. Hydrogen can cause degradation processes in steels that affect mechanical properties in particular. These mechanisms can cause hydrogen-assisted cracking in higher strength steels during fabrication or in industrial use. Electrochemically loaded tensile specimens show different degradation behavior in their properties. The present work describes the interactions between hydrogen and lattice defects in different microalloyed systems and heat affected zones in the weldable fine grain structural steels. The results show a clear dependence between microalloying and manufacturing process of these steels, respectively their simulated heat affected zones. T3 - BAM Dissertationsreihe - 172 KW - Höherfeste Feinkornbaustähle KW - Wasserstoffdegradation KW - Wasserstoffdiffusion KW - Wasserstoffbindungsverhalten KW - Kaltriss und Schweißen KW - High strength fine grained structural steels KW - Hydrogen degradation KW - Hydrogen diffusion KW - Hydrogen trapping KW - Cold cracking and welding PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579412 SN - 1613-4249 VL - 172 SP - 1 EP - 266 PB - Eigenverlag CY - Berlin AN - OPUS4-57941 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Thomas, Maximilian T1 - Verbesserung der Übertragbarkeit von Erstarrungsrissprüfungen nach dem MVT-Verfahren durch Digitalisierung der Probenauswertung N2 - Zur Prüfung der Erstarrungsrissanfälligkeit von Werkstoffen existiert eine Vielzahl von Prüfverfahren, die jedoch oft nur in ihren Grundzügen standardisiert sind. Ein Beispiel ist der an der Bundesanstalt für Materialforschung und -prüfung entwickelte und angewendete Modifizierte Varestraint-/Transvarestraint-Test (MVT), der eine von vielen Umsetzungen des Varestraint-Verfahrensprinzips darstellt. Hierbei werden durch Biegung während des Schweißens gezielt Erstarrungsrisse erzeugt und anschließend lichtmikroskopisch vermessen. Die Ergebnisse von Varestraint-Prüfungen charakterisieren jedoch nicht allein das Werkstoffverhalten, sondern sind in hohem Maße von der Konstruktion der jeweiligen Prüfmaschine sowie den verwendeten Prüfparametern abhängig. Dies erschwert die Vergleichbarkeit von Ergebnissen, welche nicht unter exakt identischen Bedingungen ermittelt wurden, und kann darüber hinaus zu einer ungenauen oder unvollständigen Bewertung des Werkstoffverhaltens führen. Die vorliegende Arbeit widmet sich zunächst der detaillierten Ausgestaltung der geometrischen Zusammenhänge rund um die Ausbreitung von Erstarrungsrissen während der Varestraint-Prüfung. Mit Blick auf Prokhorovs Technological Strength Theory und die sich daraus ergebenden erstarrungsrisskritischen Temperaturen wird anschließend eruiert, wie aus den Anfangs- und Endkoordinaten der entstandenen Risse auf das charakteristische Erstarrungsrissverhalten geschlossen werden kann. Die daraus entwickelte Bewertung der Rissanfälligkeit ist weitestgehend von den Prüfparametern und weiteren verfahrensspezifischen Einflüssen entkoppelt, wodurch eine deutlich bessere Übertragbarkeit der Ergebnisse gewährleistet ist. Zur Erprobung der neu entwickelten Bewertungsansätze wurden zunächst MVT-Prüfungen an mehreren hochlegierten, martensitischen Schweißzusatzwerkstoffen, sowie am Nickelbasiswerkstoff Alloy 602 CA durchgeführt. So konnten einerseits verschiedene Legierungen hinsichtlich ihres Erstarrungsrissverhaltens charakterisiert und Empfehlungen für die schweißtechnische Fertigung generiert werden. Zum anderen dienten die Proben zur vollständigen Konzipierung, Entwicklung und Validierung einer digitalen Auswertemethodik. Die eigens programmierte Software ermöglicht die schnelle und praxisgerechte Auswertung von MVT-Proben, und implementiert dabei zusätzlich die zuvor entwickelten, prozessunabhängigen Bewertungsansätze. Als Ergebnis konnten kritische Dehnraten identifiziert werden,ab deren Überschreitung die betrachteten Werkstoffe unter den verwendeten Prüfbedingungen gesteigerte Erstarrungsrissanfälligkeiten aufweisen. So ergibt sich ein direkter Zusammenhang zwischen MVT-Prüfergebnissen und der Technological Strength Theory von Prokhorov. Die Bewertung des Werkstoffverhaltens anhand der kritischen Dehnraten erwies sich gegenüber den üblicherweise betrachteten Gesamtrisslängen als deutlich zuverlässiger. Zusammenfassend konnte gezeigt werden, dass die digitale Auswertung eine sinnvolle Verbesserung der analogen Standardauswertung darstellt. N2 - A multitude of testing procedures exist for the assessment of the solidification cracking susceptibilities of metal alloys. Many of these tests are only standardised on a very basic level. This also applies to the Modified Varestraint-/Transvarestraint Test (MVT), which was developed at the Federal Institute for Materials Research and Testing (BAM) and is one of many variants of the original Varestraint test. Its functional principle is the bending of flat specimens during welding. Any solidification cracks formed during the procedure are quantified in a later step using optical light microscopy. However, the test results don’t exclusively characterise the analysed material, but also greatly depend on the design of the testing rig, as well as the applied testing parameters. This complicates the comparison of results obtained under different circumstances, and furthermore can lead to an inaccurate or insufficient assessment of the material characteristics. The present work elaborates the geometrical aspects of solidification crack initiation and propagation during Varestraint testing. Applying Prokhorov’s Technological Strength Theory and the ensuing Brittleness Temperature Range, it is then determined how the start and end points of solidification cracks can be used to characterise the materials solidification cracking susceptibility. Ultimately, these insights are developed into a standard of evaluation which aims to eliminate the influence of testing parameters and characteristics, helping to greatly improve the comparability of Varestraint testing results. To test the newly developed standard of evaluation, MVT tests were carried out on several high-alloyed martensitic steels, as well as on the nickel-based Alloy 602 CA. On the one hand, the obtained results provide detailed characterisations of the solidification cracking susceptibilities of different materials as well as guidelines for their use in welding processes. On the other hand, the specimens were used for conception and validation of a novel, digital examination procedure. The software developed for this purpose allows for fast and practice-oriented examination of MVT specimens. At the same time, the new software implements the previously developed standard of evaluation to eliminate the influence of testing parameters. As a result, critical strain rates could be identified, which indicate the transition towards increased solidification cracking susceptibility under the respective circumstances. In this way, a direct connection between MVT test results and Prokhorov’s Technological Strength Theory can be drawn. Compared to the Total Crack Length, which is usually given as a test result, critical strain rates were found to be a more reliable characteristic. In summary, the newly developed procedures were proven to be a meaningful improvement of the current, analogue standard procedure. T3 - BAM Dissertationsreihe - 171 KW - Heißriss KW - Erstarrungsriss KW - Schweißen KW - Varestraint Test KW - Digitalisierung KW - Hot crack KW - Solidification KW - Welding KW - Varestraint test KW - digitalisation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-553800 SN - 1613-4249 VL - 171 SP - 1 EP - 160 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55380 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Nielow, Dustin T1 - Einfluss fertigungsbedingter Imperfektionen auf die Schwingfestigkeit von FKV-Schalenstrukturen in Sandwichbauweise N2 - Rotorblätter von Windenergieanlagen (WEA) weisen häufig nach wenigen Jahren, lange vor dem Erreichen der prognostizierten Lebensdauer von 20 bis 30 Jahren Risse in der Blattschale auf. Die Folge sind aufwendige Reparaturen am installierten und schwer zugänglichen Rotorblatt und der kostenintensive Nutzungsausfall durch den Stillstand der WEA. Als mögliche Initiatoren für die Schäden in der Blattschale der Rotorblätter gelten fertigungsbedingte Imperfektionen. Für die Untersuchung des Einflusses dieser Imperfektionen auf das Ermüdungsverhalten der Rotorblätter wurde an der BAM (Bundesanstalt für Mate-rialforschung und -prüfung) ein Prüfstand für statische und zyklische Versuche von Schalensegmenten im intermediate scale entwickelt und betrieben. Die untersuchten Schalensegmente in Sandwichbauweise sind der Rotorblattschale von WEA im Hinblick auf die Strukturmechanik, die eingesetzten Halbzeuge, den Laminataufbau und dem eingesetzten Fertigungsverfahren ähnlich. Als Imperfektionen wurden verschiedenen Variationen von Lagenstößen in die Hautlagen und Schaumstöße mit Breitenvariation in den Stützkern reproduzierbar eingebracht. Die Überwachung des Schädigungszustandes während der Schwingversuche unter realistischen Lastszenarien erfolgt über eine kombinierte in situ Schädigungsüberwachung mittels passiver Thermografie und Felddehnungsmessung. Mit den durchgeführten Schwingversuchen und der begleitenden Überwachung des Schädigungszustandes ließen sich die Schadensinitiation und die signifikante Herabsetzung der Lebensdauer durch die eingebrachten Imperfektionen zweifelsfrei nachweisen und entsprechende Konstruktionshinweise für die betriebssichere Auslegung von Sandwichstrukturen ableiten. N2 - Wind turbines often exhibit cracks in the blade shells after only a few years in service, significantly before their expected 20 to 30 year design lifespan. This leads to complicated repairs on difficult to reach rotor blades, and can cause a cost-intensive standstill of the turbine. A possible source of these defects in the rotor blade shells are the imperfections which occur during production. In order to investigate the effect of these imperfections on the fatigue behavior of rotor blades, a test rig was developed at the BAM (Bundesanstalt für Materialforschung und -prüfung) upon which intermediate scale static and cyclic-fatigue testing could be performed. The complementary sandwich shell specimens developed and investigated with the test rig are representative of the outer shell of wind turbine rotor blades in terms of materials and manufacturing processes, as well as structural mechanics. The specimens were built with reproducible imperfections, including laminate overlaps in the face sheets and gaps of varying size in the foam core. The damage condition was monitored during cyclic-fatigue testing under realistic load cases using a combination of in-situ passive thermography and strain field measurement. The cyclic testing and parallel non-destructive structural health monitoring of the shell specimens showed the imperfections to significantly influence the damage initiation and decrease the component service life. The results can be used accordingly as recommendations for operationally more reliable design of sandwich structures. T3 - BAM Dissertationsreihe - 170 KW - Erneuerbare Energien KW - Windenergie KW - Verbundwerkstoffe KW - Betriebsfestigkeit KW - Komponentenprüfung KW - Renewable ernergy KW - Wind energy KW - Intermediate scale KW - Composites KW - Fatigue PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546701 SN - 1613-4249 VL - 170 SP - 1 EP - 178 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54670 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kraus, David T1 - Ermüdungsverhalten von Glasfaser-Kunststoff-Verbunden unter thermomechanischer Beanspruchung N2 - Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht. Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert. Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann. Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich. N2 - Due to their superior lightweight properties, fiber reinforced polymer (FRP) materials are well established in various fields, such as sports equipment, aerospace or wind energy structures. These structures are not only subjected to mechanical loads, but also to a broad spectrum of thermal environments. However, the impact of temperature on the fatigue life of thermomechanically loaded FRP structures is barely investigated to-date. In the scope of this work, the influence of temperatures in a range of 213 K to 343 K on a glass fiber reinforced epoxy polymer is experimentally examined. An extensive thermo-mechanical characterization of the static properties of the material is performed. The neat resin and Fiber material are investigated, as well as the composite. In addition, the impact of thermal loads on the damage evolution under quasi-static as well as cyclic fatigue loading is investigated for different multi-angle laminates. Based on the experimental data, a correlation is shown between damage and matrix effort of the unidirectional layer. The matrix effort is calculated according to a micromechanical model considering thermal residual stresses. Particularly under transverse loading, the damage Evolution can be predicted as a function of the dilatational strain energy of the matrix. Using the concept of the matrix effort presented in this work, a prediction of the fatigue life of the investigated material at different ambient temperature conditions can be performed. T3 - BAM Dissertationsreihe - 169 KW - Ermüdung KW - Faser-Kunststoff-Verbund KW - GFK KW - Schädigung KW - Thermomechanik KW - Fatigue KW - Composite KW - Glas fibre reinforced polymer KW - Damage KW - Thermomechanics PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530253 SN - 1613-4249 VL - 169 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schneider, Ronald T1 - Time-variant reliability of deteriorating structural systems conditional on inspection and monitoring data N2 - The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task. The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue. An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis. Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems. The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run. The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model. T3 - BAM Dissertationsreihe - 168 KW - Reliability KW - Structural systems KW - Deterioration KW - Bayesian analysis KW - Inspection KW - Monitoring KW - Zuverlässigkeit KW - Tragstrukturen KW - Schädigungsprozesse KW - Bayes'sche Analyse KW - Inspektion KW - Monitoring PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512977 SN - 1613-4249 VL - 168 SP - 1 EP - 188 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hauswaldt, Sebastian T1 - Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall N2 - Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften. Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt. Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt. Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert. Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert. Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen. Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen. Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT 1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden. N2 - The non-linear and rate-dependent2 material behaviour of steel becomes particularly visible at high temperatures. For finite-element-simulations of steel structures in the event of fire, plastic and rate- dependent material behaviour should therefore be described. With this in mind, this thesis looks at previous material investigations and makes suggestions for three-dimensional material models with the corresponding properties. The phenomenological properties of structural steel are analysed on the basis of a literature study, whereby increased attention is paid to the material behaviour under loads and heating processes, as can be expected in the event of fire. The stress-strain-relation of the EC 3-1-2 used for the design of steel structures is examined. The advantages of this description, but also the missing properties for the development of a continuum-mechanical material formulation, are shown. A non-linear-elastic continuum mechanical material model of the deformation theory of plasticity is adapted in such a way that it describes the stress-strain curves according to EC 3-1-2 in the state of uniaxial stress. Furthermore, a thermoelastic-viscoplastic model is presented which is able to describe creep and relaxation during heating and cooling processes. The structure of this material model is chosen in such a way that the parameters can be easily identified using certain measurement results. The deviatoric part of the model consists of a rate-independent, plastic part and a rate-dependent, vis- coelastic part. The rate-independent, plastic part was formulated as a differential equation based on the endochronic theory of plasticity. The parameters of this material model are identified on the basis of the measurement results of stationary hot tensile tests on structural steel specimens. Both the non-linear-elastic EC 3-1-2 material model and the thermoelastic-viscoplastic material model with the material parameters adapted to mild steel are prepared numerically for use with finite- element-programs and implemented as UMAT-subroutines for ABAQUS in the FORTRAN code. Particular emphasis is placed on the provision of consistent tangent operators to enable efficient numerical calculation when using the material models. Finally, first finite-element-simulations are presented in order to show the possibilities of the deve- loped and implemented material models for simulations of steel constructions in case of fire. Keywords: Fire prevention, steel, fire behaviour, finite element method, material model, Eurocode 3- 1-2, UMAT 2 If the material behaviour is dependent on the process rate, it is referred to as rate-dependent. Processes can be controlled by strain, stress or temperature. The terms time-dependent and time-independent are avoided here, as these are associated with aging in materials science. T3 - BAM Dissertationsreihe - 167 KW - Brandschutz KW - Stahl KW - Brandverhalten KW - Finite-Elemente-Methode KW - Materialmodell KW - Eurocode 3-1-2 KW - UMAT KW - Fire prevention KW - Steel KW - Fire behaviour KW - Finite element method KW - Material model KW - Eurocode 3-1-2 KW - UMAT PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507662 SN - 1613-4249 VL - 167 SP - i EP - 206 PB - Bundesanstalt für Materailforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50766 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wu, Cheng-Chieh T1 - The measurement- and model-based structural analysis for damage detection N2 - Die vorliegende Arbeit soll einen Beitrag zur Überwachung von Ingenieurbauwerken leisten. Die Detektion von Schäden an Bauwerken basiert auf der Auswertung von räumlich und zeitlich verteilten Hybridmessungen. Die erfassten Daten können rein geometrisch oder physikalisch ausgewertet werden. Letzteres ist vorzuziehen, da die Schadensursache mittels geometrisch-physikalischer Gesetze ermittelt werden kann, um rechtzeitig eingreifen und die weitere Nutzung der Bauwerke sicherstellen zu können. Aus diesem Grund werden die kontinuumsmechanischen Feldgleichungen in Verbindung mit der Finite-Elemente-Methode und Hybridmessungen durch die Ausgleichungsrechnung zu einer einzigen Auswertemethode kombiniert. Dabei ergeben sich zwei Aufgabenstellungen. Die erste Aufgabe beschäftigt sich mit der Beziehung zwischen der Finite-Elemente-Methode und der Ausgleichungsrechnung. Die Finite-Elemente-Methode löst bestimmte Problemklassen, die durch ein System elliptischer partieller Differentialgleichungen beschrieben werden. Während die Methode der kleinsten Quadrate eine weitere Klasse von Problemen löst, die als ein überdeterminiertes Gleichungssystem formuliert ist. Die auffallende Ähnlichkeit zwischen den beiden Methoden ist seit vielen Jahrzehnten bekannt. Es bleibt jedoch ungeklärt, warum diese Ähnlichkeit besteht. Der Beitrag soll dies klären, indem die Variationsrechnung im Hinblick auf ihr methodisches Vorgehen untersucht wird. Obwohl das bekannte Gauß-Markov-Modell innerhalb der Methode der kleinsten Quadrate und die Finite-Elemente-Methode inhärent unterschiedliche Problemklassen lösen, wird gezeigt, dass beide Methoden durch die gleichen methodischen Schritte der Variationsrechnung abgeleitet werden können. Aus methodischer Sicht bedeutet dies, dass beide Methoden nicht nur ähnlich, sondern sogar gleich sind. Außerdem wird darauf hingewiesen, wo eine mögliche Querverbindung zu anderen Methoden besteht. Die zweite Aufgabenstellung stellt eine Messungs- und Modellbasierte Strukturanalyse (MeMoS) durch die Integration der Finite-Elemente-Methode in die Ausgleichungsrechnung vor. In numerischen Untersuchungen wird gezeigt, wie diese integrierte Analyse zur Parameteridentifikation sowohl einfacher als auch beliebig geformter Strukturbauteile eingesetzt werden kann. Darauf aufbauend wird untersucht, mit welchen Beobachtungstypen, mit welcher Genauigkeit und an welcher Stelle der Struktur diese Messungen durchgeführt werden müssen, um die Materialparameter möglichst genau zu bestimmen. Dies dient der Ermittlung eines optimalen und wirtschaftlichen Messaufbaus. Mit dieser integrierten Analyse kann auch ein Ersatzmodell einer geometrisch komplexen Struktur ermittelt werden. Die Frage der Erkennung und Lokalisierung von Schäden innerhalb einer Struktur wird mit Hilfe dieser Strukturanalyse behandelt. Die Messungs- und Modellbasierte Strukturanalyse wird mit zwei verschiedenen Testaufbauten, einer Aluminium-Modellbrücke und einem Biegebalken, validiert. N2 - The present work is intended to make a contribution to the monitoring of civil engineering structures. The detection of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements. The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and ensure the further use of the structures. For this reason, the continuum mechanical field equations in conjunction with the finite element method and hybrid measurements are combined into a single evaluation method by the adjustment calculation. This results in two challenges. The first task deals with the relationship between the finite element method and the method of least squares. The finite element method solves certain problem classes, which are described by a system of elliptical partial differential equations. Whereas the method of least squares solves another class of problems, which is formulated as an overdetermined system of equations. The striking similarity between both methods is known since many decades. However, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the variational calculus, especially with regard to its methodological procedure. Although the well-known Gauss-Markov model within the method of least squares and the finite element method solve inherently different problem classes, it is shown that both methods can be derived by following the same methodological steps of the variational calculus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In addition, it is pointed out where a possible cross-connection to other methods exists. The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the finite element method into the adjustment calculation. It is shown in numerical examinations how this integrated analysis can be used for parameter identification of simple as well as arbitrarily shaped structural components. Based on this, it is examined with which observation types, with which precision and at which location of the structure these measurements must be carried out in order to determine the material parameters as precisely as possible. This serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural Analysis is validated using two different test setups, an aluminum model bridge and a bending beam. T3 - BAM Dissertationsreihe - 166 KW - Ausgleichungsrechnung KW - Finite-Elemente-Methode KW - Integrierte Analyse KW - Kontinuumsmechanik KW - Schadenserkennung KW - Variationsrechnung KW - Adjustment calculation KW - Continuum mechanics KW - Damage detection KW - Finite element method KW - Integrated analysis KW - Variational calculus PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-501977 SN - 1613-4249 VL - 166 SP - 1 EP - 184 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schumacher, David T1 - Zerstörungsfreie Prüfung mit photonenzählenden und spektralauflösenden Röntgenmatrixdetektoren am Beispiel von Werkstoffverbunden N2 - Diese Arbeit beschäftigt sich mit den Eigenschaften der photonenzählenden und spektralauflösenden Detektortechnik und möglichen Anwendungsgebieten in der zerstörungsfreien Prüfung. Dabei wurden konventionelle und photonenzählende Detektortechniken hinsichtlich der Bildqualität und Anwendbarkeit bei unterschiedlichen Prüfaufgaben verglichen und untersucht, inwiefern sich die Energieschwellwertsetzung auf die erreichbare Bildqualität und eine Materialdiskriminierbarkeit bei verschiedenen radiographischen Verfahren auswirkt. Anhand von Anwendungsbeispielen wurden diese Eigenschaften und deren Auswirkung auf das Messergebnis analysiert. Neben der Radiographie wurden auch dreidimensionale Verfahren wie CT und Laminographie berücksichtigt. Als eine der wichtigsten Eigenschaften der photonenzählenden Detektortechnik wurden zunächst die Energieauflösung des photonenzählenden Detektors und die Homogenität der Energieantwort über größere Detektorbereiche bestimmt. Dabei stellte sich heraus, dass die Energieauflösung eines abgegrenzten Detektorbereichs ca. 32 % bei 60 keV beträgt und die Streuung in der Energieantwort der einzelnen Detektorbereiche ca. 12 % ausmacht, woraus sich eine Gesamtunsicherheit in der spektralen Detektorantwort von ca. 44 % ergibt. Die geringe Energieauflösung und das stark heterogene Verhalten der Detektorbereiche ergeben sich vor allem aus der Detektorelektronik, welche nur eine globale Energieschwellwertsetzung zulässt. Trotz dieser Einschränkungen konnte demonstriert werden, dass auch konventionelle radiographische Verfahren, wie Radiographie oder CT, vom Einsatz der photonenzählenden Technik profitieren. So ist es mit dieser Technik möglich, bei sehr geringen Dosisleistungen (z.B. aufgrund der Durchstrahlung großer Wandstärken von dichten Materialien) noch sehr gute Bildqualitäten zu erreichen. Die hohe Dynamik und Kontrastempfindlichkeit dieser Technik begünstigen die Inspektion von Leichtbauwerkstoffen wie Faserverbunde, was anhand von Vergleichen mit herkömmlicher Detektortechnik und anderen ZfP-Verfahren gezeigt werden konnte. Daneben konnte durch den Einsatz der Energieschwellwertsetzung der Einfluss von nicht bildzeichnender Streustrahlung im Röntgenbild um bis zu 20 % reduziert werden. Die Auswirkungen von Aufhärtungseffekten in der CT konnten sogar um bis zu Faktor 1 000 (in der mittleren quadratischen Abweichung), im Vergleich zu herkömmlicher Detektortechnik, reduziert werden. Der Einsatz von photonenzählender Detektortechnik mit Röntgenblitzröhren ist hingegen nicht sinnvoll, da aufgrund der hohen Photonendichte pro Puls und einer endlichen Totzeit des Detektors in der Größenordnung der Pulsbreite eines Blitzes nur ein geringes Signal detektiert werden kann. Im Hinblick auf eine Materialdiskriminierbarkeit konnte demonstriert werden, dass im Fall einer Radiographie anhand der Energieschwellwertsetzung im Detektor eine materialstärkenunabhängige Diskriminierung zwischen zwei Materialien (hier: Al und Fe) erzielt werden kann. Unter Einsatz mehrerer Energiefenster und eines Verfahrens der explorativen und multivariaten Datenanalyse konnte eine materialaufgelöste CT eines Multi-Material-Phantoms erreicht werden, wobei die Schwächungskoeffizienten der enthaltenen Materialien im relevanten Energieberiech teilweise sehr dicht beieinander lagen. Neben Radiographie und CT wurde auch die Möglichkeit einer materialaufgelösten Laminographie am Beispiel eines glasfaserverstärkten Rotorblatts untersucht. Anhand der Energieschwellwertsetzung war nicht nur eine eindeutige Trennung der Glasfasern von der Epoxidharzmatrix möglich, sondern auch eine signifikante Reduzierung der durch die Laminographie entstandenen Artefakte. Der damit verbundene Gewinn an Information führt zu einer verbesserten Aussagefähigkeit des Untersuchungsergebnisses, was letztendlich eine gesteigerte Betriebssicherheit zur Folge hat. N2 - This thesis investigates the properties of photon counting and energy discriminating digital detector arrays and possible applications in the field of non-destructive testing. Conventional integrating detector technology was compared with photon counting technology in terms of image quality and applicability in different inspection tasks. The impact of internal energy thresholding on material discriminability and achievable image quality was investigated for different radiological methods. The properties of photon counting detectors and their impact on the measurement result were analyzed for different applications including three-dimensional methods such as CT and laminography in addition to radiographic testing. Energy resolution is one of the most important properties of photon counting technology. Therefore, energy resolution was initially determined in addition to the homogeneity of the energy Response across the detector. It was found that the energy resolution amounts to approx. 32 % for a 60 keV monoenergetic spectrum (241Am). In combination with the variance in the response of single detector tiles of approx. 12 % the total uncertainty in the detector energy response appears to approx. 44 %. This low energy resolution and strongly heterogenous detector response result mainly from the detector electronics which only allow setting global energy thresholds. Despite these limitations it was demonstrated that even conventional single energy techniques, such as radiography or CT, benefit from photon counting technology. Thus, this technology allows to gain high quality images even at very low dose rates which might occur e.g. at high wall thickness Penetration of dense materials. The high dynamic range and high contrast sensitivity facilitate the inspection of lightweight materials such as fiber composites which was shown by comparison with integrating technology and other NDT methods. Furthermore, the use of energy thresholding enables to reduce the influence of non-imaging scattered radiation within the X-ray image by about 20 %. The impact of beam hardening artefacts in CT was reduced even up to a factor of 1 000, compared to conventional integrating detector technology. In contrast, the use of photon counting technology with x-ray flash tubes is not useful, since the high photon density within a single flash and a finite dead time of the detector only yield a very low signal. In terms of material discriminability, it was shown that due to energy thresholding a thickness Independent material separation between two materials (here: Al and Fe) can be achieved in the case of a radiography. By using more than two energy windows in combination with multivariate methods of data analysis, a material resolved CT of a multi-material phantom was performed in which six materials were separated distinctly despite very close attenuation coefficients in the relevant energy range. In addition to radiography and CT, the possibility of a material resolved laminography was investigated by means of a glass fiber reinforced wind turbine blade. In addition to a distinct separation between glass fibers and resin matrix, a significant reduction of cross artefacts that inherently arise from the laminography could be achieved. This gain in information yields a higher significance of the measurement and hence an increased reliability of the component or the whole system. T3 - BAM Dissertationsreihe - 165 KW - Zerstörungsfreie Prüfung KW - Photonenzählende Detektoren KW - Radiographie KW - Laminographie KW - Computer-Tomographie KW - Dual-Energy KW - Nondestructive testing KW - Photon counting detectors KW - Radiography KW - Laminography KW - Computed tomography KW - Dual energy PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-500327 SN - 1613-4249 VL - 165 SP - 1 EP - 172 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kaudelka, Sven T1 - Untersuchungen zur Brandentstehung und Brandausbreitung in Wohnungen N2 - Zur Bedarfsplanung von Feuerwehren in Städten in der Bundesrepublik Deutschland wurden im Jahr 1998 die Qualitätskriterien Hilfsfrist, Funktionsstärke und Erreichungsgrad für ein standardisiertes Schadensereignis erarbeitet. Das standardisierte Schadensereignis basiert auf Ergebnissen der O.R.B.I.T.-Studie aus dem Jahr 1978. Der dort dargestellte Rauchgas-temperaturverlauf für einen standardisierten Wohnungsbrand stellt Ergebnisse von Brandversuchen in einer Wohnung aus dem Jahr 1939 dar. Die zur Untersuchung herangezogenen Einrichtungsgegenstände bestanden dabei überwiegend aus cellulosehaltigen Materialien wie Holz und Papier. Die zunehmende Verwendung von Werkstoffen auf der Basis von Holz und Polymeren führt jedoch zu einer veränderten stofflichen Zusammensetzung von Einrichtungsgegenständen in Wohnungen. Im Rahmen der vorliegenden Dissertation wurde der Einfluss dieser veränderten stofflichen Zusammensetzung von gegenwärtigen Einrichtungsgegenständen auf den Verlauf von Raumbränden sowie auf die damit verbundene Stoff- und Energiefreisetzung während der Brandentstehungs- und Brandausbreitungsphase untersucht. Im Fokus der Untersuchung stand der Raum der Brandentstehung sowie ein angrenzender Raum. Die Ergebnisse zeigen, dass gegenwärtige Einrichtungsgegenstände sowohl im Raum der Brandentstehung als auch in dem angrenzenden Raum zu höheren Rauchgastemperaturen und -konzentrationen führen. Grund hierfür sind neben den höheren Wärmefreisetzungsraten auch die höheren Stoffausbeuten der in den gegenwärtige Einrichtungsgegenständen verwendeten Materialzusammensetzungen. Vor diesem Hintergrund zeigt sich, dass sich die auf Basis der O.R.B.I.T.-Studie definierten Standards nicht mehr als Grundlage zur Bedarfsplanung von Feuerwehren eignen. Diese können mit Hilfe der vorliegenden Ergebnisse einer Prüfung unterzogen werden, um den veränderten Brandverläufen im Rahmen einer zukünftigen Bedarfsplanung gerecht zu werden. N2 - In 1998 the quality criterias auxiliary period, functional force and degree of achievement for a standardized damage event were developed for the demand planning of fire brigades in cities in the Federal Republic of Germany. The definition of the standardized damage event is based on the results of the O.R.B.I.T.-study from 1978. The temperature-time curve for a standardized apartment fire presented in the above-mentioned definition study represents results of fire tests in an apartment from 1939. The furniture used for the investigation consisted mainly of cellulosic materials like wood and paper. However the increasing use of materials based on wood and polymers leads to an altered material composition of furniture in apartments. In the present dissertation the influence of this altered material composition of current furniture on the course of a fire in an apartment as well as on the associated mass and energy release during the ignition of a fire and fire propagation was investigated. The investigation focused on the room where the fire starts and on an adjacent room. As a result, it has been found that current furniture, both in the room where the fire starts and in an adjacent room, results in higher gas temperatures and higher gas concentrations. This is due to the higher heat release rates as well as the higher yields of the material compositions used in current furniture. Against this background, it becomes clear that the standards that were defined in the O.R.B.I.T.-study can no longer serve as the basis for demand planning of fire brigades. These should be reviewed with the help of the present results in order to adapt future demand planning to changing fire scenarios. T3 - BAM Dissertationsreihe - 164 KW - Stoffausbeute KW - Brandschutz KW - Brandentstehung KW - Brandausbreitung KW - Wärmefreisetzungsrate KW - Effektive Verbrennungswärme PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479325 SN - 1613-4249 VL - 164 SP - I EP - 234 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-47932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dixneit, Jonny T1 - Wärmeführung und Beanspruchung von hochfesten Verbindungen mit LTT-Schweißzusatzwerkstoff N2 - Bestrebungen zum Leichtbau sowie höhere Anforderungen an das ertragbare Lastkollektiv führen in der Auslegung von Schweißkonstruktionen zunehmend zum Einsatz hochfester Feinkornbaustähle. Ohne Anwendung kostenintensiver Nachbehandlungsverfahren ist die Lebensdauer hochfester Schweißverbindungen unter wechselnder zyklischer Beanspruchung jedoch limitiert. Neben der geometrischen Kerbe sind schweißbedingte Gefügeveränderungen und die Höhe und die Verteilung von Schweißeigenspannungen für die Eigenschaften von Schweißverbindungen von erheblicher Bedeutung. Sogenannte LTT-Zusatzwerkstoffe bieten eine äußerst lukrative Möglichkeit, die resultierenden Schweißeigenspannungen bereits während des Schweißens zu adaptieren. Durch die gezielte Ausnutzung der mit der martensitischen Phasenumwandlung verbundenen Volumenausdehnung können bei hinreichend niedriger Umwandlungstemperatur Druck oder niedrige Zugeigenspannungen induziert werden. Bisherige Untersuchungen konzentrieren sich vorrangig auf die Entwicklung von LTT-Legierungskonzepten sowie dem Nachweis von Druckeigenspannungen, bieten jedoch nur wenige Erkenntnisse zum Einfluss der Wärmeführung, vor allem der Zwischenlagentemperatur, oder der Schrumpfbehinderung auf die Beanspruchung von LTT- Mehrlagenschweißverbindungen unter realitätsnahen Fertigungsbedingungen. Die Interaktion zwischen der martensitischen Phasenumwandlung und den thermischen bzw. den mechanischen Einflussfaktoren auf die Schweißeigenspannungen wurde einleitend durch elementare Schweißversuche analysiert. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf den Eigenspannungszustand in LTT-Schweißverbindungen erstmalig richtungsabhängig verstanden. Unter der Vorlage eines hohen Einspanngrades wurden Druckspannungen bevorzugt aufgebaut, wenn der Temperaturgradient während der Phasenumwandlung nur schwach ausgeprägt war. Dabei durchgeführte In-situ-Beugungsexperimente haben gezeigt, dass der Einspanngrad nur in Zusammenhang mit der richtungsabhängig vorliegenden behinderten thermischen Schrumpfung zu betrachten ist, um die Beanspruchung einer Schweißverbindung unter konstruktiver Schrumpfbehinderung bauteilübergreifend bewerten zu können. Anschließend wurden Mehrlagenschweißversuche unter freier Schrumpfung sowie in einer speziellen Prüfanlage unter konstruktiver Schrumpfbehinderung und realistischen Fertigungsbedingungen durchgeführt. Es gelang der Nachweis, dass durch die Verwendung von LTT-Legierungen das Reaktionsmoment Mx gegenüber einer konventionellen Schweißverbindung unabhängig von der Zwischenlagentemperatur reduziert wird. Dennoch nimmt die Reaktionsspannung σ_total mit zunehmender Zwischenlagentemperatur zu. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf die lokale und die globale Beanspruchung der untersuchten Schweißverbindungen interpretiert. Unabhängig von der genutzten Zwischenlagentemperatur lag für die LTT-Stumpfstoßverbindungen vor allem in Longitudinalrichtung nur eine geringe Schrumpfbehinderung während der martensitischen Phasenumwandlung vor. Dadurch wurden während der Abkühlung vor allem im Volumen Druckspannungen in Longitudinalrichtung aufgebaut. Der Eigenspannungszustand von LTT-Verbindungen wird darüber hinaus durch inhomogene Phasenumwandlung der Schweißnaht infolge von Konzentrationsunterschieden verschiedener Elemente im Schweißgut bestimmt. N2 - Efforts towards lightweight constructions and higher demands on the bearable load spectrum are increasingly leading to the use of high-strength-low-alloyed steels in the design of welded structures. Without the use of cost-intensive post weld treatments the service life of high strength welded joints is limited under alternating cyclic loading. In addition to the geometric notch, structural changes caused by welding and the level and the distribution of welding residual stresses are of considerable importance for the properties of welded joints. So-called Low Transformation Temperature filler materials (LTT) offer an extremely gainful possibility to adapt the resulting welding residual stresses already during welding. Through the targeted utilization of the volume expansion associated with the martensitic phase transformation, compression residual stresses or low tensile residual stresses can be induced at sufficiently low transformation temperatures. Previous investigations have concentrated primarily on the development of LTT alloy concepts and the verification of compressive welding residual stresses, but offer only limited insights into the influence of the heat conduction. Especially the influence of the interpass temperature or the shrinkage restraint on the stress of LTT multi-run welded joints under realistic production conditions have not been investigated yet. The interaction between the martensitic phase transformation and the thermal and mechanical factors influencing the welding residual stresses has been first analyzed by elementary welding experiments. By using the temperature gradient the influence of the shrinkage restraint of the weld on the residual stress state in LTT welded joints has been understood direction-dependent for the first time. Under the assumption of a high intensity of restraint, compressive residual stresses were preferentially built up only when the temperature gradient during phase transformation was weakly pronounced. In situ diffraction experiments have shown that the intensity of restraint can only be considered in connection with the direction-dependent thermal shrinkage of a welded joint in order to be able to evaluate the stress of a welded joint across all components. Subsequently, multi-run welding experiments were carried out under free shrinkage and high intensity of restraint using a special test facility to simulate realistic production conditions. It has been demonstrated that the use of LTT alloys reduces the reaction moment Mx compared to that of a conventional welded joint irrespective of the interpass temperature. The reaction stress σ_total however was increased with increasing interpass temperature. Using the temperature gradient, the influence of the shrinkage restraint of the weld on the local and global stress of the examined welded joints was interpreted. Irrespective of the interpass temperature, the LTT butt joints were only subject to minor shrinkage restraint in the longitudinal direction during the martensitic phase transformation of the weld. As a result, longitudinal compressive stresses were generated in the volume during cooling. In addition, the residual stress condition of LTT joints is determined by inhomogeneous phase transformation of the weld due to concentration differences of different elements in the weld metal. T3 - BAM Dissertationsreihe - 163 KW - LTT-Zusatzwerkstoff KW - MAG KW - HSLA KW - Feinkornbaustahl KW - Wärmeführung KW - Einspanngrad KW - Beanspruchungsanalyse KW - Eigenspannung KW - AXRD KW - Synchrotronbeugung KW - Neutronenbeugung PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471541 SN - 1613-4249 VL - 163 SP - 1 EP - 286 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-47154 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schlick-Hasper, Eva T1 - Analyse, Charakterisierung und Modellierung der Gasleckageraten repräsentativer Bauarten von Gefahrgutverpackungen N2 - Derzeit existieren für Gefahrgutverpackungen in den internationalen Gefahrgutvorschriften keine Festlegungen für quantitative Grenzleckageraten, die sich an Sicherheitsbetrachtungen während der Beförderung orientieren. Für die Dichtheitsprüfung im Rahmen der Bauartzulassung von Gefahrgutverpackungen für flüssige Füllgüter ist das Standardprüfverfahren das Eintauchverfahren in Wasser („Bubble Test“). Hierbei handelt es sich um ein lokalisierendes Prüfverfahren. Seine Anwendung lässt keine quantitative Aussage darüber zu, ob unter Beförderungsbedingungen aufgrund von strömungsbedingter Stofffreisetzung durch Leckstellen der Gefahrgutverpackungen die Gefahr der Bildung einer explosionsfähigen Atmosphäre besteht. Zentrales Ziel der vorliegenden Arbeit ist daher, zunächst quantitative Dichtheitsanforderungen an Gefahrgutverpackungen im Hinblick auf die Entstehung explosionsfähiger Dampf-Luft-Gemische während des Transports zu entwickeln. Im Anschluss werden strömungsbedingte Leckageraten der Verschlüsse verschiedener Bauarten von Gefahrgutverpackungen gemessen. Der Vergleich der Messwerte mit den berechneten Grenzwerten ermöglicht die Einschätzung hinsichtlich der Bildung einer explosionsfähigen Atmosphäre. Dieser quantitative Ansatz zur Beurteilung der Dichtheit ist für Gefahrgutverpackungen derzeit noch nicht etabliert. Die Grenzleckageraten werden für das Szenario des interkontinentalen Transports von Gefahrgutverpackungen in einem 20-Fuß-Frachtcontainer im Hinblick auf die untere Explosionsgrenze abgeleitet. Dies geschieht unter Annahme einer Worst-Case-Betrachtung für Beförderungsdauer, Beladung und Luftwechselrate. Als mittlere Beförderungstemperatur wird 30 °C angesetzt. Eine vollständige Durchmischung im freien Luftraum des Containers wird angenommen. Es werden drei repräsentative Baugrößen von Gefahrgutverpackungen gewählt, mit einem Volumen von ca. 6 L, ca. 60 L und ca. 220 L. Als Füllgüter werden die 23 meistbeförderten flüssigen Gefahrgüter betrachtet. Die treibende Kraft für die Strömung durch Leckstellen ist der sich in der Verpackung ausbildende Überdruck. Die Berechnung des Überdrucks erfolgt durch analytische Modellgleichungen in Abhängigkeit der spezifischen Stoffdaten, Füllgrad, Befülltemperatur, Transporttemperatur und Nachgiebigkeit der Verpackungsbauart. Die quantitative Leckageratenmessung der Gefahrgutverpackungen wird mit dem Überdruckverfahren mit Ansammlung (Akkumulationsverfahren) unter Verwendung von Helium als Prüfgas vorgenommen. Zusätzlich erfolgt die Detektion weiterer potentieller Leckstellen außerhalb des Verschlussbereiches mit dem Schnüffelverfahren. Bei allen untersuchten Bauarten, mit Ausnahme des 6 L-Feinstblechkanisters, ist der Verschluss die einzige systematische Leckstelle der Verpackung. Die Messung der Helium-Leckageraten und der anschließende Vergleich mit den berechneten Helium-Grenzleckageraten zeigt, dass folgende Bauarten hinsichtlich des Erreichens der unteren Explosionsgrenze (UEG) durch eine Leckageströmung als kritisch einzuschätzen sind: Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn bei diesen bestimmte Schädigungsmuster im Verschlussbereich vorliegen; Feinstblechkanister, da bei ihnen nicht nur der Verschlussbereich eine Leckstelle darstellt; Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn diese auch für Füllgüter der Verpackungsgruppe I zugelassen sind. Als Konsequenz sollten bei diesen kritischen Bauarten entweder Modifikationen in Bezug auf die Verpackung selbst oder auf die Transportbedingungen im Frachtcontainer vorgenommen werden. Bei Kunststoffverpackungen ist auch die Füllgutpermeation als Freisetzungsmechanismus relevant. Es wird der prinzipielle Rechenweg zur Berücksichtigung dieses Quellterms exemplarisch gezeigt. Diese Arbeit leistet einen grundlegenden Beitrag für die Etablierung einer systematischen quantitativen Dichtheitsbetrachtung von Gefahrgutverpackungen mit dem Ziel der Verbesserung der Sicherheit beim interkontinentalen Gefahrguttransport im Frachtcontainer. T3 - BAM Dissertationsreihe - 161 KW - Gefahrgutverpackungen KW - Dichtheit KW - Dichtheitsprüfung KW - Leckagerate KW - Überdruck KW - Dangerous goods packagings KW - Leakproofness KW - Leak testing KW - Leakage rate KW - Gauge pressure PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-468410 SN - 1613-4249 VL - 161 SP - 1 EP - 244 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46841 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Alexander T1 - Schädigungscharakterisierung an Faser-Kunststoff-Verbunden im Schwingversuch mittels Röntgenrefraktionstopographie unter Berücksichtigung der Matrixeigenschaften N2 - In der vorliegenden Arbeit wurden verschiedene Epoxidharzsysteme charakterisiert. Zwei Systeme mit großen bruchmechanischen Unterschieden wurden zur Fertigung äquivalenter GFK- und CFK-Laminate mit Faserausrichtungen in 0/90° und ±45° ausgewählt. In quasi-statischen Zugversuchen und Einstufenschwingversuchen mit einem Beanspruchungsverhältnis von R= 0,1 wurden diese Laminate hinsichtlich ihres Schädigungsbeginns und ihrer Schädigungsentwicklung untersucht. Die Detektion der Schädigungen sowie die Dokumentation der Schädigungsentwicklung wurde anhand der Lichtabsorptionsanalyse an GFK-Laminaten und anhand der Röntgenrefraktionsanalyse an CFK-Laminaten umgesetzt. Auf diese Weise konnten Einflüsse der bruchmechanischen Eigenschaften der Matrix auf die Schädigungsentwicklung im Verbund aufgezeigt werden. Zudem wurden für die untersuchten Laminate die Schädigungsgrenzen bei schwingender Beanspruchung ermittelt. Anhand durchgeführter Schwingversuche an CFK-Laminaten im Very High Cycle Fatigue-(VHCF)-Lastwechselbereich bis 108 konnten Rückschlüsse vom Schädigungsverhalten im High Cycle Fatigue-(HCF)-Lastwechselbereich bis 106 auf die Dauerfestigkeit im VHCF-Bereich gezogen werden und damit VHCF-Dauerfestigkeitsgrenzen bestimmt werden. Mit dem Ziel die Ermüdung der Laminate auf die Beanspruchung der Matrix zurückzuführen, wurden die Erweiterte Inverse Laminattheorie, mikromechanikbasierte Mischungsregeln sowie eine Vergleichsspannungshypothese auf die untersuchten Laminate angewendet. Die Schädigungsgrenzen konnten damit in Form der Matrixbeanspruchung wiedergegeben werden. Die Abbildung der Ermüdung verschiedener Laminate anhand einer matrixspezifischen normierten Masterschädigungslinie ist für die behandelten CFK- und GFK-Laminate gelungen. T3 - BAM Dissertationsreihe - 162 KW - CFK KW - GFK KW - Ermüdung KW - Epoxidharz KW - Masterschädigungslinie KW - Röntgenrefraktion KW - ZfP PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-467833 SN - 1613-4249 VL - 162 SP - 1 EP - 204 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Luong, Thi Mai Hoa T1 - Identification of the state of stress in iron and steel truss structures by vibration-based experimental investigations N2 - Safety evaluation of truss structures depends upon the determination of the axial forces and corresponding stresses in axially loaded members. Due to presence of damages, change in intended use, increase in service loads or accidental actions, structural assessment of existing truss structures is necessary. This applies particularly to iron and steel trusses that are still in use, including historic and heritage monuments. Precise identification of the stresses plays a crucial role for the preservation of historic trusses. The assessment measures require non–destructiveness, minimum intervention and practical applicability. The axial forces in truss structures can be estimated by static calculations using the method of joints, method of sections or finite element method, if accurate information about parameters such as external loads, geometrical characteristics, mechanical properties, boundary conditions and joint connections are known. However, precise information about these parameters is difficult to be obtained in practice. Especially in the cases of historic constructions, reasonable assumptions about the uncertain parameters may not be acquired. Motivated by the preservation of existing truss−type constructions composed of axially loaded slender members, the present work aims to develop a non–destructive methodology to identify the axial forces or corresponding stress states in iron and steel truss structures. The approach is based on vibration measurements and the finite element method combined with optimization techniques. After a state of the art review, numerical and experimental studies were carried out on three partial systems of truss–type structures. The investigated systems included single bars, a two–bar truss−like system and a five–bar truss. They were developed step–by–step as built–up truss−type constructions that are constituted of individual members connecting at joints. The examined aspects included the effects of structural loading on the dynamic performance of truss structures, modelling of joint connections, mode pairing criteria, selection of updating parameters and definition of an objective function, as well as the use of different optimization techniques. Concerning the axial force effects on the structural dynamic responses, the effects of the stress stiffening become more complicated for multiple–member truss systems with increasing complexity. The coexistence of both compressive and tensile forces in trusses has counteracting effects on the modal parameters. These effects cause variation of natural frequencies and interchange of modes when the loads or corresponding member forces are changed. To examine the axial force effects on the structures at different stress states, in the numerical study and laboratory experiments, loads were applied progressively to the investigated truss−like systems. Regarding the modelling of joints for truss–type structures, the joint flexibility affects the structural dynamic responses. Therefore, the numerical models of truss−type structures include joint models with variable rotational springs to represent semi–rigid connections. Considering the mode pairing criterion, the mode pairing is performed by adapting an enhanced modal assurance criterion with the calculation of the modal strain energy. The criterion allows the selection of desired clusters of degrees of freedom related to specific modes. With respect to the model updating strategies, the selection of updating parameters and the choice of an appropriate objective function are identified to be significantly important. In addition, three different optimization techniques were applied to compare their suitability for the inverse axial force identification and estimation of joint flexibility of truss structures. The results of the numerical study and laboratory tests show that nature–inspired optimization methods are considered as promising techniques. A methodology consisted of a two–stage model updating procedure using optimization techniques was proposed for the determination of multiple member axial forces and estimation of the joint flexibility of truss–type structures. In the first stage optimization, the validation criterion is based on the experimentally identified global natural frequencies and mode shapes of the truss. Additionally, the axial forces in selected individual members of the truss are used. They are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the members using an analytically−based algorithm. Based on the results of the identified axial forces in the first stage, a second optimization procedure for the joint stiffnesses is performed. In this stage, the modal parameters of the global natural frequencies and mode shapes are used as validation criterion. From the results of the laboratory experiments, the identified axial forces by the proposed methodology agree well with the experimentally measured axial forces of the investigated systems at different stress states. Moreover, based on the numerical verification, the identified joint stiffnesses indicate reasonably the joint flexibility in relation to the pinned or rigid conditions. To assess the relevance of the proposed methodology on existing structures in real−life conditions, an in–situ experiment was carried out on a historic Wiegmann–Polonceau truss in the city of Potsdam. The in–situ experiment shows that uncertainties relating the mechanical and geometrical properties of historic trusses as well as the experimental sensor setup can influence the accuracy of the axial force identification. In the present work, recommendations are given for the development of a guideline of measuring concepts and assessment strategies applied to existing truss structures. The intention is to integrate the proposed methodology as part of the Structural Health Monitoring for historic truss–type constructions. T3 - BAM Dissertationsreihe - 159 KW - State of stress KW - Beanspruchungszustand KW - fachwerkartige Stahltragwerken KW - Schwingungsmessungen KW - Finite-Elemente-Modellkalibrierung KW - Optimierungsmethoden KW - Truss structures KW - Vibration measurements KW - Finite element model updating KW - Optimization techniques PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-449615 SN - 1613-4249 VL - 159 SP - 1 EP - 195 PB - BAM Eigenverlag CY - Berlin AN - OPUS4-44961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hesse, Almut T1 - Entwicklung immunchemischer Methoden zur Spurenanalytik der Sprengstoffe Nitropenta und Trinitrotoluol N2 - Pentaerythrityltetranitrat (PETN), ein in jüngster Vergangenheit häufig von Terroristen verwendeter Sprengstoff, ist äußerst schwer zu detektieren. Ein verbesserter Antikörper gegen PETN wurde durch Anwendung des Konzepts des bioisosteren Ersatzes entwickelt,indem ein Nitroester durch einen Carbonsäurediester ersetzt wurde. Biostere Moleküle haben eine ähnliche Struktur wie die Referenzsubstanz und zeigen eine vergleichbare biologische Wirkung. Dieser Ansatz führte zu polyklonalen Antikörpern mit extrem guter Selektivität und Sensitivität. Die Nachweisgrenze des Enzyme-Linked Immunosorbent Assays (ELISAs) beträgt 0,15 μg/L. Der Messbereich des Immunassays liegt zwischen 1 und 1000 μg/L. Die Antikörper sind sowohl hinreichend pH-stabil als auch robust gegen Lösungsmittelzusätze. Das Antiserum könnte auch für Schnelltests, Biosensoren, Mikro-Arrays und andere analytische Methoden verwendet werden. Für die Umweltanalytik von Trinitrotoluol (TNT) wurde eine Hochdruckflüssigkeitschromatographie (HPLC)-kompatible Affinitätssäule hergestellt. Druckbeständiges, poröses Glas hat sich als ein hervorragendes Trägermaterial herauskristallisiert. Um selektive anti-TNT-Antikörper für die Herstellung der Affinitätssäule aus den beiden verwendeten TNT-Seren zu isolieren, wurde eine Trennung an einer Dinitrophenyl-Affinitätssäule durchgeführt. Zur Optimierung der Immobilisierungsmethode wurden orangefarbene Dabsyl -Proteine synthetisiert und auf der Oberfläche gebunden. Die Färbung wurde als Indikator für die Immobilisierungsdichte verwendet. Wegen der hohen Affinitätskonstanten der polyklonalen anti-TNT-Antikörper der beiden Seren (5,1 bzw. 2,3∙109 L/mol) lässt sich TNT durch eine typische saure Elution der TNT-Affinitätssäule nur schwer eluieren. Aus diesem Grund wurde eine neuartige Elutionsmethode entwickelt, die irreversible, denaturierende, thermische Online -Elution. Diese eröffnet ein weites Anwendungsfeld, da so Affinitäten, die klass ischerweise aufgrund zu hoher Bindungskonstanten zwischen Ligand und Rezeptor nicht für die Affinitätschromatographie genutzt werden können, für die Analytik besser handhabbar werden. Die maximale Kapazität einer im Rahmen dieser Arbeit hergestellten Affinitätssäule (64,8 μL) betrug 650 ng TNT bzw. 10 μg/mL Säulenvolumen. Um die Immobilisierungsdichte der produzierten Affinitätssäulen zu bestimmen, wurde ein neues Verfahren entwickelt, da die üblichen spektroskopischen Proteinbestimmungsmethoden aufgrund der hohen unspezifischen Wechselwirkung mit dem Trägermaterial zur Proteinbestimmung nicht geeignet waren. Zur Quantifizierung von Proteinen oder Peptiden,die auf festen Trägern immobilisiert sind, wurde auf Grundlage einer HPLC-Trennung der aromatischen Aminosäuren Tyrosin (Tyr) und Phenylalanin (Phe) ohne vorherige Derivatisierung eine gegenüber der klassischen Aminosäureanalytik vereinfachte HPLC/UV-Methode entwickelt. Die Hydrolyse der Proteine und Peptide wurde durch Einsatz von Mikrowellentechnik beschleunigt, sodass nur 30 Minuten statt ca. 22 Stunden für das Standardprotokoll benötigt wurden, bei dem ein Hydrolyseröhrchen verwendet wird. Zur internen Kalibrierung wurden zwei Standardverbindungen, Homotyrosin (HTyr) und 4-Fluorphenylalanin (FPhe) verwendet. Die Nachweisgrenze (limit of detection, LOD) bei 215 nm ist sowohl für Tyr als auch für Phe 0,05 μM (~ 10 μg/L). Dieses neue Verfahren, das als Aromatische Aminosäureanalyse (Aromatic Amino Acid Analysis, AAAA) bezeichnet werden kann, wurde zur Proteinbestimmung von homogenen Proben mit Rinderserumalbumin (BSA) des Nationalen Instituts für Standards und Technologie der USA (NIST) validiert, wobei die Nachweisgrenze für Proteine mit 16 mg/L (~ 300 ng BSA) mit gängigen spektroskopischen Verfahren vergleichbar ist. Es liefert incl. der Hydrolysestufe eine verbesserte Genauigkeit mit einer relativen Standardabweichung von ca. 5%. T3 - BAM Dissertationsreihe - 158 KW - Affinitätschromatographie KW - Affinity chromatography KW - Polyklonale TNT-Antikörper KW - Immunassay KW - Aromatische Aminosäureanalyse KW - Polyclonal TNT-antibodies KW - Polyclonal PETN-antibodies KW - Immunoassay KW - Aromatic amino acid analysis KW - Polyklonale PETN-Antikörper PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-417566 SN - 1613-4249 VL - 158 SP - I EP - 234 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bronsert, Jeffrey T1 - Numerische Modellierung der Fahrzeug-Fahrweg-Wechselwirkung an Eisenbahnfahrwegen und ihre Anwendung im Brückenübergangsbereich N2 - Im Mittelpunkt der vorliegenden Arbeit steht die numerische Modellierung der Fahrzeug-Fahrweg-Wechselwirkung von Eisenbahnfahrwegen, die auch für Fahrwege mit einer Diskontinuität einsetzbar ist. Der Fokus wurde hier auf Fahrwege mit einem Brückenbauwerk gelegt, weil es an den Übergängen zu einer erhöhten Beanspruchung kommt. Daher wurde für den Fahrweg mittels der Finiten Elemente Methode (FEM) ein dreidimensionales Modell mit einer Lösung im Zeitbereich entwickelt, das die wesentlichen Elemente des Schienenverkehrs, das Fahrzeug, den Fahrwegoberbau und den Untergrund, enthält. Aufgrund der unendlichen Ausdehnung des Untergrundes wurde für den Rand des endlichen FE-Gebiets, die sogenannte Scaled Boundary Finite Element Methode (SBFEM) verwendet, welche ein semi-analytisches Verfahren ist und die Abstrahlungsbedingung erfüllt. Da dieses Verfahren sowohl zeitlich als auch räumlich global ist, kann es mitunter für lange Simulationszeiten sehr aufwendig sein. Deshalb wurde es mittels der Methode der reduzierten Basisfunktionen und einer Linearisierung der Beschleunigungs-Einflussmatrix modifiziert, wodurch das Berechnungsverfahren effizienter gestaltet werden konnte. Anhand von zwei analytischen Lösungen aus der Bodendynamik konnte das modifizierte Verfahren der SBFEM validiert werden. Für ein Gleis auf homogenem Untergrund wurden mit Hilfe des gekoppelten FE-SBFE-Modells verschiedene Ergebnisse am Oberbau, im Boden und für die Ausbreitung von Erschütterungen berechnet, die sehr gut mit Ergebnissen aus der Literatur übereinstimmen. Zudem konnte das numerische Modell mit einer Schwingungsmessung an einer Schwelle eines realen Fahrwegs validiert werden. Unter Anwendung des gekoppelten FE-SBFE-Modells wurde ein Fahrweg mit Brückenbauwerk untersucht, wobei eine Beurteilung und Optimierung des Übergangsbereichs unter Verkehrslast hinsichtlich des Langzeitverhaltens im Vordergrund stand. Anhand von einfachen Bewertungskriterien, die als Indikatoren für das Langzeitverhalten dienen können, wurden verschiedene konstruktive Optimierungsmaßnahmen für den Brückenübergangsbereich diskutiert, wie zum Beispiel die Gestaltung eines Hinterfüllungsbereiches oder der Einsatz elastischer Elemente (Zwischenlagen, Besohlungen, Unterschottermatten) im Fahrweg. Das entwickelte numerische Modell für die Fahrzeug-Fahrweg-Wechselwirkung lässt sich ohne großen Aufwand auf weitere Problemstellungen von Übergangsbereichen erweitern, um spezifische konstruktive Optimierungsmaßnahmen zu untersuchen. T3 - BAM Dissertationsreihe - 157 KW - Brückenübergangsbereich KW - Fahrzeug-Fahrweg-Wechselwirkung KW - Gekoppeltes FE-SBFE-Modell PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-395784 SN - 978-3-9818270-6-4 SN - 1613-4249 VL - 157 SP - 1 EP - 140 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39578 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mirtschin, Nikolaus T1 - Thermomechanisches Verhalten von semikristallinem Polyester-Urethan N2 - Formgedächtnispolymere werden durch thermomechanische Vorbehandlung, die Programmierung, in eine temporäre Form überführt. In die Ursprungsform kehren sie dann erst nach externer Stimulierung, durch Auslösen des Formgedächtniseffekts, wieder zurück. Um diesen Effekt zu optimieren, werden in dieser Arbeit thermomechanische Designoptionen analysiert und Stellschrauben der Programmierung diskutiert. Quantifiziert wird das Materialverhalten eines physikalisch vernetzten Polyurethans mit semikristalliner Polyester-Weichsegmentphase (PEU) in thermomechanischen Messungen, in denen das Polymer Dehnungen bis über 1000% fixiert. Deformationen im breiten Schmelzübergangsbereich der Weichsegmentphase ermöglichen die präzise Kontrolle über die Temperaturen der Dehnungs- und Spannungsrückstellung, den bekannten Temperaturgedächtniseffekt (TGE). Erst durch eine neuartige Programmierung wird jedoch der Beginn der Rückstellung einstellbar. Für diesen Onset-TGE wird das PEU direkt nach dem Recken entlastet und danach unter die Kristallisationstemperatur abgekühlt. In situ Röntgenstreuung zeigt, dass durch den frühen Entlastungszeitpunkt nur der Teil der kristallinen Weichsegmentphase zur Fixierung beiträgt, der auch beim Recken kristallin ist. Die Kristallinität bietet daher eine Stellschraube, um das thermomechanische Verhalten zu veredeln. Über die Optimierungsparameter Reckrate, Temperaturhaltezeit und maximale Dehnung erzielt das PEU hohe Fixierbarkeiten und Rückstellspannungen, ohne die Rückstellung und den Onset-TGE zu beeinträchtigen. Durch die Erweiterung der Programmierung des Onset-TGEs hin zu einer zweiten Deformation und Entlastung innerhalb des Schmelzübergangs zeigt das PEU einen bisher nicht berichteten zweistufigen Spannungsanstieg während der Rückstellung. Ein Temperaturlimit für den Onset-TGE stellt die Peak-Schmelztemperatur aus der dynamischen Differenzkalorimetrie dar. Durch die verbleibende Kristallinität oberhalb dieser Temperatur führt die Deformation und Entlastung direkt zur thermoreversiblen Aktuation mit Dehnungsänderungen bis zu 28%. Die Ergebnisse werden auf einen Miniaturisierungsansatz für schaltbare Informationsträger übertragen, mit denen eine maschinenlesbare Information von nichtlesbar nach lesbar geschaltet werden kann. In einer Machbarkeitsstudie wird der für Sensoranwendungen vielversprechende Onset-TGE genutzt, um die Lesbarkeit der Informationsträger bei einer vordefinierten Temperatur zu schalten. Das erweitert das potentielle Anwendungsfeld der Technologie vom Produkt- und Markenschutz zur Überwachung von Kühlketten. N2 - Shape memory polymers are able to change their shape upon application of an external stimulus. This behavior requires a thermomechanical treatment, so-called programming, to establish a temporary shape. To optimize the shape memory performance, thermomechanical design options will be analyzed and programming parameters discussed in the present thesis. The material behavior of a physically crosslinked polyurethane with semicrystalline polyester soft segments (PEU) is quantified by thermomechanical measurements, where the polymer fixes strains of above 1000%. The deformation within the broad melting transition of the soft segment phase enables the precise control over the temperatures of strain and stress recovery, also known as temperature-memory effect (TME). But only the herein introduced programming route, consisting in elongation and unloading prior to cooling below the crystallization transition, allows for fine-tuning the beginning of recovery. For the resulting onset-TME in situ X-ray scattering indicates that only soft segment crystals contribute to fixation, which are crystalline during deformation. Therefore, the crystallinity opens the door for gaining precisely control over the thermomechanical behavior. Optimization parameters for reaching high strain fixities and recovery stresses without compromising recovery nor the onset-TME are found in the strain rate, temperature holding time and maximum strain. When extending the programming route for onset-TMEs towards a second deformation and unloading step of PEU within the melting transition, an unreported two-step stress recovery is rendered possible. However, the peak melting temperature determined from differential scanning calorimetry represents a temperature limit for the onset control. Through the residual crystallinity above that temperature, deformation and unloading yield thermoreversible actuation with strain changes up to 28%. The findings are transferred to a miniaturization approach for switchable information carriers for switching encoded information from machine-unreadable to readable. In a proof-of-concept study the onset-TME – promising for sensor applications – can be exploited in order to predefine a temperature threshold value for readability of information carriers. This behavior widen their potential applicability from product and brand protection to cold chain supervision. T3 - BAM Dissertationsreihe - 156 KW - Formgedächtnispolymere KW - Temperaturgedächtnispolymere KW - Polyester-Urethan KW - Thermomechanische Eigenschaften KW - Programmierung PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-399648 SN - 978-3-9818270-5-7 SN - 1613-4249 VL - 156 SP - iii EP - 150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Zhang, Lei T1 - Microstructure-property relationship in microalloyed high-strength steel welds N2 - Hochfeste Stähle sind bevorzugte Werkstoffe für die Herstellung von sicheren und zuverlässigen Strukturen in der Industrie. Dabei ist das Schmelzschweißen die Hauptverbindungstechnologie für diese Werkstoffgruppe. Während der Entwicklung der hochfesten niedriglegierten (engl. HSLA) Stähle wurden in der Vergangenheit unterschiedliche Legierungskonzepte mit fortgeschrittenen Herstellungstechniken kombiniert und umfassend untersucht. Jedoch befassten sich nur wenige Studien damit, wie die unterschiedliche Zusammensetzung der Legierungen die Eigenschaften der hochfesten Schweißverbindungen dieser Stähle beeinflussen, selbst im Fall begrenzter Gehalte von Mikrolegierungselementen. In der Schweißpraxis dieser hochfesten Stähle sind die Herausforderungen an die sich ausbildenden Mikrostruktur und den resultierenden mechanischen Eigenschaften von sehr großem Interesse. Diesbezüglich liegt der Hauptfokus des Interesses beim Einfluss der Mikrolegierungselemente auf die Phasenumwandlung sowie die resultierende Performance der Schweißverbindung selbst. Geringes Erweichen (Softening) der Wärmeeinflusszone (WEZ) sowie ein begrenztes Austenitkörner-Wachstum sind dabei erwünschte Eigenschaften der Schweißnaht, jedoch liegt das Hauptaugenmerk auf der Sicherstellung hervorragender Zähigkeits- und Zugeigenschaften. Zum Erreichen dieses Zieles werden Mikrolegierungselemente wie Ti, Nb oder V bewusst zu diesen modernen hochfesten Stählen zulegiert. Der Fokus der vorliegenden Arbeit ist das Verständnis, wie die mechanischen Eigenschaften der Verbindungen dieser HSLA-Stähle von Unterschieden in den jeweiligen Legierungskonzepten abhängen, die durch moderne Schweißprozesse gefügt werden. Zunächst wurden dazu drei unterschiedlich mikrolegierte (Nb, Ti und Ti+V Zugabe) Stähle vom Typ S690QL untersucht. Lichtmikroskopische Untersuchungen bestätigten dabei, dass eine ähnliche Zusammensetzung aus angelassenem Bainit und Martensit in allen drei Grundwerkstoffen vorherrschte und unterschiedlich stark vergröberte Ausscheidungen der Mikrolegierungselemente beobachtet wurden. Diese Ausscheidungen wurden weiterführend mittels thermodynamischer Softwareberechnung analysiert und durch Transmissions-Elektronen-Mikroskopie (TEM) identifiziert. Die Ergebnisse der mechanischen Werkstoffprüfung zeigten, dass alle drei Stähle oberhalb der nach Norm geforderten Zähigkeits- und Zugfestigkeitswerte lagen, jedoch Unterschiede im Dehnungsverhalten aufwiesen. Die drei Stähle wurden dann anschließend unter Verwendung des gleichen Schweißzusatzes geschweißt. Dabei wurde das abgeschmolzene Schweißgut durch die Mikrolegierungselemente aus dem Grundwerkstoff infolge der hohen Aufmischung beeinflusst. Die erhöhte Aufmischung bildet dabei ein wesentliches Merkmal der verwendeten modifizierten Sprühlichtbogentechnik. Als Ergebnis zeigte der Nb-mikrolegierte Stahl eine genügend hohe Aufnahme von Legierungselementen aus dem Grundwerkstoff in das Schweißgut, um dessen Mikrostruktur im Fall steigender Abkühlraten von nadeligem Ferrit hin zu Bainit zu verändern. Dieses wiederum reduzierte die Zähigkeitseigenschaften des Schweißgutes dieses Nb-legierten Stahls. Dieses Verhalten wurde in den beiden anderen Stählen nicht beobachtet. Ein zweiter Hauptpunkt dieser Arbeit war die Ausbildung der Mikrostruktur in der Feinkorn- und Grobkorn-WEZ und deren Zähigkeitseigenschaften mit den sich verändernden Schweißparametern. Zu diesem Zweck wurden definierte Werkstoffzustände physikalisch simuliert, um die resultierende Mikrostruktur sowie das Austenitkorn-Wachstum zu charakterisieren. Die Mikrolegierungselemente bildeten dabei einen wesentlichen Faktor zur Begrenzung des Austenitkörner-Wachstums. Das Ausmaß der Austenit-Vergröberung in der WEZ war dabei stark abhängig von der Art und dem Volumenanteil der unterschiedlichen Ausscheidungen infolge der unterschiedlichen Mikrolegierung. Von allen dreiStählen zeigte die WEZ des Ti-legierten Grundwerkstoffes das geringste Kornwachstum als Folge des ausreichenden Umfangs von stabilen Ti-Ausscheidungen. Die Ausbildung von nadeligem Ferrit im Korn wurde dabei durch die Ti-Ausscheidungen unterstützt, da diese als bevorzugte Stellen der Nukleation des Ferrits dienten. Die Zähigkeit der WEZ erhöhte sich dabei infolge der Großwinkelgrenzen der feinen Ferrit-Platten. Aufgrund des kombinierten Effektes von Nb und Mo, welcher sich in der bevorzugten Ausbildung von unterem Bainit äußert, konnte die WEZ-Zähigkeit bei hohen Abkühlraten weiter verbessert werden. Im Fall eines größeren Wärmeeintrags bildete sich jedoch bevorzugt oberer Bainit, welcher wiederum die Zähigkeit reduzierte. Der abschließende experimentelle Teil der Arbeit konzentrierte sich auf das Verständnis der Mechanismen, die in bestimmten Fällen zur Erweichung (oder Softening) der WEZ führen. Dieses Erweichen äußerte sich in den unterschiedlichen Zugeigenschaften der geschweißten Verbindungen der Stähle. Dabei war die Bruchlage entweder in der erweichten WEZ oder im Grundwerkstoff, abhängig von den Schweißparametern sowie der Art des geschweißten Stahls. Im Ti-legierten Stahl führte dabei ein erhöhter Wärmeeintrag zur Vergrößerung der Erweichungszone. Dieses führte zu einer signifikanten Abnahme der Härte und anschließend zum Versagen in dieser erweichten Zone im Zugversuch. Die Veränderung der Bruchlage hin zum Grundwerkstoff wurde durch die Begrenzung des Wärmeintrags erreicht. Dieses Verhalten wurde nicht in den beiden anderen Stählen beobachtet. Dieses Verhalten zeigt, dass bereits kleine Unterschiede im Gehalt der Mikrolegierungselemente der Stähle zu großen Variationen in den Zugeigenschaften führten. Für alle drei Stähle, zeigten die Ti-enthaltenden Schweißverbindungen das am deutlichsten ausgeprägte Softening, gefolgt von den Ti+V-enthaltenden Schweißungen und schließlich den Nb-enthaltenden Schweißverbindungen. Das unterschiedliche Softening konnte dabei auf zwei Prozesse bezogen werden, die auch über zusätzliche Dilatometrie-Experimente gestützt wurden: die Phasenumwandlung und das Anlassverhalten. Im Ti-legiertem Stahl lag nach der Phasenumwandlung großformatiger Ferrit als Konsequenz der ursprünglich großen Austenitkörner vor. Dieses führte zu einer abgesenkten Härte dieses Stahls. Weiterhin resultierte die geringere Anlassbeständigkeit des Ti-legierten Stahls (gegenüber dem Nb-legierten Stahl) zu einem weiteren Softening der erweichten WEZ. Deswegen erwies sich diese Kombination aus Legierungszusammensetzung und Schweißwärmeeintrag als kritisch, gestützt durch die Experimente am gleichen S690QL Stahl. Die vorliegende Arbeit hebt den wesentlichen Einfluss der Mikrolegierungselemente auf die Schweißmikrostrukturen und die mechanischen Eigenschaften der Schweißverbindungen hervor. Die Kenntnis dieser empfindlichen Balance zwischen Legierungskonzept des entsprechenden Stahls und geeigneten Schweißparametern ist als kritisch für das fertige Produkt anzusehen. Dazu stellt diese Arbeit spezifische Empfehlungen und Ergebnisse zur Verfügung, um die korrekte Schweißpraxis zu gewährleisten als auch für die Zusammensetzung mikrolegierter hochfester Stähle. N2 - High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type of steel being joined. In Ti-containing steel, increased heat Input extended the softened zone width, which caused a significant decrease in hardness and then resulted in failure in this area. Therefore, limited heat Input was used to shift failure position to base material. But this was not observed in the other two steels. Hence, small differences in microalloy addition exhibited large variation in tensile properties. Among the three steels, Ti-containing welds were found to have the most pronounced softening, followed by Ti+V-containing welds and finally Nb-containing welds. This varied softening phenomenon was related to two significant processes supported by the results of additional dilatometry simulation: phase transformation and tempering behaviour. In the Ti-containing steel, the phase Transformation product ferrite was large-sized, as a consequence of initial large austenite grains. This led to the decreased corresponding hardness of the Ti-containing steel. Furthermore, lower tempering resistance in Ti-containing steel as compared to Nb-containing steel, resulted in additional softening effect in the softened HAZ. Therefore, steel alloy identification and heat Input during welding were critical, proven by the experimentation within the same S690QL steel grade. This work emphasised the influence of microalloy elements on weld microstructure and mechanical properties in welded joints. Knowledge of this delicate balance between steel alloy design and appropriate welding parameters is critical for the end product. Thus, this work provides specific recommendations and results to ensure proper welding practice and steel design of microalloyed high-strength steels. T3 - BAM Dissertationsreihe - 155 KW - Microalloyed steel KW - Weld microstructure KW - HAZ softening KW - Mechanical properties PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391574 SN - 978-3-9818270-4-0 SN - 1613-4249 VL - 155 SP - 1 EP - 183 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Oberleitner, Lidia T1 - Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization N2 - Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes. T3 - BAM Dissertationsreihe - 154 KW - Antibody KW - Coffee KW - ELISA KW - Fluorophore tracer KW - Wastewater PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392506 SN - 978-3-9818270-2-6 SN - 1613-4249 VL - 154 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -