TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - A new tool in material science - Targeted disruption of melanin synthesis in rock-inhabiting fungi N2 - The ability to survive almost absolute dehydration through air-drying is a remarkable feature of rock-inhabiting microcolonial fungi (MCF), which colonise rock surfaces in hot and cold deserts. Understanding of the underlying mechanisms which allow this group of fungi to conquer natural and man-made environments requires a set of modern biological techniques and approaches that are under development in our laboratory. We will present an overview of the targeted disruption of melanin biosynthesis genes in the rock-inhabiting Knufia petricola and give inside into the lines of research and the network of supporting laboratories that made this progress possible. T2 - 6. Meeting of the ISHAM Working Group "Black Yeasts and Relatives" CY - Viterbo, Italy DA - 15.09.2016 KW - Black fungi KW - SAB KW - Biofilm PY - 2016 AN - OPUS4-37693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Kunte, Hans-Jörg A1 - Toepel, Jörg T1 - A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae JF - Biofouling N2 - A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms. KW - Microbial contamination KW - Real-time quantitative PCR KW - Microbiologically influenced corrosion; KW - Diesel biodeterioration KW - Fouling KW - Indicator PY - 2016 DO - https://doi.org/10.1080/08927014.2016.1177515 SN - 0892-7014 VL - 32 IS - 6 SP - 635 EP - 644 PB - Taylor & Francis Group CY - Abingdon AN - OPUS4-37337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola JF - Scientific Reports N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518601 DO - https://doi.org/10.1038/s41598-020-79120-5 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms JF - International Biodeterioration & Biodegradation N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Banasiak, Ronald A1 - Breitenbach, Romy A1 - Broughton, W. J. A1 - Gerrits, Ruben A1 - Knabe, Nicole A1 - Martin-Sanchez, Pedro Maria A1 - Voigt, Oliver T1 - Bare rock biofilms - Model systems in biodeterioration sciences N2 - Essential processes in the establishment and maintenance of rock biofilms include photosynthesis, production of extracellular polymeric substances, substrate penetration and atmospheric nutrient enrichment. Functional diversity is supported by a complex subaerial biofilm (SAB) community of heterotrophic and phototrophic microorganisms. Stress tolerant and melanised Ascomycetes dominate heterotrophic SABs while diverse algae and cyanobacteria comprise the phototrophic consortia. Laboratory simulation of SABs permits use of molecular-genetic methods coupled with geochemical and microscopic analyses to study weathering. Our in vitro model includes two free-living and symbiosis-competent, genetically tractable microorganisms: the cyanobacterium Nostoc punctiforme and the microcolonial rock-inhabiting fungus Knufia petricola. This genetically amenable cyanobacterium/fungus model biofilm allows development of quantitative methods tailored to the natural diversity of SABs. Precise, reproducible studies using this model biofilm have shown that both the melanised fungus, as well as the combined bacterial/fungal system, enhances the weathering of minerals. Geochemical signatures of these in vitro rock biofilms can now be obtained and compared with bacterial/fungal mutants of varied EPS composition and substrate penetration patterns. And finally, precise study of the model cyanobacterium/fungus biofilm will Permit prediction of the effects of conservational treatments. T2 - 2. European conference on Biodeterioration of stone monuments CY - Cergy-Pontoise, France DA - 17.11.2016 KW - Model rock biofilm KW - Extracellular polymeric substances (EPS) PY - 2016 AN - OPUS4-38680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Broughton, William J. A1 - Porcar, M. T1 - Biofilms on solar panel surfaces – new materials, long-known colonisers N2 - Simple, microbial biofilms have prevailed since life began on Earth. Biofilms form at the interfaces of solids with gases or liquids and have multiple effects on Substrate and element cycles. In geobiological terms, the most interesting microbial communities are those that form on solids exposed to air (subaerial). Microbial colonisers of the atmosphere-lithosphere interface include algae, cyanobacteria, fungi as well as heterotrophic bacteria and they have colonised virtually every rock surface throughout the entire geological history of the Earth. In addition to sequestering carbon, sub-aerial biofilms (SABS) actively participate in rock weathering. Rock-inhabiting SABs are the primary settlers on lava following volcanic eruptions and on rocks following the retreat of glaciers. SABs especially dominate hostile environments in which growth of higher Vegetation is restricted especially in deserts, polar- and alpine regions. SABs are the primary colonisers of lithospheric (e.g. rocks) and anthropogenic Substrates (buildings, monuments, solar panels, etc.). Life at the solid material/atmosphere interface influences and is affected by both the underlying Substrate and the microclimate surrounding it. Although subaerial life is ubiquitous, how SABs develop and importantly degrade underlying Substrates can only be clarified in well-controlled experiments that often involve simplified model Systems, So far, biofilm development on solar panels has been studied using; (i) metagenomics; (ii) in situ microscopy; and (iii) classical microbiological methods that are both qualitative and quantitative. Here we suggest that solar panel biofilms are accessible and highly relevant objects to study microbial ecology, geobiology and biodeterioration. T2 - 7th Congress of European Microbiologists (FEMS 2017) CY - València, Spain DA - 09.07.2017 KW - SABs KW - Biodeterioration KW - Biofilm KW - Solar panel PY - 2017 AN - OPUS4-41189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Chizhikova, N. P. A1 - Lessovaia, S. N. A1 - Gorbushina, Anna ED - Frank-Kamenetskaya, O. V. ED - Panova, E. G. ED - Vlasov, D. Y. T1 - Biogenic weathering of mineral substrates (Review) T2 - Biogenic - Abiogenic interactions in natural and anthropogenic systems (Series title: Lecture Notes in Earth System Sciences) N2 - A biological impact on weathering was recognized already at the beginning of the twentieth century, when biochemical influence of the lichen growth on rocks was convincingly demonstrated. Later it was shown that the progress of solid rock weathering initiated by biological colonization was affected by the initial porosity system and sensitivity of mineral association. In the meantime a considerable amount of diverse scientific data confirm the importance of biological rock colonizers (lichens and free-living rock biofilms) in mineral material dynamics as they occur at the atmosphere-exposed rock surfaces on local as well as global scale. Subaerial rock biofilms—microbial ecosystem including free-living heterotrophic and phototrophic settlers of bare rock surfaces—are characteristic for the first stage of primary succession of terrestrial ecosystems on mineral substrates. These cultivable and free-living communities are dominated by fungi and set the stage for the later development of a lichen cover, but in comparison to lichens also represent a new tool for laboratory experimentation and thus open a new stage of work in geomicrobiology. The Minerals sensitivity to microbially induced biological weathering can be demonstrated by studies of natural samples as well as by the laboratory mesocosm experiments. KW - Liches KW - Biofilms KW - Minerals KW - Transformations PY - 2016 SN - 9783319249872 SN - 9783319249858 DO - https://doi.org/10.1007/978-3-319-24987-2_2 SN - 2193-8571 SP - Part I, 7 EP - 14 PB - Springer International Publishing AN - OPUS4-35677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - von Werder, Julia A1 - Dehn, F. A1 - Gorbushina, Anna A1 - Meng, Birgit T1 - Bioreceptivity of concrete - A review JF - Journal of Building Engineering N2 - Materials that support natural biodiversity on their surfaces can compensate for human activities that have a negative impact on nature and thus contribute to a carbon-neutral and nature-positive world. Specifically designing bioreceptive materials which favor the growth of biofilms on their surface is an approach complementing conventional, macroscopic green façades. But what exactly characterizes a bioreceptive substrate and how do biofilm and substrate interact? How and why does a spontaneous colonization and the formation of biofilms take place? What are biofilms and how can they be established in a laboratory setting? How can this existing knowledge be transferred to the artificial stone concrete so that this material can be tuned to increase (or decrease) its bioreceptivity? This review paper aims at summarizing the existing state of knowledge on bioreceptive concrete and pointing out inconsistencies and contradictions which can only be removed by more interdisciplinary research in the field. KW - Bioreceptivity KW - Biofilm KW - Green facades KW - Developing building materials KW - Surface interactions KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581685 DO - https://doi.org/10.1016/j.jobe.2023.107201 SN - 2352-7102 VL - 76 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-58168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -