TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471267 DO - https://doi.org/10.1002/open.201800231 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472325 DO - https://doi.org/10.1039/c8nr08595a SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Otto, S. A1 - Dorn, M. A1 - Heinze, K. A1 - Resch-Genger, Ute T1 - Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength N2 - Two nanosensors for simultaneous optical measurements of the bioanalytically and biologically relevant analytes temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nmsized silica-coated polystyrene nanoparticles (PS-NPs) doped with a near-infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3, CrBPh4) and an inert reference dye (Nile Red, NR or 5,10,15,20tetrakis(pentafluorophenyl) porphyrin, TFPP) and are covalently labeled with pHsensitive fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal spectrally distinguishable emission bands, allowing for ratiometric intensity-based and time-resolved studies in the visible and near-infrared wavelength region. Studies in PBS buffer solutions and in a model body liquid demonstrate the applicability of these nanosensors for the sensitive luminescence readout of TOP simultaneously at the same spatialposition. KW - Medical diagnostics KW - Sensor KW - Nanoparticle KW - Fluorescence KW - Nanosensor KW - Oxygen KW - Temperature KW - pH KW - Ratiometric KW - Lifetime KW - NIR KW - Cr(III) complex KW - Dye KW - FITC KW - Environment PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05060 SN - 0003-2700 VL - 91 IS - 3 SP - 2337 EP - 2344 PB - ACS AN - OPUS4-47455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar smallmolecule detection directly in aqueous samples N2 - Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phasetransfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world. KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Core-shell particles KW - Droplets PY - 2018 DO - https://doi.org/10.1016/j.bios.2017.07.053 SN - 0956-5663 VL - 99 IS - 1 SP - 244 EP - 250 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-42258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique N2 - The synthesis, characterization, and application of mesoporous materials containing boron–dipyrromethene (BODIPY) moieties that allow the sensitive and selective detection of HgII in aqueous environments by fluorescence enhancement is reported. For this purpose, BODIPY dye I containing a thia‐aza crown ether receptor as the fluorescent probe for the detection of HgII in aqueous environments is encapsulated into mesoporous materials to avoid self‐quenching or aggregation in water. Determination of HgII is accomplished within a few seconds with high selectivity and sensitivity, reaching a limit of detection of 12 ppt. The determination of trace amounts of HgII in natural waters and in fish extracts is demonstrated by using our sensing material. The incorporation of the material into several μ‐PAD strips yields a portable, cheap, quick, and easy‐to‐handle tool for trace HgII analysis in water. KW - Dyes/pigments KW - Test strips KW - Mesoporous materials KW - Mercury KW - Fluorescence PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-460138 DO - https://doi.org/10.1002/open.201800277 SN - 2191-1363 VL - 7 IS - 12 SP - 957 EP - 968 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Cui A1 - Resch-Genger, Ute A1 - Otto, S. A1 - Dorn, M. A1 - Heinze, K. T1 - Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength N2 - Two nanosensors for simultaneous optical measurements of temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nm-sized silica-coated polystyrene nanoparticles (PS-NPs) doped with the near infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3 CrBPh4)[1][2] and an inert reference fluorescence dye (Nile Red NR or 5,10,15,20tetrakis-(pentafluorophenyl) porphyrin TFPP) and are covalently labeled with the pHsensitive fluorophore fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal distinguishable emission spectra suitable for ratiometric intensity-based and time-resolved studies in the visible and near infrared spectral region. The core-shell nanostructure of these sensors reveals high colloidal stability in various aqueous media. Studies in PBS buffer solutions and in a model body liquid demonstrate the applicability of the TOP nanosensors for optically detecting the three bioanalytically and biologically relevant analytes temperature, oxygen and pH simultaneously at the same position. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Sensor KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Oxygen KW - Temperature KW - pH KW - Ratiometric KW - Lifetime KW - NIR KW - Cr(III) complex KW - FITC KW - Dye KW - Environment KW - Medical diagnostics PY - 2019 AN - OPUS4-47698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Cui A1 - Resch-Genger, Ute A1 - Otto, S. A1 - Dorn, M. A1 - Heinze, K. T1 - Ratiometric luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength N2 - Two nanosensors for simultaneous optical measurements of temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nm-sized silica-coated polystyrene nanoparticles (PS-NPs) doped with the near infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3 CrBPh4)[1][2] and an inert reference fluorescence dye (Nile Red NR or 5,10,15,20-tetrakis-(pentafluorophenyl) porphyrin TFPP) and are covalently labeled with the pH-sensitive fluorophore fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal distinguishable emission spectra suitable for ratiometric intensity-based and time-resolved studies in the visible and near infrared spectral region. The core-shell nanostructure of these sensors reveals high colloidal stability in various aqueous media. Studies in PBS buffer solutions and in a model body liquid demonstrate the applicability of the TOP nanosensors for optically detecting the three bioanalytically and biologically relevant analytes temperature, oxygen and pH simultaneously at the same position. T2 - 2nd European Biosensor Symposium CY - Florenz, Italy DA - 18.02.2019 KW - Sensor KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Oxygen KW - Temperature KW - pH KW - Ratiometric KW - Lifetime KW - NIR KW - Cr(III) complex KW - FITC KW - Dye KW - Environment KW - Medical diagnostics PY - 2019 AN - OPUS4-47700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geissler, Daniel A1 - Wegmann, Marc A1 - Hoffmann, Katrin A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - NanoGenotox - Automatable Determination of the Genotoxicity of Nanoparticles with DNA-based Optical Assays N2 - Nanomaterials are used in many different applications in the material and life sciences. Examples are optical reporters, barcodes, and nanosensors, magnetic and optical contrast agents, and catalysts. Due to their small size and large surface area, there are also concerns about their interaction with and uptake by biological systems. This has initiated an ever increasing number of cyctoxicity studies of nanomaterials of different chemical composition and surface chemistry, but until now, the toxicological results presented by different research groups often do not address or differ regarding a potential genotoxicity of these nanomaterials. This underlines the need for a standardized test procedure to detect genotoxicity.1,2 Aiming at the development of fast, easy to use, and automatable microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the determination of DNA double strand breaks as a sign for genotoxicity.3 Here, we present first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. References. (1) Landsiedel, R.; Kapp, M. D.; Schulz, M.; Wiench, K.; Oesch, F., Reviews in Mutation Research 2009, 681, 241-258. (2) Henriksen-Lacey, M.; Carregal-Romero, S.; Liz-Marzán, L. M., Bioconjugate Chem. 2016, 28, 212-221. (3) Willitzki, A.; Lorenz, S.; Hiemann, R.; Guttek, K.; Goihl, A.; Hartig, R.; Conrad, K.; Feist, E.; Sack, U.; Schierack, P., Cytometry Part A 2013, 83, 1017-1026. T2 - 9th International Conference on Nanotoxicology - New tools in risk assessment of nanomaterials CY - Dusseldorf/Neuss, Germany DA - 18.09.2018 KW - Nano KW - Nanotoxicity KW - Fluorescence KW - Quantum dot KW - Surface KW - Passivation shell KW - Automated assay KW - Nanoparticle PY - 2018 AN - OPUS4-47540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Tailored fluorescent solvatochromic test strips for quantitative on-site detection of gasoline fuel adulteration N2 - Gasoline adulteration is a frequent problem world-wide, because of the chance of quick, maximized profits. However, addition of cheaper ethanol or hydrocarbons like kerosene does not only result in economic damage but also poses problems for vehicles and the environment. To enable law enforcement forces, customers or enterprises to uncover such a fraudulent activity directly upon suspicion and without the need to organize for sampling and laboratory analysis, we developed a simple strip-based chemical test. Key to the favorable performance was the dedicated materials tailoring, which led to test strips that consisted of a cellulose support coated with silica, passivated with hexamethyldisilazane and functionalized covalently with a molecular probe. The probe fluoresces brightly across a broad solvent polarity range, enabling reliable quantitative measurements and data analysis with a conventional smartphone. The assays showed high reproducibility and accuracy, allowing not only for the detection of gasoline adulteration but also for the on-site monitoring of the quality of commercial E10 gasoline. KW - Gasoline KW - Adulteration KW - Test strips KW - Benzin KW - Teststreifen KW - Fluorescence KW - Cellulose KW - Zellulose KW - Fluoreszenz PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479231 UR - https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc04818e DO - https://doi.org/10.1039/C8TC04818E SN - 2050-7526 VL - 7 IS - 8 SP - 2250 EP - 2256 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-47923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Reiss, P. A1 - Carriere, M. A1 - Pouget, S. A1 - Resch-Genger, Ute T1 - Luminescent Quantum dots – the next-generation nano light bulbs N2 - Fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), enabled many advancements in biotechnology, photovoltaics, photocatalysis, quantum computing and display devices. The high versatility of this nanomaterial is based on their unique size-tunable photoluminescence properties, which can be adjusted from the visible to the near-infrared range. In contrast to other nanomaterials, QDs made the transition from a laboratory curiosity to the utilization in commercial products, like the QLED television screen or in smartphone displays. The best investigated QDs are composed of heavy metals like cadmium or lead, which is not the best choice in terms of toxicity and environmental pollution. A more promising material is Indium Phosphide (InP), which is also currently used by Samsung, Sony and co. in the QLED displays. In this contribution, I would like to give you a sneak peek behind the curtains of nanomaterial synthesis and show how this material is produced, how to stabilize their structural properties, and assess their toxicity in environmentally relevant conditions. Furthermore, I would like to present a synthesis method to accomplish the last open challenge in display technology of a blue luminescent LED based on QDs by introducing a new element to the InP QDs. T2 - The Berlin Postdoc Day CY - Berlin, Germany DA - 03.11.2022 KW - InP KW - Quantum dots KW - Fluorescence KW - Aging KW - Doping KW - Nanomaterial KW - Cytotoxicity PY - 2022 AN - OPUS4-56194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Weigert, Florian A1 - Wegner, Karl David T1 - Nanocrystals with Luminescence in the vis, NIR and SWIR – Photophysics and Applications N2 - Luminescent nanocrystals like core/shell semiconductor quantum dots and lanthanide doped nanophosphors as well as gold nanoclusters with emission in the visible (vis) and particularly in the near infrared (NIR) and short wavelength infrared (SWIR) region have been increasingly used as reporters in the life sciences and for bioimaging studies in the last years. This has led to sophisticated core-shell particle architectures of different chemical composition utilizing semiconductor quantum dots and lanthanide-based nanocrystals and initiated the design of gold nanoclusters with different ligands. In addition, this led to an increasing number of quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield to identify optimum particle structures. In the following, an overview of different classes of nanocrystalline emitters and their photophysics is provided and examples for the absolute characterization of the photoluminescence properties of these different vis/NIR/SWIR emitters are shown including excitation power density-dependent studies on the ensemble and single particle level. Also, the impact of such measurements on a profound mechanistic understanding of the underlying nonradiative deactivation pathways is highlighted as required for reporter design. T2 - MIMIT 2019 CY - Peking, People's Republic of China DA - 18.10.2019 KW - Fluorescence KW - Quantum yield KW - Integrating sphere spectroscopy KW - Dye KW - Nanocrystal KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide nanoparticle KW - Old nanocrystal KW - Imaging KW - Lifetime KW - Nanoparticle PY - 2019 AN - OPUS4-49361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea ED - Reese, M. ED - Goldhammer, T. ED - Schmalsch, C. ED - Weber, J. ED - Bannick, C. G. T1 - Spectroscopic evidence for adsorption of natural organic matter on microplastics N2 - The interaction of microcroplastics (MP) with dissolved organic matter, especially humic substances, is of great importance in understanding the behavior of microplastics in aquatic ecosystems. Surface modification by humic substances plays an essential role in transport and interaction of MP with abiotic and biotic components. Previous studies on the interaction between MP and humic substances were largely based on a model compound, humic acid (Sigma-Aldrich). In our work, we therefore investigated the interaction of natural organic matter (NOM) sampled from a German surface water with low-density polyethylene particles (LDPE). Highpressure size exclusion chromatography (HPSEC) and UV/vis absorption and fluorescence spectroscopy were used to characterize the incubation solutions after modifications due to the presence of LDPE, and Raman spectroscopy was used to characterize the incubated microplastics. While the studies of the solutions generally showed only very small effects, Raman spectroscopic studies allowed clear evidence of the binding of humic fractions to MP. The comparison of the incubation of NOM and a lignite fulvic acid which also was tested further showed that specific signatures of the humic substances used could be detected by Raman spectroscopy. This provides an elegant opportunity to conduct broader studies on this issue in the future. KW - Humic matter KW - Raman KW - HPSEC KW - Fluorescence KW - MCR PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574519 DO - https://doi.org/10.1002/appl.202200126 SN - 2702-4288 SP - 1 EP - 30 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Immunoanalytical methods for screening and monitoring in environmental analysis N2 - A vast number of emerging pollutants has been detected in the environment over the last decades. Analytical methods suitable for trace analysis are needed that are desirably also fast, inexpensive and, if possible, robust and portable. Immunoanalytical methods which are available in a broad range of formats, can be profitably used here to analyze for the distribution and the trends of concentration levels of contaminants in the environment. Some of these formats are single-analyte but high-throughput methods. In order to use them wisely, indicator substances, sometimes called anthropogenic markers, should be selected and used in screening approaches. Other methods are suitable to be performed on portable instrumentation in the field (on-site) or in facilities such as wastewater treatment plants for on-line monitoring. Furthermore, there are the socalled array technologies that allow for parallel analysis of several analytes of interest (multiplexing). The microtiter-plate based ELISA (Enzyme-linked Immunosorbent Assay) is the method of choice for the analysis of a large number of samples [1]. ELISA screening data for anthropogenic markers such as the antiepileptic carbamazepine, the analgesic diclofenac, the anti-histaminic cetirizine, the steroid hormone estrone, the antimicrobial sulfamethoxazole, the stimulants caffeine and cocaine, the priority pollutant bisphenol A, and the bile acid isolithocholic acid [2] are presented. For on-site screening and monitoring, simpler formats, like mix-and-read assays, e.g. the Fluorescence Polarization Immunoassay (FPIA) or Lateral-flow Immunoassays (LFIA) are more suitable tools. Electrochemical formats run on portable devices provide additional advantages as no light source is required. Some examples are presented and discussed. The suitability of multi-analyte formats such as immunomicroarrays depends on the choice of a signal-producing system that provides small uncertainties and good reproducibility of the measurements. Biochip (“flat”) arrays read out on slide scanners and bead-based (“suspension”) arrays read out in flow cytometers are two options and show their distinct pros and cons. Altogether these approaches show the great potential immunoanalytical methods provide for the screening for environmental contaminants in the aquatic environment. T2 - analítica 2018 CY - Porto, Portugal DA - 26.03.2018 KW - Carbamazepine KW - Caffeine KW - Diclofenac KW - LC-ELISA KW - Fluorescence PY - 2018 AN - OPUS4-44691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -