TY - THES A1 - Bachmann, Marcel T1 - Numerische Modellierung einer elektromagnetischen Schmelzbadkontrolle beim Laserstrahlschweißen von nicht-ferromagnetischen Werkstoffen N2 - Die Verfügbarkeit von Laserstrahlquellen mit immer höheren Leistungsparametern ermöglicht ein effektives und schnelles Schweißen von stetig größer werdenden Blechdicken. Dabei treten Herausforderungen bezüglich der Prozessstabilität, z.B. ein Austropfen von Schmelze bei Durchschweißungen sowie die Beherrschung der Dynamik, insbesondere an den freien Oberflächen, die stark von Oberflächenspannungseffekten beeinflusst wird, in den Vordergrund. Die vorliegende Arbeit liefert einen primär numerischen Beitrag zur Anwendung oszillierender sowie zeitlich invarianter magnetischer Felder beim Hochleistungs-Laserstrahlschweißen von nicht-magnetischen Bauteilen hoher Blechdicke. Für die simulativen Untersuchungen wurden die Materialien Aluminium sowie austenitischer Stahl AISI 304 herangezogen und mit Querschliffen von exemplarisch durchgeführten Schweißungen an der Legierung AlMg3 bzw. AISI 304 verglichen. Die Simulationen wurden mit dem kommerziellen Finite- Elemente-Paket COMSOL Multiphysics durchgeführt. In diesem Rahmen wurden Strömungs- und Temperaturfelder sowie die Verteilungen der elektromagnetischen Feldgrößen berechnet. Die Bewertung der elektromagnetischen Beeinflussung des Schmelzbades erfolgte für die Anwendung oszillierender Magnetfelder zur Vermeidung des Schmelzaustropfens anhand der Druckverteilungen an unterer und oberer Schmelzbadoberflächen. Der Grad der Strömungsdämpfung durch elektromagnetische Kräfte wurde durch dimensionslose Kennzahlen unter Berücksichtigung des turbulenten Strömungszustandes bewertet. Es konnte im Rahmen der Arbeit gezeigt werden, dass durch den im Schmelzbad wirkenden vertikalen Anteil der Lorentzkraft, basierend auf einem oszillierenden magnetischen Feld unterhalb der Schweißzone und den im Werkstück induzierten elektrischen Wirbelströmen, ein Austropfen von verflüssigtem Material verhindert und somit ein sicherer Schweißprozess ermöglicht werden kann. Die hierfür benötigten elektromagnetischen Leistungen liegen für 20 mm dickes Aluminium und seinen Legierungen im Bereich mehrerer hundert Watt. Numerische Untersuchungen zur Strömungsdämpfung mittels permanentmagnetischer Felder zeigen die Möglichkeit auf, die Strömungsgeschwindigkeit und die lokale Turbulenzverteilung effektiv zu reduzieren. Dabei spielt die Polarität des quer zur Strömungsrichtung angelegten magnetischen Feldes keine Rolle für die resultierenden Kräfte. Die rechnerisch ermittelte Veränderung der Nahtform hin zu einem V-förmigen Profil konnte experimentell bestätigt werden. Die dazu notwendigen magnetischen Flussdichten für den Laborversuch liegen im Bereich kommerziell erhältlicher Neodym- Eisen-Bor Magnete bei etwa 500 mT. N2 - The availability of high power laser beam sources enables an effective and fast welding process of ever thicker metal parts. At the same time, challenges concerning the process stability appear, e.g. a drop-out of molten material in full-penetration welding as well as the control of the dynamics, especially in the vicinity of the free surfaces of the weld bead where surface tension effects dominate. The present work provides a primary numerical contribution to the application of oscillating as well as time-invariant magnetic fields to the high power laser beam welding of non-ferromagnetic metal parts of high thickness. For the simulations, the materials under investigation were aluminum and austenitic stainless steel AISI 304. The numerical results were compared to macrographs of exemplary test welds of the alloys AlMg3 and AISI 304. The simulations were conducted with the commercial finite element package COMSOL Multiphysics. In the framework of the investigations, calculations were done for the fluid flow and temperature as well as for the electromagnetic field quantities. The evaluation of the electromagnetic weld pool control for the application of oscillating magnetic fields to avoid liquid metal drop-out was carried out on the basis of pressure distribution analysis between the lower and upper weld pool surfaces. The degree of magnetic damping by Lorentz forces was calculated by dimensionless numbers also accounting for the turbulent state of the fluid flow. In this work, it could be shown, that the vertical part of the Lorentz forces, that are based on an oscillating magnetic field below the process zone and its induced eddy currents in the workpiece, prevents the liquid metal from drop-out. Thereby, a reliable welding process was made possible. The electromagnetic power used for the welding of a 20 mm thick aluminum alloy with electromagnetic support lies in the range of several hundreds Watt. Numerical investigations concerning the flow damping by permanent magnetic fields show the possibility to reduce the local flow velocity as well as the turbulence distribution effectively. The polarity of the applied magnetic field, which is aligned in horizontal direction and vertical to the welding direction, is indecisive for the direction of the developing Lorentz forces. The numerically predicted transition of the cross-sectional weld bead geometry to a V-shaped profile could also be proved experimentally. The required magnetic flux density for that was in the range of commercially available neodymium iron boron magnets of around 500 mT. T3 - BAM Dissertationsreihe - 113 KW - Schmelzbadstütze KW - Laserstrahlschweißen KW - Marangoni-Effekt KW - Hartmann-Effekt KW - numerische Simulation PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-459 SN - 978-3-9815944-9-2 SN - 1613-4249 VL - 113 SP - 1 EP - 189 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-45 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Tölle, Florian T1 - Eigenspannungsreduktion in strahlgeschweißten Nähten mittels Spannungsumlagerung durch den Einsatz defokussierter Elektronen- bzw. Laserstrahlen N2 - en vielen Vorteilen der Strahlschweißverfahren stehen die mit ihnen erzeugten hohen Längszugeigenspannungen in den Schweißnähten entgegen. Diese können, da sie im Bereich der lokalen Werkstoffstreckgrenze vorliegen, die Bauteillebensdauer beeinflussen. Bei anderen Schweißprozessen sind ebenfalls hohe Eigenspannungen in den Schweißnähten die Folge, jedoch überwiegen hier die Querspannungen. Für diese Schweißverfahren sind in den letzten Jahrzehnten einige Methoden entwickelt worden, um die Schweißeigenspannungen bereits während des Schweißens bzw. nach dem Schweißprozess zu reduzieren. Hierbei werden jedoch meist große Kontaktflächen auf dem Bauteil direkt neben der Schweißnaht sowie zusätzliches an das Bauteil angepasstes Equipment benötigt. Zudem zeigen die bisherigen entwickelten Verfahren für die schmalen Strahlschweißnähte eine geringe Effizienz. Der Abbau der Eigenspannungen mit der Strahlquelle, die auch für den Schweißprozess genutzt wird, bietet hier ein flexibles Werkzeug, das keine zusätzlichen Beschaffungskosten erzeugt und infolge einer Remote- Wärmebehandlung auch für komplexe Schweißnahtformen und Bauteilgeometrien anwendbar ist. Bei dieser nachträglichen Wärmebehandlung werden die Materialbereiche neben der Naht durch den defokussierten Elektronen- bzw. Laserstrahl auf Temperaturen von mehreren hundert Grad Celsius erwärmt. Hierdurch werden in diesen Bereichen geringe plastische Deformationen erzeugt. Beim Abkühlen des erwärmten Materials wird infolge der thermischen Schrumpfung das Material zwischen der Schweißnaht und den erwärmten Zonen in Nahtlängsrichtung gestaucht. Diese gestauchten Materialbereiche behinderten die Schweißnaht während der Abkühlung von der Schmelztemperatur beim thermischen Schrumpfen. Somit wird der Widerstand gegen die Schrumpfung der Schweißnaht verringert und die Eigenspannungen in der Naht können sich teilweise abbauen. Dabei bestimmt die Wahl der Wärmebehandlungsparameter die Quantität der erhaltenen Spannungsreduktion. Der genutzte Strahlradius und die Vorschubgeschwindigkeit der Wärmebehandlung entlang der Schweißnaht spielen hier eine sehr große Rolle. Aber auch der zu verwendende seitliche Abstand der Wärmebehandlung zur Schweißnaht, der sich am Strahlradius orientiert, sollte richtig gewählt sein. Für die qualitativen und quantitativen Untersuchungen des Längsspannungsabbaus in strahlgeschweißten Bauteilen mit diesem Verfahren wurde eine ganze Reihe von FEM-Simulationen durchgeführt. Diese dienen der Erläuterung des Spannungsabbaus sowie der Analyse und Bewertung der Einflussparameter. Experimentelle Untersuchungen mit dem Elektronen- sowie mit dem Laserstrahl an unterschiedlichen Werkstoffen und Schweißnahtgeometrien belegen, dass mit diesem Verfahren die hohen Längszugeigenspannungen je nach verwendetem Parametersatz so stark abgebaut werden können, dass daraus Druckeigenspannungen in der Schweißnaht resultieren können. Vor allem für die Laserstrahlanwendung, bei der ein In-situ-Wärmebehandlungsprozess während des Schweißens mit nur einem Strahl aufgrund der relativ langsamen Strahlsteuerung nicht möglich ist, ist von großer Bedeutung, dass dieses Verfahren größere Spannungsreduktionen erzielt, wenn die Schweißnaht bereits auf Umgebungstemperaturabkühlen konnte, bevor die Wärmebehandlung ausgeführt wird. N2 - Among the multiple advantages of beam welding processes the high longitudinal residual stresses in beam welds ranging till the local yield stress are one disadvantage. These high stresses can influence the service life of the welded components. The residual stresses in other welding processes exist in an equal high level but primarily in the transverse direction to the weld. To mitigate the high residual stresses a couple of methods were developed for these welding processes in the last decades. However these methods need large contact surfaces next to the welds for the installation of matched heating and cooling elements and other additional equipment. Furthermore, the previous developed stress mitigating processes offer a low efficiency for the small beam welds. The stress reduction by using the welding source after the welding process for a remote heat treatment of the welded components afford a flexible tool for the stress mitigation in beam welds. This method does not need any additional equipment and it is applicable for complex welding and component geometries. During this post welding heat treatment the material next to the weld is heated by the defocused electron or by the defocused laser beam, respectively, to temperatures of some hundreds degree Celsius. Hereby low plastic deformations in these regions are generated. While cooling down due to the thermal shrinkage the material between the weld and the heat treated region is compressed in longitudinal direction to the weld. This intermediate material zone constrained the shrinkage of the weld while cooling down from the melting temperature and leads to the high longitudinal residual stresses in the weld. In consequence of the compression of this intermediate zones by the heat treated zones the resistance to the shrinkage of the weld is lowered and the longitudinal stresses in the weld are reduced. In the process the quantity of the stress reduction is controlled by the selection of the process parameters. The used beam radius and the travel speed of the heat treatment have a large influence in this method. However, the right selection of the transversal distance of the heat treatment to the weld is important. This distance depends on the used beam radius. For the qualitative and quantitative analyses of the reduction of the longitudinal weld stresses in this method a great many of finite element simulations were performed. The simulation results help to define the stress reduction mechanism and to analyze the parameters, which influence this method. Experimental investigations on different materials and weld geometries with the electron beam and with the laser beam verify that this method can reduce the longitudinal stresses in the weld. Depending on the used process parameters the stress reduction can lead to compressive stresses in the weld. Due to a larger stress reduction by performing the heat treatment in a separate process after the weld could cool down to ambient temperature this method is very advantageous for the laser beam application, which does not permit an in situ heat treatment while welding. T3 - BAM Dissertationsreihe - 105 KW - Eigenspannungen KW - Schweißsimulation KW - Laserstrahlschweißen KW - Eigenspannungsreduktion KW - Elektronenstrahlschweißen PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533 SN - 978-3-9815748-7-6 SN - 1613-4249 VL - 105 SP - 1 EP - 206 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schwenk, Christopher T1 - FE-Simulation des Schweißverzugs laserstrahlgeschweißter dünner Bleche Sensitivitätsanalyse durch Variation der Werkstoffkennwerte N2 - Der Hauptaspekt der vorliegenden Dissertation ist die Sensitivitätsanalyse der FE- Schweißsimulation, basierend auf einer Variation der Werkstoffkennwerte, sowie deren Einfluss auf das transiente Temperaturfeld und die Verzüge. Dabei wird das Streuband der Werkstoffkennwerte für den gesamten Temperaturbereich sowie für diskrete Temperaturintervalle, die aus der Metallurgie und den experimentellen Randbedingungen abgeleitet sind, betrachtet. Die Untersuchung findet an drei verschiedenen Legierungen statt, welche zurzeit gebräuchliche Werkstoffe im Automobilbau innerhalb der folgenden Hauptlegierungsgruppen darstellen: • hochfester Dualphasenstahl • austenitischer Chrom-Nickel-Stahl • aushärtbare Aluminiumlegierung Die betrachteten Kennwerte sind Wärmeleitfähigkeit, spezifische Wärmekapazität und Dichte sowie E-Modul, Dehngrenze, thermische Dehnung, Querkontraktionszahl und Verfestigungsverhalten. Die Untersuchungen zeigen den großen Einfluss der spezifischen Wärmekapazität und der Dichte auf das berechnete Temperaturfeld und die anschließend ermittelten Verzüge. Mit Blick auf die thermomechanischen Kennwerte werden die Verzüge hauptsächlich von der thermischen Dehnung, dem E-Modul und der Dehngrenze beeinflusst. Die wichtigen thermophysikalischen und thermomechanischen Kennwerte werden für alle drei Legierungen gemessen. Diese sehr genauen Daten werden für eine Simulation ohne die möglichen Fehlerquellen der Streuung der Werkstoffkennwerte verwendet. Die Daten der Werkstoffkennwerte werden dann entsprechend der bekannten Streubänder variiert um die Sensitivität der simulierten Temperaturzyklen und Verzüge zu ermitteln. Die Berechnungsergebnisse werden über Schweißversuche an ebenen Platten mit Laserstrahl- Blindnähten validiert (Thermoelementmessungen, Nahtquerschliffe und Wegaufnehmermessungen der Verzüge). Darüber hinaus werden die Ergebnisse anhand einer Schweißsimulation und Verzugsoptimierung eines industriell relevanten Bauteils überprüft. Die Ergebnisse, Meinungen und Schlüsse dieser Dissertation sind nicht notwendigerweise die der Volkswagen AG. N2 - The primary focus of this dissertation is the analysis of the sensitivity of FE welding simulation depending on material property values variation and their influence on the transient temperature field and distortions. The scatter band of material property values for the complete temperature range and for discrete temperature intervals, derived from the metallurgy and the experimental boundary conditions, is considered. Three different alloys for the main material groups are examined which represent some of the currently most widely used materials in automotive engineering: • high strength dual phase steel • austenitic chromium-nickel steel • precipitation hardening aluminium alloy The investigated properties are heat conductivity, specific heat capacity and density as well as Young’s modulus, yield strength, thermal expansion, Poisson’s ratio and strain hardening. The analyses show the great impact of the specific heat capacity and density on the calculated temperature field and subsequently acquired distortions. Looking at the thermomechanical properties, the distortions are mostly affected by thermal expansion, Young’s modulus and yield strength. The main thermophysical and thermomechanical properties for all three alloys are measured. This very accurate data is used to generate a simulation without the possible error sources from the scattering of material properties. The data of the material properties is then varied according to the known scatter band in order to extract the sensitivity of the simulated thermal cycles and distortions. The calculated results are validated with welding experiments of flat plates with laser beam-bead-on-platewelds (thermocouple measurements, macrosections of the weld seam and transducer measurements of distortions). Furthermore, the results are cross-checked for the welding simulation and distortion optimisation of an industrially relevant part. The results, opinions and conclusions expressed in this thesis are not necessarily those of Volkswagen AG. T3 - BAM Dissertationsreihe - 26 KW - Finite Elemente KW - experimentelle Validierung KW - Sensitivität KW - Werkstoffkennwerte KW - Simulation KW - Laserstrahlschweißen KW - Temperaturfeld KW - Verzug PY - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-1324 SN - 978-3-9811655-5-5 SN - 1613-4249 VL - 26 SP - 1 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -