TY - THES A1 - Gemeinert, Marion T1 - Über LTCC-Werkstoffe aus dem Stoffsystem CaO - La2O3 - Al2O3 - B2O3 N2 - Glaskeramische Komposite, deren Herstellung von Glas- und kristallinen Pulvern ausgeht, bieten vielfältige Möglichkeiten, Werkstoffeigenschaften, wie z.B. Sinterverhalten, thermische Dehnung, mechanische Eigenschaften, chemische Beständigkeit, dielektrische Eigenschaften und Oberflächenqualität für spezielle Anwendungszwecke gezielt einzustellen. Glaskeramische Kompositpulver können zu Folien verarbeitet werden, aus denen mittels der LTCC (Low Temperature Co-fired Ceramics)- Technologie keramische Multilayer hergestellt werden, die insbesondere für das Electronic Packaging von Mikrosystemen eingesetzt werden. Problematisch ist die beim freien Sintern der LTCC-Multilayer auftretende laterale Schwindung, die von relativ hohen Schwindungstoleranzen begleitet ist. Zur Vermeidung der lateralen Schwindung werden Zero Shrinkage-Techniken eingesetzt. Eine neue Möglichkeit Zero Shrinkage beim Sintern von LTCC-Multilayern zu erreichen, besteht in der Anwendung eines self-constrained Laminates. Hierbei wird ein Multilayer eingesetzt, der aus zwei unterschiedlichen Folienarten für innere und äußere Lagen mit deutlich verschiedenen Sintertemperaturen (ΔT > 50 K) aufgebaut wird. Die Entwicklung von LTCC -Werkstoffen, die als innere Lagen eines self-constrained Laminates zur Verringerung der lateralen Sinterschwindung auf nahezu Null eingesetzt werden können, war Gegenstand der vorliegenden Arbeit. Es wurden hierfür LTCC - Werkstoffe aus dem Stoffsystem CaOLa2O3-Al2O3-B2O3 untersucht, die bei Temperaturen unterhalb 800 °C dicht gesintert werden können. Ausgehend von der Entwicklung geeigneter Gläser auf der Basis von Calciumlanthanborat- sowie Calciumlanthanalumoboratgläsern wurden glaskeramische Komposite unter Zusatz von Korundpulver hergestellt. Die Komposite kristallisieren während des Brennprozesses nahezu vollständig. Aus der Glasphase kristallisiert Lanthanborat aus und aufgrund der festkörperchemischen Reaktion der calciumboratreichen Restglasphase mit dem Korund bilden sich vor allem Calciumalumoborat bzw. Calciumalumoboratoxid. Die Anteile an neuen Phasen bestimmen die thermischen und dielektrischen Eigenschaften der Werkstoffe. Die wichtigsten der sich bildenden kristallinen Phasen der Komposite, Lanthanborat und Calciumalumoboratoxid wurden separat hergestellt und charakterisiert. Das Sinter- und Kristallisationsverhalten sowie die thermischen und dielektrischen Eigenschaften der glaskeramischen Komposite wurden in Abhängigkeit von den entwickelten Gläsern, dem Volumenverhältnis von Glas- und kristalliner Komponente im Kompositpulver und der Brenntemperatur untersucht. Die entwickelten LTCC-Werkstoffe wurden bzgl. ihrer thermischen Eigenschaften an einen zuvor ausgewählten LTCC-Werkstoff für die äußeren Lagen eines self-constrained Laminates angepasst. Erzielt wurden die Eigenschaftswerte: TEC: ca. 5 x 10-6/K, εr: ca. 7 und tan δ: ≤ 1 x 10-3. Zur Überprüfung der Anwendbarkeit wurde der entwickelte LTCC- Werkstoff als innere Lagen in einem LTCC-Multilayer verarbeitet. Dadurch konnte die laterale Schwindung des Multilayers beim Sintern auf < 0,4 % verringert werden. N2 - Glass ceramic composites made of glassy and crystalline powders offer numerous possibilities for modifying material’s properties e.g. sintering behaviour, thermal expansion coefficient, mechanical behaviour, chemical durability, dielectric properties and surface quality for special use. Glass ceramic composite powders can be used for the production of ceramic green tapes which are processed by LTCC (Low Temperature Co-fired Ceramics)- technology to form ceramic multilayers for electronic packaging in microsystems. During free sintering of LTCC-multilayers a lateral shrinkage occurs which is connected with a comparatively high shrinkage tolerance. Different sintering technologies are used to avoid the lateral shrinkage. A new possibility to achieve a zero lateral shrinkage is given by use of a self-constrained laminate. Therefore a multilayer is produced of two different materials for inner and outer layers, showing different sintering temperatures (ΔT > 50 K). Object of this dissertation was the development of LTCC-materials, which can be used for inner layers of a self-constrained laminate to reduce the lateral shrinkage nearly to zero. Therefore LTCC-materials in the field of CaO-La2O3-Al2O3-B2O3, which can be sintered below 800 °C, were investigated. Starting from the development of adapted glasses based on calciumlanthaniumborate- and calciumlanthaniumalumoborate glasses glass ceramic composites were produced by the addition of corundum powder. The composites crystallize during the sintering process almost completely. Lanthanumborate crystallizes from the glassy phase and calciumalumoborate and calciumalumoboratoxide respectively is formed by a chemical solid state reaction of the residual glassy phase, which is enriched by calciumborate, and the corundum. The proportional relation of the new crystalline phases determines the thermal and dielectric properties of the material. The most important formed new crystalline phases lanthanumborate and calciumalumoboratoxide were prepared and characterized separately. The sintering and crystallisation behaviour as well as the thermal and dielectric properties of the glass ceramic composites were investigated in dependence of the developed glasses, the volume relation of glassy and crystalline components of the composite powder and the sintering temperature. The developed LTCC-materials were adapted to a chosen material for the outer layers of a selfconstrained laminate referring to their thermal properties (thermal expansion coefficient: ca 5 x 10-6/K, permittivity: ca 7, dielectric loss factor: ≤ 1 x 10-3). To control the suitability of the developed material it was used for the inner layers of a LTCCmultilayer. The lateral shrinkage of the multilayer during sintering was reduced to < 0,4 %. T3 - BAM Dissertationsreihe - 43 KW - LTCC KW - Glaskeramik KW - Keramikfolie KW - Hochleistungskeramik KW - Mehrschichtsystem PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1154 SN - 978-3-9812354-6-3 SN - 1613-4249 VL - 43 SP - 1 EP - 139 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Molkenthin, André T1 - Laser-induzierte Breakdown Spektroskopie (LIBS) zur hochauflösenden Analyse der Ionenverteilung in zementgebundenen Feststoffen N2 - Die Laser-induzierte Breakdown Spektroskopie ermöglicht eine bildgebende und quantitative Analyse der Ionenverteilung aller maßgeblichen Elemente auf mineralischen Baustoffoberflächen. Das Messsystem wurde durch verfahrenspezifische Untersuchungen an Proben aus Zementstein, -mörteln und Betonen charakterisiert, Transport- und Anlagerungsprozesse wurden visuell dargestellt. Zudem werden Ergebnisse für den Ionenhaushalt in der ungestörten oberflächenahen Randzone sowie bei deren Auslaugung bzw. Anreicherung vorgestellt. The Laser-Induced Breakdown Spectroscopy allows imaging and quantitative analysis of the ion distribution of all relevant elements on the surface of mineral building materials. The measuring system has been characterised by investigations on specimens of hardened cement paste, mortar and concrete. Transport and accumulation processes are visualised. Besides, results are introduced for the peripheral zone close to the surface and the extraction is shown. T3 - BAM Dissertationsreihe - 42 KW - Laser KW - Spektroskopie KW - Ionenverteilung KW - Elementanalyse KW - Beton PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1165 SN - 978-3-9812354-5-6 SN - 1613-4249 VL - 42 SP - 1 EP - 144 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-116 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gräfe, Boris T1 - Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile N2 - Die Notwendigkeit und Nachfrage von zerstörungsfreien Prüfverfahren für Beton, die schnell scannend automatisiert große Messflächen abtasten können, wird zunehmend größer. Ein großes Potential bietet das Ultraschallecho-Verfahren, mit dem sich eine Vielzahl von baupraktischen Fragestellungen bei der Überprüfung des Bauwerkszustandes beantworten lassen. Durch Verwendung luftgekoppelter Ultraschallprüfköpfe (ACU-Prüfköpfen), die berührungslos über das zu untersuchende Betonbauteil geführt werden, könnte dieses Ziel erreicht werden. In der vorliegenden Arbeit wird die Machbarkeit von luftgekoppeltem Ultraschallecho (ACU- Echo) an Betonbauteilen von 20 cm Dicke gezeigt. Um den Einfluss der Parameter auf die Wellenausbreitung zu studieren, werden experimentelle Untersuchungen von ACU-Echo an speziellen Plexiglas- und Betonprobekörpern durchgeführt. Dabei kommt auf der Empfangsseite auch ein Laservibrometer zum Einsatz. Mit dessen Hilfe wird die Wellenausbreitung des eingetragenen Luftultraschalls im Beton visualisiert. Durch eine besondere digitale Signalbearbeitung können verschiedene Wellenarten voneinander getrennt und interpretiert werden. Mit den gewonnenen Ergebnissen wird ein Scanner für ACU-Echo-Messungen aufgebaut, mit dem weitere wesentliche Erkenntnisse gewonnen werden und ein erstes praxisorientiertes Anwendungsbeispiel demonstriert wird. N2 - The necessity and demand for non-destructive testing of concrete which is able to automatically scan huge pieces of concrete is increasing. Ultrasonic echo offers excellent potential for answering a huge number of questions concerning the practical field of construction at testing the condition of the work. This could be achieved in using air-coupled ultrasonic (ACU) transducers which are led above the tested pieces of concrete without touching them. The following work shows the feasibility of ACU echo on pieces of concrete of 20 cm thickness. In order to learn more about the influence of the parameters on the wave propagation, experimental research of ACU echo on special specimens of Plexiglas and concrete are carried out. A laser vibrometer on the receiving side is also being used. With its help, one can see the propagation of the waves of the induced ACU in concrete. In using a special digital signal processing, you can separate different kinds of waves and interpret them. These results can help in having a scanner for measurements of ACU echo. You get more important information with this scanner. It is the first example to use in practice. T3 - BAM Dissertationsreihe - 41 KW - Ultraschall KW - luftgekoppelt KW - Laservibrometer KW - Beton KW - ZfP KW - ultrasound KW - air-coupled KW - laser vibrometer KW - concrete KW - NDT PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1173 SN - 978-3-9812354-4-9 SN - 1613-4249 VL - 41 SP - 1 EP - 170 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-117 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Coniglio, Nicolas T1 - Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development N2 - The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminium 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate – dilution map, show a crack – no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl3 + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate – composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on solidification range, refinement in grain size from 63 to 51 μm, centerline columnar grains disappearance, and decreased cooling rate from 113 to 89 °C/s. Moreover, in order to make direct comparison with literature, castings of controlled mixtures of alloys 6060 and 4043 were also investigated, thereby simulating weld metal composition under controlled cooling conditions. Castings showed a different trend than welds with small increases in silicon content (i.e. increase in 4043 filler dilution) resulting in huge effect on microstructure, no effect on liquidus temperature, drop in solidus temperature from 577°C to 509°C, increase in quantity of interdendritic constituent from 2% to 14%, and different phase formation. Binary β-Al5FeSi, Mg2Si, and Si phases are replaced with ternary β-Al5FeSi, π−Al8FeMg3Si6, and a low melting quaternary eutectic involving Mg2Si, π, and Si. Also, variation of the cooling conditions in castings revealed the existence of a critical cooling rate, above which the solidification path and microstructure undergo a major change. Cracking Model. Implementing the critical conditions for cracking into the Rappaz-Drezet-Gremaud (RDG) model revealed a pressure drop in the interdendritic liquid on the order of 10-1 atm, originating primarily from straining conditions. Since, according to literature, a minimum of 1,760 atm is required to fracture pure aluminum liquid (theoretical), this demonstrates that cavitation as a liquid fracture mechanism is not likely to occur, even when accounting for dissolved hydrogen gas. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, critical to crack initiation being weld metal hydrogen content. Following initiation, a mass-balance approach developed by Braccini et al. (2000) revealed that crack growth is controlled by local strain rate conditions. Finally, a simplified strain partition model provides a link between critical strain rates measured across the weld and predicted at grain boundaries within the mushy zone. Although based on simplified assumptions, predicted and measured critical strain rate values are of the same order of magnitude. However, because of a longer mushy zone experienced at higher 4043 filler dilution related to a reduction in cooling rate, these models predict a lower weldability with increasing filler dilution, in contradiction with experimental observations. Combining the crack initiation and growth models suggests that hydrogen and strain rate, respectively, determine crack formation. An hypothetical hydrogen – strain rate map defines conceptually the conditions for cracking, suggesting better weldability at low weld metal hydrogen content. With the aid of the modified varestraint test (MVT) and a controlled hydrogen contamination system, results, presented in the form of ram speed – hydrogen map, revealed that hydrogen has little effect on crack growth, providing support to the proposed cracking models. However, a drop in weldability corresponding to the peak in weld metal hydrogen supersaturation suggests a different solidification cracking mechanism, where cavitation supports crack growth. T3 - BAM Dissertationsreihe - 40 KW - Aluminum Weldability KW - Crack Initiation-Growth KW - Mechanism Modeling KW - Critical Strain Rate-Dilution KW - Solidification Cracking PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1183 SN - 978-3-9812354-3-2 SN - 1613-4249 VL - 40 SP - 1 EP - 208 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Stelling, Karen T1 - Laserstrahl-Plasma-Hybridschweißen austenitischer Stähle N2 - Als eine neue Verfahrensvariante unter den Laserstrahl-Lichtbogen- Hybridschweißverfahren wird das Laserstrahl-Plasma-Hybridschweißen für die Werkstoffgruppe der austenitischen Stähle entwickelt. Neben der Entwicklung eines Hybridschweißkopfes, der für die Kopplung von Plasmalichtbogen und Laserstrahl in einer gemeinsamen Prozesszone ausgelegt ist, liegt ein Schwerpunkt auf der Ermittlung des Einflusses wichtiger Schweißparameter auf das Schweißergebnis und fertigungsrelevanter Kenngrößen wie der erzielbaren Spaltüberbrückbarkeit. Unter Einsatz eines pulverförmigen Zusatzwerkstoffes, der über den Plasmabrenner in die Prozesszone überführt wird, werden dazu Schweißnähte am Stumpfstoß sowie im Überlappstoß angefertigt. Aufbauend auf Ergebnissen aus Schweißversuchen wird ein Modell erstellt, das zu einem besseren Verständnis der Vorgänge im gemeinsamen Schmelzbad von Plasmalichtbogen- und Laserstrahlprozess beitragen soll, indem es die Auswirkung einzelner Schweißparameter auf das Schweißergebnis, wie zum Beispiel die Porenbildung, und somit indirekt die im Schmelzbad wirkenden Kräfte qualitativ einbezieht. Als Basis für die Erstellung des Modells dienen röntgenographische Aufnahmen, metallographische Untersuchungen als auch Hochgeschwindigkeits- aufnahmen des Hybridschweißprozesses. Weiterhin bilden metallurgische Aspekte bzw. die sich einstellenden Erstarrungsgefüge dieser Stähle einen weiteren Untersuchungsschwerpunkt in dieser Arbeit. Die im Schweißgut der Hybridnähte vorliegenden Erstarrungsmodi werden ermittelt und unterschiedliche prozessrelevante Einflüsse auf das Gefüge identifiziert. Darüber hinaus werden der Ferritgehalt sowie die Härte in den unterschiedlichen Zonen des Schweißnahtgefüges bestimmt. Mit der vorliegenden Arbeit liegen Ergebnisse vor, die zur effizienteren Gestaltung von Schweißprozessen im Blechdickenbereich von 5 mm bis 8 mm beitragen können und gleichzeitig auf werkstoffspezifische Besonderheiten der austenitischen Stähle beim Laserstrahl-Plasma-Hybridschweißen mit einem pulverförmigem Zusatzwerkstoff hinweisen. N2 - The laser plasma hybrid welding process – as a novel type of laser-arc combination – is developed for welding fabrication of austenitic stainless steels. The design of a hybrid welding torch and the evaluation of the influence of important welding parameters on the weld constitute two major aspects of this work. Butt joints and overlap welds are fabricated in order to gain data, which are relevant to welding fabrication such as gap bridging ability. Metal powder is used as filler material, which is transferred to the process zone via the plasma torch. With the intention to get a better understanding of the interactions of plasma arc and laser beam process in the common welding zone, a model is developed that is based on the results of the welding experiments. This model takes into account the effects of individual welding parameters on process behaviour such as pore formation and, thus, indirectly implies the various forces on the molten pool. The model was derived from radiographic and metallographic examination of the welds as well as from observation of the hybrid welding process using a high speed camera. Additionally, metallurgical aspects or rather the solidification structures of the austenitic stainless steel welds represent another main focus of this research work. The solidification modes are identified and various process relevant influences are established. Moreover, the ferrite Content and the hardness of the different zones of the weld are measured. This work provides results that may contribute to increase the efficiency of welding processes in the plate thickness range of 5 mm to 8 mm. In addition, material-specific features of the austenitic steels during laser plasma hybrid welding with a metal powder as filler material are indicated. T3 - BAM Dissertationsreihe - 39 KW - Laserstrahl-Plasma-Hybridschweißen KW - austenitische Stähle KW - Hybridschweißprozess KW - Hybridschweißkopf KW - Erstarrung PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1195 SN - 978-3-9812354-2-5 SN - 1613-4249 VL - 39 SP - 1 EP - 151 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Flatten, Arnd T1 - Lokale und nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen N2 - Hochgeschwindigkeitsbeanspruchungen metallischer Bauteile sind bei einer Vielzahl ingenieurtechnischer Anwendungsbereiche, beispielsweise bei Crash- oder Falltests, bei Umform- oder Spanprozessen mit hohen Belastungsgeschwindigkeiten oder bei Aufprallproblemen von Komponenten schnell rotierender Bauteile auf das umgebende Gehäuse, z. B. bei Flugzeugturbinen, relevant. Dabei treten in dem beanspruchten Bauteil typischerweise Zonen mit großen, lokalisierten Deformationen auf, die auf die Entfestigung des Werkstoffs durch die Entwicklung von Schädigung und durch die Temperaturerhöhung infolge plastischer Dissipation zurückzuführen sind. Die Ausbildung von Scherbändern stellt dabei eine typische Form der Deformationslokalisierung dar. Die kontinuumsmechanische Modellierung solcher Vorgänge erfordert im Allgemeinen die Berücksichtigung einer Vielzahl von Faktoren und Effekten, wie beispielsweise dehnraten- abhängiges Materialverhalten, mit adiabatischer Erhitzung einhergehende thermische Entfestigung, Reibung und Kontakt sowie Schädigung. Darüber hinaus sind die genannten Effekte in dem Rahmen der Theorie großer Deformationen zu betrachten. Dehnratenabhängige ”lokale“ Modelle resultieren dabei nicht zwangsläufig in einer physikalisch sinnvollen Scherbandabbildung, d. h. in einer endlichen Scherbandbreite. Die innere Länge, die eine Begrenzung des Lokalisierungsvolumens darstellt, strebt für verschiedene im Rahmen der Simulation von Hochgeschwindigkeitsbelastungen eingesetzte, nichtlinear dehnratenabhängige Modelle, wie z.B. Potenzgesetz-Modelle oder dem Modell nach JOHNSON&COOK, mit infolge von Entfestigung abnehmender Spannung sowie zunehmender plastischer Dehnrate sehr stark gegen null. Dadurch tritt ein Verlust der lokalisierungsbegrenzenden Wirkung dieser ratenabhängigen Modelle ein, so dass insbesondere jedes, auf diesen Modellen aufbauende Finiten-Element Verfahren eine pathologische Netzabhängigkeit der Ergebnisse aufweist. ”Nicht-lokale“ Gradientenmodelle der Plastizität sind dazu geeignet, die beschriebenen Nachteile zu vermeiden. Die innere Länge dieser Modelle weist eine im Vergleich zu lokalen Modellen deutlich reduzierte Abhängigkeit von dem vorherrschenden Spannungszustand sowie der plastischen Dehnrate auf und wird darüber hinaus wesentlich durch den Wert des nichtlokalen Modellparameters beeinflusst. Die Größenordnung der inneren Länge bleibt dabei selbst für kleine Werte dieses Parameters auch mit Einsetzen von Lokalisierungseffekten zunächst erhalten. Infolge der numerischen Umsetzung nicht-lokaler Modelle mittels der Methode der Finiten- Elemente zeigt sich, dass im Gegensatz zu den auf lokalen Modellen basierenden Verfahren das Volumen der Lokalisierungszone bei stetiger Netzverfeinerung gegen einen endlichen Wert konvergiert. Damit gelingt es durch die Verwendung nicht-lokaler Modelle, die Ausbildung endlicher Scherbanddicken diskretisierungsunabhängig zu simulieren und im Rahmen der Kontinuumsmechanik eine sinnvolle Lösung des zugrunde liegenden physikalischen Problems zu gewährleisten. N2 - High-speed loading of metals is encountered in several engineering applications, for example in crash and drop tests as well as in high-speed cutting or forming processes. Likewise, the impact of rapidly rotating structural components on their surrounding containment, encountered for instance in aircraft turbines, reveals significant, high loading velocities. Typically, this type of loading results in zones with highly localized deformation within the stressed component, as a consequence of softening according to damage evolution and heating due to plastic dissipation. In this context, the formation of shear-bands represents a typical form of thermomechanical localization. In general, the continuum mechanical description and modelling of such events involves a variety of processes and effects such as high strain-rates, hardening behaviour, thermal softening as a result of adiabatic heating, friction and contact as well as damage. Further, These effects need to be considered in the framework of large deformation theory. Rate-dependent ”local” models do not generally result in a physical shear-band development, e.g., involving a finite, non-vanishing shear-band thickness. In general, the intrinsic length incorporated by the rate-dependency of the models acts as a localization limiter. However, for various nonlinearly rate-dependent models, such as power-law models or the model according to JOHNSON&COOK, which are frequently used for the simulation of high-speed loading applications, this intrinsic length tends to zero owing to both increasing strain-rates and stress-drop due to softening behaviour. Thus, a loss of the localization limiting property of these rate-dependent models is encountered, incorporating that each finite-element method based upon these models yields a pathological mesh-dependence of the results. ”Non-local” gradient-plasticity models based on a corresponding extension of the rate-dependence of the material behaviour are appropriate to avoid these disadvantages. In contrast to local models, the intrinsic length of these non-local models reveals a significantly reduced dependence on both the prevailing stress state and the plastic strain-rate but is dominantly influenced by the non-local material parameter. According to the numerical simulation of localization phenomena using finite-element techniques, the domain of the localization zone does converge to a finite volume for subsequent mesh-refinement. Thus, using non-local models it is possible to simulate the development of finite shear-band widths and to ensure a physically reasonable solution of the governing problem within the framework of continuum mechanics. T3 - BAM Dissertationsreihe - 38 KW - Finite-Elemente-Methode KW - Hochgeschwindigkeitsbeanspruchungen KW - Gradienten-Plastizität KW - Adiabatische Scherbänder KW - Komponentensicherheit KW - Finite-Element-Method KW - High-Speed Loading KW - Gradient Plasticity KW - Adiabatic Shear Bands KW - Component-Safety PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1200 SN - 978-3-9812072-9-3 SN - 1613-4249 VL - 38 SP - 1 EP - 199 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Anders, Stefan T1 - Sensitivitätsanalyse des Eigenspannungszustandes eines Composite-Hybridhochdruckbehälters N2 - Die Automobilindustrie sucht nach Lösungen, um Emissionen zu reduzieren, und nach Alternativen zu fossilen Brennstoffen, deren Verfügbarkeit über die nächsten Dekaden abnehmen wird. Aus diesem Grund gewinnen komprimiertes Erdgas sowie Wasserstoff als Energieträger zunehmend an Bedeutung. Um befriedigende Reichweiten mit komprimiertem Gas zu erreichen, wird ein Betriebsdruck von 20 MPa bis zu 70 MPa (nur Wasserstoff) angewandt. Die Hochdruckbehälter müssen die statischen und die dynamischen Innendruck- sowie die thermische Belastung ertragen. Gleichzeitig soll der Behälter eine sichere, aber auch eine wirtschaftliche Leichtbaustruktur sein, welche nur mit Hybridstrukturen (Metall- oder Polymerliner mit Kohlefaser- bzw. Glasfaserumwicklung an der Außenseite) realisiert werden kann. Wegen der Vielzahl an veränderlichen Produktionsparametern zeigen Composite- und speziell Hybridstrukturen große Streuungen in ihrem Strukturverhalten. Die dargestellten Versuchsdaten, welche an industriell gefertigten Composite-Hybriddruckbehältern gemessen wurden, zeigen dieses Problem. Um das Material im Sinne des Leichtbaus effizient zu nutzen und um gleichzeitig einen hohen Grad an Sicherheit mit reproduzierbarem Strukturverhalten zu realisieren, wird ein besseres Verständnis für das Verhalten des Hybriddesigns benötigt. Neben der Betrachtung der Imperfektionen im Composite und der benötigten Messmethoden für die Charakterisierung der Strukturparameter ist das Hauptanliegen der vorliegenden Arbeit die Simulation des Eigenspannungszustandes, resultierend aus der Produktion und dem Betrieb, sowie dessen Auswirkung. Um den Einfluss der verschiedenen Strukturparameter auf das Verhalten des Hochdruckbehälters mittels einer Sensitivitätsanalyse zu untersuchen, wurde ein geschlossen analytisches parametrisiertes Modell erstellt. Für die effektive Parametervariation sind hierfür analytische Modell von Vorteil im Vergleich zu FEM-Modellen. Das vorgestellte nichtlineare analytische Modell berücksichtigt den Einfluss des Eigenspannungszustandes des Autofrettageprozesses, in welchem der Liner kontrolliert durch Innendruck plastifiziert wird. Ebenso werden die Steifigkeitsdegradation infolge von Zwischenfaserbrüchen im Composite bei der Erstbeanspruchung (Degradationsmodell nach Puck), die thermischen Eigenspannungen infolge der verschiedenen Wärmeausdehnungskoeffizienten und der temperaturabhängige E-Modul des Harzsystems berücksichtigt. Die umfangreichen Versuchsdaten validieren die analytische Simulation zufriedenstellend. Die Simulation zeigt, dass der Schichtspannungszustand inklusiv des Eigenspannungszustandes stark von den Parametern Temperatur und Innendruck während der Produktion sowie im Betrieb abhängig sind. Diese Effekte sind bei einer erweiterten Spannungsanalyse der Behälterstruktur zu berücksichtigen. N2 - The automotive industry is looking for solutions to reduce emissions and the dependency on fossil fuels, whose availability is predicted to decrease over the next decades. For this reason, compressed natural gas and hydrogen as energy are gaining more and more in importance as replacements for fossil fuels. In order to achieve a satisfying energy density for automotive application with compressed gas storage systems an operating pressure from 20 MPa up to 70 MPa (hydrogen only) is applied. The pressure cylinder has to withstand the static and dynamic pressure as well as temperature loads. At the same time the cylinder has to be an economical and safe light weight structure which can be accomplished with hybrid structures (metal or polymer liner with carbon or glass fiber winding on the outside) only. Due to their multi-dependency on production parameters composite structures and especially hybrid structures show a high spread in structural parameters. The presented test data which had been measured on industrial composite-hybrid pressure cylinders of the same type revealed this problem. In order to exploit the material properties with a high degree of lightweight optimization efficiently, a high level of safety and, with an improved degree of reproducibility at the same time, a better understanding of the structural behavior of hybrid design is necessary. Besides considering the imperfection of the composite layer and the use of appropriate measuring methods to determine the structural parameters, the main concern of the presented work is to simulate the level and the influence of residual stresses occurring during production and operation. To investigate the influence of variable structural parameters on the behavior of the high pressure cylinder by means of a sensitivity analysis a parametric analytical closed form model has been built. For this application, which is characterized by a wide range of parameters, analytical models are superior to FEM-models in flexibility and processing speed. The presented nonlinear analytical model considers the influence of the residual stresses introduced purposely by the autofrettage process in which the metal liner is loaded beyond the yielding point. It also takes into account the degradation of Young’s modulus caused by inter-fibre fracture during the first pressurization (according to Puck’s action-plane fracture criteria), the residual stress due to the different thermal coefficients of expansion (composite and metal) and the influence of temperature on the resin system close to the glass transition temperature. The large amount of acquired test data validated the analytical simulation satisfactorily. The simulation showed that the layer’s stress level including the residual stress strongly depends on the parameters temperature and pressure during production and also during operation of the cylinder. These effects have to be considered for a sophisticated stress analysis of the structure. T3 - BAM Dissertationsreihe - 37 KW - Autofrettage, KW - Composite-Metall-Hybrid Hochdruckbehälter KW - CLT KW - Temperatur-Fertigungseigenspannungen KW - 2D geschlossen-analytische Spannungsanalyse PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1210 SN - 978-3-9812072-8-6 SN - 1613-4249 VL - 37 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-121 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wongpanya, Pornwasa T1 - Effects of Heat Treatment Procedures on the Cold Cracking Behaviour of High N2 - Most of the research on Hydrogen Assisted Cold Cracking (HACC) in high strength steel welds conducted over the last several decades has focused on single-pass welds, especially considering materials with yield strengths of about 700 MPa. Most of the weld procedure specifications, guidelines and standards targeted at HACC avoidance recommend preheating procedures. Application of such regulations to multi-pass welds of modern high strength structural steels with yield strengths of up to 1300 MPa is very limited. Actually there is no decent knowledge and only an empirical experience how to weld such joints in real components subjected to a respective shrinkage restraint. Consequently, an increasing number of failure cases, partly of catastrophic dimensions, have been reported in the present decade. The present contribution is targeted to close this knowledge gap by elucidating the principal effects of various inhomogeneous Hydrogen Removal Heat Treatment (HRHT) procedures on the HACC avoidance in high strength structural steel welds. As a typical representative in the upper yield strength range of this category of materials, a S 1100 QL weld using UNION X96 filler wire has been chosen. The results were achieved by indirectly coupled thermal, structural and hydrogen diffusion finite element modeling of HACC in single-layer and five-layer welded V-bevelled butt joints with plate thicknesses of 20.0 mm and 12.0 mm, respectively, at realistic restraint conditions and have been partly been confirmed by respective Instrumented Restraint Cracking (IRC) Tests. The numerical simulations are based on the interacting three local effects on HACC, i.e. local microstructure, local mechanical load and local hydrogen concentration. HACC has thus been regarded as a cracking phenomenon occurring, if the local mechanical load in a specific microstructure exceeds the limit for the respective hydrogen concentration. The various heat treatments proposed in literature, guidelines, specifications and standards, i.e. sole preheating, controlled interpass temperature, combined preheating and controlled interpass temperature application as well as postheating have been investigated with respect to their effects on the mechanical loading of the butt joints in terms of stresses and strains as well as on the hydrogen removal capabilities. As a particular item, a numerical model for Hydrogen Assisted Stress Corrosion Cracking (HASCC) has been developed further that it can be applied to HACC, in order to study, how such heat treatments influence crack initiation and propagation. By such modeling procedures as the most important results have been achieved: I. Further development and adaptation of a model for hydrogen assisted cracking to HACC and usage validation of the model for this material. II. Evaluation of the effects of pre- and postheating as well as interpass temperature on the stress-strain distribution in multi-pass welds. III. Clarification of the difference between single- and multi-pass welding with respect to stress-strain and hydrogen distribution as well as to HACC initiation and propagation. IV. Establishment of practical hydrogen removal heat treatment diagrams. V. Assessment of the effects of the amount of hydrogen picked up during welding on crack location and propagation. T3 - BAM Dissertationsreihe - 36 KW - High strength steel KW - numerical simulation KW - IRC test KW - hydrogen assisted cold cracking KW - crack Avoidance PY - 2008 SN - 978-3-9812072-7-9 SN - 1613-4249 VL - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hölck, Ole T1 - Gas Sorption and Swelling in Glassy Polymers Combining Experiment, Phenomenological Models and Detailed Atomistic Molecular Modeling N2 - Durchgeführte Arbeiten: In der vorliegenden Arbeit werden grundlegende Fragen zur Gas-Sorption und der damit verbundenen Quellung von glasigen Polymeren untersucht. Dabei wurde eine kombinierte Analyse aus experimenteller Charakterisierung, detailliert atomistischer Modellierung und phänomenologisch-theoretischer Betrachtung angewandt. Drei unterschiedliche Polymere, ein Polysulfon (PSU), ein Polyimid (PI4) und ein neuartiges Polymermaterial (PIM-1), wurden experimentell bezüglich ihrer Sorptions- und Quellungseigenschaften unter CO2- und CH4-Atmosphären bis zu 50 bar charakterisiert. Die Kinetik der Prozesse der experimentell gemessenen Gasaufnahme und Volumendilatation wurde analysiert, wobei zwei Anteile unterschieden werden konnten: Ein diffusiv/elastischer Anteil und ein relaxiver Anteil, der bei längerer Messzeit und höheren Drücken signifikant wird. Zusätzlich zu dieser Ermittlung von Konzentrations-Druck- bzw. Dilatations-Druck- Isothermen (differentielle Messung) wurden sogenannte integrale Sorptions- und Dilatationsmessungen (‘Ein-Schritt’-Messungen) durchgeführt, die als Referenz für eine entsprechende molekulardynamische (MD) Simulation elastischer Dilatationseffekte dienten. Für die detailliert atomistischen MD Simulationen wurden equilibrierte Packungsmodelle der (ungequollenen) Polymere erstellt. Für jeweils einen weiteren Referenzzustand, charakterisiert durch Druck, aufgenommene Gasmenge und Quellung, wurden CO2- und CH4-beladene (gequollene) Packungsmodelle erstellt und durch NpT -MD Simulation equilibriert. Die Packungsmodelle der reinen (ungequollenen) Polymere und der CO2- gequollene Zustand wurden jeweils bezüglich ihres freien Volumens quantitativ charakterisiert. Die gefundenen Unterschiede konnten weiterhin durch eine detaillierte 3D- Visualisierung des Freien Volumens veranschaulicht werden. Für alle Packungsmodelle wurden großkanonische Monte Carlo (gcmc) Simulationen durchgeführt, die jeweils zu Konzentrations-Druck-Isothermen führten. Experimentelle Daten und Simulationsergebnisse wurden in Bezug auf drei theoretische Modelle (Dual Mode Sorption Model (dm), Site Distribution Model (sd), und Non-Equilibrium Thermodynamics of Glassy Polymers (net-gp)) ausgewertet und diskutiert. Außerdem wurden die ungequollenen Packungsmodelle nach experimenteller Spezifikation aus integralen Sorptionsmessungen mit dem jeweiligen Gas beladen und die elastische Dilatation während der folgenden NpT -MD Equilibrierung beobachtet. Ergebnisse: Die konsistente Anwendung der Ergebnisse der kinetischen Analyse führt zu einer verbesserten Übereinstimmung theoretischer Modelle mit dem Experiment und deutlich zuverlässigerer Bestimmung von Modellparametern. Deren physikalische Bedeutung ermöglicht erste Ansätze für eine universelle Beschreibung grundlegender Stofftransporteigenschaften. Eine mögliche Limitierung des sd Modells bezüglich der Anwendbarkeit auf hochfreivolumige Polymere, wie sie im Rahmen dieser Arbeit festgestellt wurde, konnte dahingehend erklärt werden, dass die Gas-Matrix Wechselwirkung eine andere Besetzungsreihenfolge von Sorptionsplätzen bedingt, als bisher vom sd Modell angenommen. Die simulierten Isothermen konnten durch die Einführung eines linearen Übergangs zwischen der jeweils für ungequollenes und gequollenes Packungsmodell berechneten gcmc-Isothermen in gute Übereinstimmung mit dem Experiment gebracht werden. Die Verwandschaft der Methode mit dem net-gp Modell wird erörtert und die Ergebnisse mit der Vorhersage der Sorption des Modells verglichen. Die Freie-Volumen-Analyse zeigt deutliche Unterschiede zwischen den Polymeren PSU und PI4 einerseits und PIM-1 andererseits. In PIM-1 liegt ein großer Teil des Freien Volumens in einer Art losem Verbund einzelner ‘Löcher’ vor, der in dieser Arbeit als ‘Lochphase’ (‘void phase’) diskutiert wird. Im Gegensatz zu den gequollenen Packungen von PSU zeigen diejenigen von PI4 bereits Ansätze zur Bildung einer solchen Lochphase. Diese ist in gequollenen PIM-1 Packungen stärker ausgeprägt. Die gefundenen Größenverteilungen Freier Volumen-Elemente in den ungequollenen Packungsmodellen zeigen eine gute Übereinstimmung mit den aus der sd Analyse erhaltenen Gaußverteilungen. Außerdem konnte die elastische Dilatation, die in integralen Messungen experimentell beobachtet wird, erfolgreich in entsprechenden MD-Simulationen nachempfunden werden. Ein Zusammenhang zwischen den Abweichungen der Absolutwerte und möglichen anelastischen Reaktionen der Polymeratrix wird diskutiert. Die gute Übereinstimmung experimenteller Ergebnisse mit den Resultaten aus der Simulation sorgfältig ausgewählter Aspekte der Gas-Sorption und Quellung in glasigen Polymeren bestätigt sowohl die Qualität der erstellten Packungsmodelle als auch die Vorteile der generellen Herangehensweise. Die Ergebnisse dieser Arbeit zeigen, dass die Diskrepanz in Zeitskalen von Experiment und Simulation und die daraus resultierende scheinbare Inkompatibilität mit Hilfe hänomenologischer Modelle überbrückt werden kann, und damit wertvolle Erkenntnisse über die zugrunde liegenden Phänomene gewonnen werden. N2 - The behavior of amorphous polymers in contact with gas atmospheres is still an area of both fundamental scientific and applied industrial research. Applications range from the use as barrier materials or protective coatings to active layers in sensor applications (‘artificial nose’) and the large field of gas separation membranes. In all these applications, high concentrations of small penetrant molecules may lead to a plasticization of the polymer. This effect is utilized in processing applications, where supercritical carbon dioxide (CO2) can be used as a plasticizer.4 The phenomenon of penetrant induced plasticization of glassy polymers is also observed in gas separation membranes.5 In the process of natural gas sweetening, the CO2 content of the gas mixture is reduced by separation of the CO2 from the fuel gas methane (CH4) to avoid corrosion of pipelines and to enhance the fuel value. Solubility and diffusivity of the respective gas determine the separation performance of the membrane material, i.e., the permselectivity. Both parameters are connected to the internal structure of the polymer and its free volume. To achieve high throughputs, e.g. to enhance costeffectiveness, it is desirable to increase the CO2 solubility and mobility. However, the observed plasticization and the associated relaxations in the polymer matrix change its structure and free volume, and thereby affect the selectivity of the material.6 In addition, other properties of the polymer are influenced, e.g. a reduction of glass transition temperature,7 yield stress8 and creep compliance9 have been observed. The origin and mechanism of these structural relaxations are poorly understood, as are the factors that influence solubility and mobility of the plasticizing penetrant. This lack of knowledge leads to a development of new or optimized materials, which is in part determined by trial and error. A deeper understanding of the phenomena that accompany gas sorption on the molecular level is therefore needed to control material properties and enable a targeted design of functional materials. Therefore, in this work, laboratory experiments are combined with detailed atomistic molecular simulations. Modelling. In detailed atomistic molecular modeling, the interactions of an assembly of atoms, e.g. a polymer molecule, are calculated according to known physical laws. Several established analysis methods allow an indirect determination of certain properties of such assemblies, others can even be directly calculated.10 However, CPU-power limits both the size and the simulation time of such assemblies. The size of the simulated packing models used in this work (_ 5000 atoms) ranges among the larger models found in the literature. Forcefield based Molecular Dynamics (MD) simulations are calculated in femtosecond steps, but reliable results are usually not obtained until a nanosecond of net simulation time has been performed. Millions of interactions need to be calculated, making the time effort for these ‘virtual experiments’ comparable to laboratory experiments. However, increasing speed of single processors and the possibility of parallel processing will further reduce the evaluation times for such simulations in the future. The goal of computer simulations is therefore to establish reliable methods to predict material properties. Properties of new materials could then be assessed by simulations first and only the most promising materials need to be synthesized for further testing, reducing the expense of trial and error. Although some methods already exist to predict polymer/gas properties from simulations, which show well agreeing results in ideal circumstances, they frequently fail when applied to less moderate conditions, e.g., high penetrant concentrations, long time scales, large penetrants etc. The aforementioned gas induced plasticization of polymers presents such a case where the gap of time scales between experiment and available simulation time amounts to several orders of magnitude. The time scale of simulations is limited to a few nanoseconds and therefore it is not possible to directly simulate relaxations of the glassy matrix as they are observed experimentally. Experiments, on the other hand, yield results of the real macroscopic system, and though molecular details cannot be observed individually, the accumulated effects permit the analysis through models on a statistical or phenomenological basis. It is the aim of this work to survey new approaches of a combined analysis of experimental and modelling results and to establish, where possible, a convergence of boundary conditions or, alternatively, an identification and isolation of comparable aspects of these seemingly incompatible methods of research. To this effect, phenomenological models are utilized as a means of interpretation of experimental data as well as to construe modelling results. T3 - BAM Dissertationsreihe - 35 KW - Glasige Polymere KW - Sorption KW - Quellung KW - Simulation KW - Gastransport KW - glassy polymers KW - sorption KW - swelling KW - simulation KW - gas transport PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1235 SN - 978-3-9812072-5-5 SN - 1613-4249 VL - 35 SP - 1 EP - 135 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Maltsev, Sergey T1 - Structural elucidation of nanocrystalline biomaterials N2 - Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) [2] was the primary technique used due to its advantages in characterising poorly ordered and disordered materials [3]. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP) [4], etc.) as well as their modifications and high-end techniques (2D HETCOR [5], REDOR [6], etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named “Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments” [7] has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO4 2-(and some CO3 2-) groups instead of PO4 3- groups and water instead of OH- groups. - The organic-mineral interface of bone was studied in order to clarify which organic molecules are in the closest spatial proximity to the bone mineral phase and to investigate the influence of the organic matrix on the mineral formation. It was found that most probably these molecules are glycosaminoglycan rather than a protein. T3 - BAM Dissertationsreihe - 34 KW - NMR KW - bones KW - organic-mineral interface KW - nanocrystalline KW - biomaterials PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1248 SN - 978-3-9812072-4-8 SN - 1613-4249 VL - 34 SP - 1 EP - 137 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -