TY - CONF A1 - Weidner, Steffen A1 - Lauer, F. A1 - Seifert, S. A1 - Diehn, S. A1 - Kneipp, Janina T1 - MALDI-TOF MS und MALDI-MSI zur Identifikation und Klassifizierung von Pollen N2 - Es werden die letzten Ergebnisse präsentiert, die es ermöglichen, einzelne Pollenkörner unterschiedlicher Arten in Mischungen mittels MALDI-TOF Massenspektrometrie bzw. MALDI-TOF Imaging zu messen und unter Zuhilfenahme multivariater Auswertemethoden zu klassifizieren. T2 - 24. Bruker MALDI Anwendertreffen CY - Leipzig, Germany DA - 18.02.2019 KW - MALDI-TOF Massenspektrometrie KW - Pollenkörner KW - Klassifizierung KW - MALDI Imaging KW - Multivariate Analyse PY - 2019 AN - OPUS4-47441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel A1 - Vogler, M. A1 - Grathwohl, P. A1 - Hollert, H. A1 - Braun, Ulrike T1 - Analysis of microplastics in soil samples by using a thermal decomposition method N2 - While plastics have become indispensable in our daily lives over the last decades, the input into the environment has been increasing concurrently. Plastics often end up in the environment because of intensive use and poor waste management practice. They are subjected to aging and fragmentation and finally be deposited as microplastic particles or in short microplastics (MP). MP are defined as particles originating from synthetic polymers between 1 µm and 5 mm. Although the pervasive abundance of MP in aquatic environments has been demonstrated comprehensively, less is known about the occurrence and fate of MP in terrestrial ecosystems. It is still unclear if soil functions as a MP source or a sink for aquatic environments. MP can either be transported into water bodies by soil erosion or be retained in soils. The few studies published are not comparable because of non-existent harmonized and standardized methods for sampling, sample preparation, and analysis. For an assessment of a potential exposure situation of MP, the determination of a mass content in the soil is crucial. Consequently, spectroscopic methods like Raman or FTIR are not suitable, as they deliver information about the shape and size of individual particles. Therefore, we show the application of ThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) for MP analysis in the soil. In this method, the soil sample is heated up to 600 °C in a nitrogen atmosphere. The decomposition gases are sorbed on a solid phase, then transferred to a GS-MS system where they are desorbed, separated and identified. The method allows the rapid identification of individual polymers through the detection of specific decomposition products, but also the quantitative determination of the MP mass. Besides thermoplastics, elastomers originated from tire abrasion, can be detected. In the present study, several terrestrial ecosystems in south-west Germany were systematically sampled. Subsequent sample preparation included sieving in fractions of 5-100 µm, 100-1000 µm, and 1-5 mm. MP were extracted by density separation using ZnCl2 solutions. The detection was done by TED-GC-MS measurements. Data of agricultural areas and floodplains are presented exemplarily. A quantitative assessment of highly occurring MP from littering as well as tire abrasion is conducted. T2 - EGU 2019 - European Geoscience Union General Assembly 2019 CY - Wien, Austria DA - 07.04.2019 KW - TED-GC-MS KW - Soil KW - Microplastics KW - Analysis PY - 2019 AN - OPUS4-47822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogler, M. A1 - Müller, Axel A1 - Braun, Ulrike A1 - Grathwohl, P. T1 - Sampling and Sample Preparation for Analysis of Microplastics in Soils N2 - Despite abundant evidence of the occurrence of microplastics (MP) – these are particles smaller 5 mm – in aquatic environments, little is known about the accumulation of plastic in terrestrial environments, especially in soils. Possible major input pathways could be the use of plastic mulching, the use of compost, sewage sludge or residues from biogas facilities as fertilizers, as well as littering in urban areas. To estimate the MP pollution, the development of reliable, fast methods for sampling, sample preparation, and detection is needed. The obtained data must be representative of the sampled environmental compartment and measurements from different environmental compartments must be comparable. A first breakthrough is an application of ThermoExtractionDesorption-Gas Chromatography-MassSpectrometry (TED-GC-MS) for the detection of MP, including tire abrasives. This method allows the determination of mass content within a few hours and only a minimum of sample preparation for samples from aquatic environments is needed. However, in contrast to filtrate samples from aquatic environments, sediment or soil samples need an enrichment of MP. Whereas MP concentration from marine sediments can be obtained by floatation and density Separation techniques using NaCl solutions, the extraction or separation from soils proves to be more difficult, as plastic particles are often part of organo-mineral aggregates within the soil matrix. The aim of this study is the development of a practicable processing guideline for representatively taken soil samples in order to concentrate microplastics, without complex and time-consuming treatment steps. Dispersants or detergents can be applied to decompose the soil matrix, but each preparation step carries the risk of crosscontamination of the sample and prolongs the preparation procedure. For this reason, we choose ZnCl2-solution with a density of 1.7 g/cm3, which include the densities of relevant MP types (0.9-1.7 g/cm3). It was tested to achieve both, disaggregation and separation as it decomposes organic material and dissolves carbonates. Also, ZnCl2 is inert to the precipitation of undesirable salts and Carbonates during the process of density separation, as polytungstate solution does. ZnCl2 can be reused after stepwise filtering (7 µm, 1.5 µm, 0.7 µm). Thus, disposal costs can be reduced. Efficiency and reproducibility of the sample preparation as well as the degradation behavior of MP under the present conditions were demonstrated with model samples. Real sampling campaigns were conducted at several agricultural sites and floodplains in south-west Germany. The sampling was performed according to practice for soil sampling, using adequate sampling strategies (pattern of sampling, number of field samples, homogenization, etc). The lab sample was fractioned into three size classes (5-100 µm, 100-1000 µm, and 1-5 mm). The identification and determination of mass fraction were done using TED-GC-MS. T2 - EGU 2019 - European Geoscience Union General Assembly 2019 CY - Wien, Austria DA - 07.04.2019 KW - Microplastics KW - Density separation KW - Sample preparation KW - Soil PY - 2019 AN - OPUS4-47824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassanein, Yosri-Kamal A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Müller, Axel A1 - Kittner, Maria A1 - Bannick, C.G. A1 - Barthel, A.K. A1 - Braun, Ulrike T1 - Detection of microplastics in compost samples using a thermal decomposition method N2 - The ubiquitous presence of unwanted plastics in the environment, especially microscale particles, has been an issue in scientific studies and public debate in the last years. It is well known that oxidative degradation and subsequent fragmentation, caused by UV-radiation, oxidative aging and abrasion lead to the decomposition of larger plastic products into microplastics (MP). Possible effects of these MP on ecosystems are still unclear. Recent studies on MP findings are focused mainly on aquatic systems, while little is known about MP in terrestrial ecosystems. A possible source of MP input into the soil is compost from domestic bio-waste. Inappropriate waste separation causes plastic fragments in the bio-waste, some of which end up in the compost. In Germany compost is used as fertilizer in agriculture, hence MP could enter the soil by this pathway. So far, there have been only a few studies on this object. For this reason, analysis of compost as a sink and source of MP in ecosystems is of high interest. To estimate and monitor the MP content in compost and soil, fast and harmonised analytical methods are essential, which not only measure the polymer type and number of particles, but also the mass content. The most common spectroscopic methods are very time-consuming, often require complex sample preparation steps and cannot determine mass contents. Therefore, we used ThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) as a fast, integral analytical technique. The sample is pyrolyzed to 600°C in a nitrogen atmosphere and an excerpt of the pyrolysis gases is collected on a solid phase adsorber. Afterwards, the decomposition gases are desorbed and measured in a GC-MS system. Characteristic pyrolysis products can be used to identify the polymer type and determine the mass contents. This method is well established for the analysis of MP in water filtrate samples. In the present work we optimized the TED-GC-MS method for compost and compost/soil matrix and very common polymers, such as polyethylene, polypropylene, polyethylene-terephthalate and polystyrene (sample mass, detection limits, interfering signals, etc.). Additionally, specific pyrolysis products of polymers used for bio-waste bags, such as polylactide (PLA) and polybutylenadipat-terephthalat (PBAT) had to be identified and evaluated. First measurements were carried out on model and real samples from prepared mixtures and composting plant. The samples were sterilized, fractionated, filtered and dried. In addition, half of the sample material was treated with hydrogen peroxide to investigate a possible effect on detection. T2 - European Geosciences Union (EGU) General Assembly 2019 CY - Vienna, Austria DA - 07.04.2019 KW - Microplastics KW - Compost KW - Detection PY - 2019 AN - OPUS4-47829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: Systematic investigations of 1200 mofs using a highly automated, full-stack materials research laboratory N2 - By automatically recording as much information as possible in automated laboratory setups, reproducibility and traceability of experiments are vastly improved. This presentation shows what such an approach means for the quality of experiments in an X-ray scattering laboratory and an automated synthesis set-up. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Digitalization KW - Automation KW - Digital laboratory KW - Scattering KW - Synthesis KW - Nanomaterials KW - Holistic science PY - 2024 AN - OPUS4-59621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, L. A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohlecharakterisierung als weiterer Schlüssel für Adsorptionsprognosen organischer Spurenstoffe in der vierten Reinigungsstufe N2 - In diesem Beitrag wird der Einfluss des Aktivkohleprodukts auf die Adsorption von Spurenstoffen aus Kläranlagenablauf gezeigt und diskutiert. Im zweiten Teil wird das Material Aktivkohle analytisch charakterisiert und die Eigenschaften systematisiert. Die gewonnenen Erkenntnisse werden mit Bezug zu Praxislösungen zusammengefasst. T2 - Wasser 2021 CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 SP - 373 EP - 378 AN - OPUS4-52740 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, U. A1 - Bachem, G. A1 - Müller, A. A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Meierdierks, J. A1 - Grathwohl, P. A1 - Lackmann, C. A1 - Simic, A. A1 - Velki, M. A1 - Hollert, H. T1 - Detection of plastics in soil N2 - Soil acts as a final sink for pollutants. Microplastics from different sources such as plastic mulching, littering, compost, sewage sludge, sedimentary deposition, and tyre abrasion are expected to be found in soil. However, representative and comprehensive information is missing on the sources, transport, and fate. Therefore, a reliable analysis method for microplastics in soils needs to be developed. The presented work describes the development of a procedure for microplastics analysis in soils. A representative sampling based on the on-site conditions and a sample preparation method was established and comprised of a drying step, the separation of microplastic particles > 1 mm, and a density separation for particles < 1 mm. The detection of the large microplastic particles (> 1 mm) was conducted with Attenuated Total Reflection - Fourier Transform infrared Spectroscopy (ATR-FTIR) , while Thermal Extraction Desorption - Gas Chromatography / Mass Spectrometry (TED-GC/MS) was applied for particles < 1 mm, gaining information on the type of polymer and mass fraction. Based on the established method, 14 environmental soil samples ? with different exposure of microplastics from agriculture, industrial sites, roads, and floods were investigated. Due to the arbitrary microplastic particle distribution among the samples for large microplastics, it was reasoned that the found particles were unrepresentative. In contrast, microplastic particles < 1 mm were discovered in a high mass in soil samples exposed to plastic mulching or fertilization with sewage sludge or compost (0 – 115 mg/kg). On average, microplastic contents detected in soil samples taken from a construction site and an inner-city lake were higher (13 – 238 mg/kg). As expected, microplastic content in soil sampled in proximity to roads was more pronounced in the upper soil layers. In contrast, very remote sampling sites, expectably uncontaminated, did not lead to the detection of microplastic regarding to thermoanalytical detection method. In a proof of concept experiment several in vivo and in vitro ecotoxicological tests were applied to evaluate the effect of microplastics (tyre abrasion, polystyrene containing hexabromocyclododecane) in natural soils. In summary, while no effects of the examined probes could be detected on higher levels of biological organization after exposures to earthworm E. andrei, significant changes in several oxidative stress related biomarkers were observed. T2 - SETAC Europe 2022 CY - Kopenhagen, Denmark DA - 15.05.2022 KW - Microplastic KW - TED-GC/MS KW - Soil PY - 2022 AN - OPUS4-55872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin A1 - Sahre, Mario A1 - Schlau, Sven A1 - Gersdorf, Sven A1 - Ebell, Gino T1 - Design and construction of a rainfall simulator to test metal runoff at atmospheric conditions N2 - A rainfall simulator was presented as an environmental assessment tool to quantify wash-off concentrations from metallic materials. It is part of the RUNOFF-project, which studies and re-assesses the durability of roofing and facade materials under current atmospheric conditions in Germany. Studying building materials is important as they have a significant impact on achieving a variety of goals and targets within the sustainable developments goals (SDGs). The durability of materials is essential to reach sustainability. However, the durability of metallic materials is strongly depended on climate conditions, which have changed as a result of technical measures in industry, climate change and increasing urbanisation. In Germany at least, the data base is not up-to-date leading to prediction models regarding corrosion resistance and durability of metallic materials which can no longer be trusted and therefore need to be re-assessed and updated. Also, not only the demand for sustainable but also environmentally friendly building materials has increased dramatically. A number of construction materials produce chemical hazards, and therefore have negative impacts on water quality, soils health and ecosystems. To limit these impacts, environmental assessment methods and tools are needed to measure and quantify the inputs and outputs of building materials throughout their lifetime. T2 - EUROCORR 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Rainfall simulator KW - Runoff KW - Atmospheric conditions KW - Laboratory experiments PY - 2023 AN - OPUS4-58152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, C. A1 - Montes Hernandez, G A1 - Kochovski, Z A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, E A1 - Van Driessche, A T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Eisentraut, Paul A1 - Dittmann, Daniel A1 - Braun, Ulrike T1 - Decomposability versus detectability: First validation of TED‐GC/MS for microplastic detection in different environmental matrices N2 - A fast method for microplastic detection is thermal extraction desorption‐gas chromatography/mass spectrometry (TED‐GC/MS), which uses polymer‐specific thermal decomposition products as marker compounds to determine polymer mass contents in environmental samples. So far, matrix impacts of different environmental matrices on TED‐GC/MS performance had not yet been assessed systematically. Therefore, three solid freshwater matrices representing different aquatic bodies with varying organic matter contents were spiked with a total of eight polymers. Additionally, for the first time, the two biodegradable polymers polybutylene adipate terephthalate (PBAT) and polylactide (PLA) were analysed using TED‐GC/MS. The methodological focus of this work was on detectability, quality of signal formation as well as realisation of quantification procedures and determination of the limit of detection (LOD) values. Overall, TED‐GC/MS allowed the unambiguous detection of the environmentally most relevant polymers analysed, even at low mass contents: 0.02 wt% for polystyrene (PS), 0.04 wt% for the tyre component styrene butadiene rubber (SBR) and 0.2 wt% for polypropylene (PP), polyethylene (PE) and PBAT. Further, all obtained LOD values were increased in all matrices compared to the neat polymer without matrix. The LOD of the standard polymers were increased similarly (PS: 0.21–0.34 μg, SBR: 0.27–0.38 μg, PP: 0.32–0.36 μg, PMMA: 0.64–1.30 μg, PET: 0.90–1.37 μg, PE: 3.80–6.99 μg) and their decompositions by radical scission processes were not significantly influenced by the matrices. In contrast, matrixspecific LOD increases of both biodegradable polymers PBAT (LOD: 1.41–7.18 μg) and PLA (0.84–20.46 μg) were observed, probably due to their hetero‐functional character and interactions with the matrices. In conclusion, the TED‐GC/MS performance is not solely determined by the type of the polymers but also by the composition of the matrix. KW - TED-GC/MS KW - Microplastic KW - Freshwater matrices KW - Gas chromatography KW - Mass spectrometry PY - 2023 DO - https://doi.org/10.1002/appl.202200089 SN - 2702-4288 VL - 2 IS - 3 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, D. A1 - Saal, L. A1 - Zietschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schuhmann, P. A1 - Ruhl, A. A1 - Jekel, M. A1 - Braun, U. T1 - Characterization of activated carbons for water treatment using TGA‑FTIR for analysis of oxygen‑containing functional groups N2 - Water treatment with activated carbon (AC) is an established method for the removal of organic micropollutants and natu ral organic matter. However, it is not yet possible to predict the removal of individual pollutants. An appropriate material characterization, matching adsorption processes in water, might be the missing piece in the puzzle. To this end, this study examined 25 diferent commercially available ACs to evaluate their material properties. Frequently reported analyses, including N2 adsorption/desorption, CHNS(O), point of zero charge (PZC) analysis, and X-ray photoelectron spectroscopy, were conducted on a selected subset of powdered ACs. Inorganic elements examined using X-ray fuorescence and X-ray difraction spectroscopy revealed that relative elemental contents were distinctive to the individual AC’s raw material and activation procedure. This study also is the frst to use thermogravimetric analysis (TGA) coupled to Fourier-transform infrared spectroscopy (FTIR) to conduct quantitative analyses of functional surface oxygen groups (SOGs: carboxylic acid, anhydride, lactone, phenol, carbonyl, and pyrone groups) on such a large number of ACs. The comparably economical TGA method was found to provide good surrogates for the PZC by pyrolytic mass loss up to 600 ◦C (ML600), for the oxygen content by ML1000 and for the carbon content by oxidation. Mass loss profles depict the AC’s chemistry like fngerprints. Furthermore, we found that SOG contents determined by TGA-FTIR covered a wide individual range and depended on the raw material and production process of the AC. TGA and TGA-FTIR might therefore be used to identify the suitability of a particular AC for a variety of target substances in diferent target waters. This can help practitioners to control AC use in waterworks or wastewater treatment plants. KW - Adsorbtion KW - Organic contaminants KW - Temperature-programmed desorption KW - Proximate analysis KW - Principal component analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555506 DO - https://doi.org/10.1007/s13201-022-01723-2 SN - 2190-5495 VL - 12 SP - 1 EP - 13 PB - Springer CY - Berlin AN - OPUS4-55550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Hoffmann, Thomas A1 - Range, David A1 - Altmann, Korinna T1 - Microplastics in sediments of the river Rhine—A workflow for preparation and analysis of sediment samples from aquatic river systems for monitoring purposes N2 - AbstractMicroplastics (MP) can be detected in all environmental systems. Marine and terrestrial aquatic systems, especially the transported suspended solids, have often been the focus of scientific investigations in the past. Sediments of aquatic river systems, on the other hand, were often ignored due to the time‐consuming sample preparation and analysis procedures. Spectroscopic measurement methods counting particle numbers are hardly suitable as detection methods, because there are plenty of natural particles next to a small number of MP particles. Integral methods, such as thermoanalytical methods are determining the particle mass independently of the inorganic components.In this study, a workflow for sample preparation via density separation and subsequent analysis by thermal extraction desorption‐gas chromatography/mass spectrometry is presented, which leads to representative and homogeneous samples and allows fast and robust MP mass content measurements suitable for routine analysis. Polymers were identified and quantified in all samples. Polyethylene and styrene‐butadiene rubber are the dominant polymers, besides polypropylene and polystyrene. Overall, total polymer masses between 1.18 and 337.0 µg/g could be determined. Highest MP concentrations in riverbed sediment are found in sites characterized by low flow velocities in harbors and reservoirs, while MP concentrations in sandy/gravelly bed sediments with higher flow velocities are small. KW - Microplastics KW - Density separation KW - TED-GC/MS KW - NaI PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597335 DO - https://doi.org/10.1002/appl.202200125 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-59733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, C. A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Elert, Anna Maria A1 - Bannick, C. G. A1 - Ricking, M. A1 - Obermaier, N. A1 - Barthel, A.-K. A1 - Schmitt, T. A1 - Jekel, M. A1 - Braun, U. T1 - Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent N2 - An investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 µm mesh sizes). The detection of MP mass fractions by thermal extraction desorption–gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m−3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. KW - Microplastic KW - Waste water treatment KW - Thermoanalytics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550862 DO - https://doi.org/10.3389/fenvc.2022.844633 SN - 2673-4486 VL - 3 SP - 1 EP - 10 PB - Frontiers Media CY - Lausanne AN - OPUS4-55086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abusafia, A. A1 - Scheid, C. A1 - Meurer, Maren A1 - Altmann, Korinna A1 - Dittmer, U. A1 - Steinmetz, H. T1 - Microplastic sampling strategies in urban drainage systems for quantification of urban emissions based on transport pathways N2 - Tracking waterborne microplastic (MP) in urban areas is a challenging task because of the various sources and transport pathways involved. Since MP occurs in low concentrations in most wastewater and stormwater streams, large sample volumes need to be captured, prepared, and carefully analyzed. The recent research in urban areas focused mainly on MP emissions at wastewater treatment plants (WWTPs), as obvious entry points into receiving waters. However, important transport pathways under wet-weather conditions are yet not been investigated thoroughly. In addition, the lack of comprehensive and comparable sampling strategies complicated the attempts for a deeper understanding of occurrence and sources. The goal of this paper is to (i) introduce and describe sampling strategies for MP at different locations in a municipal catchment area under dry and wet-weather conditions, (ii) quantify MP emissions from the entire catchment and two other smaller ones within the bigger catchment, and (iii) compare the emissions under dry and wet-weather conditions. WWTP has a high removal rate of MP (>96%), with an estimated emission rate of 189 kg/a or 0.94 g/[population equivalents (PEQ · a)], and polyethylene (PE) as the most abundant MP. The specific dry-weather emissions at a subcatchment were ≈30 g/(PEQ · a) higher than in the influent of WWTP with 23 g/(PEQ · a). Specific wet-weather emissions from large sub-catchment with higher traffic and population densities were 1952 g/(ha · a) higher than the emissions from smaller catchment (796 g/[ha · a]) with less population and traffic. The results suggest that wet-weather transport pathways are likely responsible for 2–4 times more MP emissions into receiving waters compared to dry-weather ones due to tire abrasion entered from streets through gullies. However, more investigations of wet-weather MP need to be carried out considering additional catchment attributes and storm event characteristics. KW - Combined sewer system KW - Large volume samplers KW - Microplastic pollution KW - Separate sewer system KW - Stormwater retention tank PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568271 DO - https://doi.org/10.1002/appl.202200056 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Braun, Ulrike A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Kittner, Maria A1 - Dümichen, Erik A1 - Thaxton, K. A1 - Kleine-Benne, E. A1 - Anumol, T. T1 - Accelerated Determination of Microplastics in Environmental Samples Using Thermal Extraction Desorption-Gas Chromatography/Mass Spectrometry (TED-GC/MS) N2 - There is growing interest in quantifying microplastics in environmental samples. This application note presents a thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) method that is well suited to automation and increased sample throughput. The method is also able to detect all particle sizes in the sample as long as the limit of detection (LOD) is reached and allows analysis of larger samples of 15 to 25 mg or more. Samples were decomposed by thermogravimetric analysis (TGA), and the gaseous decomposition products were trapped on a solid-phase sorbent, followed by thermal desorption‑gas chromatography/mass spectrometry (TD-GC/MS) using an Agilent 5977B GC/MSD coupled to an Agilent 7890B GC. Target microplastic particle (MP) polymers were identified in environmental samples including surface water, finished compost, house dust, and drinking water. Quantification of MP polymers in environmental samples provided LODs of 0.06 to 2.2 μg, allowing the detection of MPs in trace amounts with sample weights of up to 1 g. Method repeatability was adequate for reliable quantification with RSDs of approximately 6 to 12%. KW - Environment KW - Microplastic particles KW - TED-GC/MS KW - Mass content KW - Thermoanalytical PY - 2020 VL - 2020 SP - 1 EP - 8 PB - Agilent Technologies Inc. CY - USA AN - OPUS4-51672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Kalbe, Ute A1 - Hamann, S. A1 - Weyer, R. T1 - Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis N2 - Projektvorstellung "Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis": Motivation, Konzept, Umsetzung, erste analytische Ergebnisse der TED-GC/MS T2 - 24. Projekttage der Zukunft Bau Forschungsförderung CY - Bonn, Germany DA - 13.06.2023 KW - Mikroplastik KW - TED-GC/MS KW - Kunststoffrasen KW - Lysimeter KW - Beschleunigte Alterung PY - 2023 AN - OPUS4-58441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - PlasticsEurope - plastic powders - Reference materials N2 - The talk gives ideas about possible collaboration between BAM and PlasticEurope and their BRIGID project. T2 - Project meeting of BRIDGIT project of PlasticsEurope CY - Online meeting DA - 01.02.2023 KW - Microplastics KW - PlasticEurope PY - 2023 AN - OPUS4-57012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lukas, M. A1 - Kittner, Maria A1 - Isernhinke, L. A1 - Altmann, Korinna A1 - Braun, U. T1 - A new concept for the ecotoxicological assessment of plastics under consideration of aging processes N2 - Microplastics are widely distributed in aquatic and terrestrial environments, but up to now less is known about (eco)toxicological impacts under realistic conditions. Research so far has focused mainly on impacts on organisms by fresh, single‐origin plastic fragments or beads. However, plastics found in the environment are complex in composition, this means different polymer types and sources, with and without additives and in all stages of age, and therefore, in a more or less advanced stage of degradation. For oxidized degradation products that might be released from plastic materials during aging, there is a lack of information on potentially adverse effects on aquatic biota. The latter is of particular interest as oxidized degradation products might become more water soluble due to higher polarity and are more bioavailable, therefore. The present study focused on plastic leachates of polystyrene (PS) and polylactic acid (PLA), which were derived from alternating stress by hydrolysis and ultraviolet (UV) radiation—representing a realistic scenario in the environment. Test specimens of PS, PLA, or a PLA/PS layer (each 50%) were alternately exposed to UV radiation for 5 days followed by hydrolysis for 2 days, for several weeks alternating. Ecotoxicological effects of the storage water (artificial freshwater) of the test specimens and additionally, in a second experimental setup, the effects of five potential polymer degradation products were detected by 72 h algae growth inhibition tests with Desmodesmus subspicatus. Results clearly indicate inhibitory effects on algae growth by contaminants in the storage water of stressed plastics with increasing growth inhibition of proceeding hydrolysis and UV stress times. Different polymers caused variable inhibitions of algae growth with stronger inhibitions by PS and less effects by PLA and the mixed layer of both. Moreover, not microplastic particles but the resulting dissolved degradation products after aging caused the ecotoxicological effects—with strong effects by the oxidized degradation products. The existing data highlight the relevance of plastic aging as a framework for microplastic ecotoxicity evaluation and allow a proof of concept. KW - Algae growth test KW - Ecotoxicology KW - Microplastic KW - Polystyrene KW - UV degradation KW - Weathering PY - 2023 DO - https://doi.org/10.1002/appl.202200124 VL - 2 IS - 3 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dimitri A1 - Hodoroaba, Vasile-Dan A1 - Fengler, Petra A1 - Wiesner, Yosri A1 - Lenssen, E. A1 - Miclea, P.-T. A1 - Giovannozzi, A. M. A1 - Visileanu, E. T1 - Overview of CUSP and PlasticTrace N2 - The presentation summarises the work of CUSP and PlasticTrace EU joint research projects of the last year. T2 - Microplastics Scientific Workshop of PlasticsEurope CY - Amsterdam, The Netherlands DA - 08.05.2023 KW - Microplastics KW - Microplastics standardisation KW - Reference materials KW - Polymer 3R PY - 2023 AN - OPUS4-57460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Altmann, Korinna A1 - Abusafia, A A1 - Bannick, C-G A1 - Braun, U A1 - Crasselt, Claudia A1 - Dittmar, S A1 - Fuchs, M A1 - Gehde, M A1 - Hagendorf, C A1 - Heller, C A1 - Herper, D A1 - Heymann, S A1 - Kerndorff, A A1 - Knefel, M A1 - Jekel, M A1 - Lelonek, M A1 - Lunkenbein, T A1 - Obermaier, N A1 - Manhart, M A1 - Meurer, Maren A1 - Miclea, P-T A1 - Paul, A A1 - Richter, S A1 - Ricking, M A1 - Rohner, C A1 - Ruhl, A A1 - Sakai, Y A1 - Saravia Arzabe, C A1 - Scheid, C A1 - Schmitt, M A1 - Schnarr, M A1 - Schwertfirm, F A1 - Steinmetz, H A1 - Wander, Lukas A1 - Wiesner, Yosri A1 - Zechmeister, L T1 - RUSEKU - Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt : Abschlussbericht N2 - Im Verbundprojekt RUSEKU wurde die Probenahme von Wasserproben entscheidend weiterentwickelt. Wichtig ist hierbei zu gewährleisten, dass genügend Merkmalsträger in jeder Probe untersucht werden. Es muss daher eine für den Probenahmeort repräsentative Beprobung hinsichtlich des Wasservolumens in Abhängigkeit der Partikelanzahl gewährleistet sein. Das Hauptaugenmerk lag im vorliegenden Projekt auf einer praxisnahen Beprobungsstrategie. Es wurden verschiedene Konzepte ausprobiert. • Grundsätzlich hat sich gezeigt, dass eine Stichprobe eine Momentaufnahme des MP-Massengehaltes zeigt. Es wird eine hohe Statistik, also eine Vielzahl an Messungen am gleichen Probenahmeort, benötigt, um eine valide Aussage über den MP-Gehalt zu machen. • Es zeigt sich, dass eine integrale Probenahme über mehrere Wochen mit dem SK routinemäßig möglich ist. Die erfassten MP-Massen sind reproduzierbar und robust. • Die DFZ ist für Stichproben geeignet. Partikel < 50 µm werden eventuell unterschätzt • Die fraktionierte Filtration kann für Stich- und Mischproben direkt im Feld genutzt werden. Fraktionen von 10 und 5 µm werden später im Labor Vakuum filtriert. Es erfolgt eine Fraktionierung der Probe mit Siebmaschenweiten von 1000, 500, 100, 50, 10 und 5 µm. • Die fraktionierte Filtration kann auch anschließend an die Beprobung mit dem SK zur Anwendung kommen. Wird die mit dem SK gewonnene Wasserprobe fraktioniert filtriert, kann neben einem MP-Gesamtgehalt auch eine Einschätzung über die Partikelgrößen gewonnen werden. • Für Wässer mit geringen Partikelzahlen wurde ein Messfiltertiegel entwickelt. Dieser hat eine Maschenweite von 6 µm. Seine Anwendung kann mögliche Verluste beim Transferieren vom Probenahmetool zum Messgefäß und mögliche Kontaminationen reduzieren. Die Optimierung der Probenahmestrategie wurde durch Modellversuche und Simulationen unterstützt. Modellversuche zum Sinkverhalten und Simulationen von MP in realen Gewässern verdeutlichten das komplexe Verhalten der Partikel. Es konnte gezeigt werden, dass Partikel ab einer bestimmten Größe (und kleiner) bei genügend starker Turbulenz sich in der Wassersäule unabhängig von ihrer Dichte verhalten und so auch MP mit kleiner Dichte (z.B. PE) in der gesamten Wassersäule zu finden sind. Es konnte mit dem TEM die Existenz von NP gezeigt werden. Ein wesentlicher Aspekt des RUSEKU Projektes war die Beprobung realer Kompartimente. Beprobt wurde neben Oberflächengewässern, das urbane Abwassersystem der Stadt Kaiserslautern, Waschmaschinenabwasser und Flaschenwasser. • In Oberflächengewässern wurde hauptsächlich PE gefunden. Je nach Probe und Gewässer konnten auch PP, PS, PET, PA, SBR und Acrylate nachgewiesen werden. • Im urbanen Abwassersystem der Stadt Kaiserslautern konnte an allen Probenahmestandorten MP nachgewiesen werden. Es wurde hauptsächlich PE, neben geringeren Mengen an PP, PS und SBR gefunden. Nach einem Regenereignis war der SBR Anteil deutlich erhöht. • Die Beprobung eines realen Wäschepostens, bestehend aus T-Shirts und Hemden mit PA/CO oder PES/CO Mischgewebe, zeigte einen PA- und PES-Austrag im Waschwasser. Der überwiegende Teil der detektierten Fasern ist aber auf Baumwolle zurückzuführen. Reine gravimetrische Messungen zur Detektion von MP führen zu einer starken Überschätzung. • In Flaschenwasser (PET-Flaschen) konnte MP detektiert werden. PET wurde nur im stillen Mineralwasser, nicht in Mineralwasser mit Kohlensäure gefunden werden. Teilweise wurde auch das MP-Material des Verschlusses im Wasser detektiert. • Für Luftproben konnte ein Aufbau zur größenselektiven Beprobung getestet werden. Neben der Probenahme hat das Projekt auch gezeigt, dass die TED-GC/MS geeignet für die MP-Detektion im Routinebetrieb ist. Die TED-GC/MS konnte weiter optimiert werden. Es wurden MP-Massen bestimmt. Im Projekt wurden erste realitätsnahe Referenzmaterialien für die MP Detektion hergestellt. Die Herstellung von realitätsnahen Polymeren in ausreichender Homogenität und Menge hat sich als große Herausforderung herausgestellt. KW - Mikroplastik KW - Probennahme KW - TED-GC/MS KW - Fraktionierte Filtration KW - Mikroplastikreferenzmaterial PY - 2022 SP - 1 EP - 201 AN - OPUS4-57800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Altmann, Korinna A1 - Braun, U. T1 - Determination of Microplastic Mass Content by Thermal Extraction Desorption Gas Chromatography– Mass Spectrometry N2 - The scientific and practical challenge of detecting microplastics (MPs) in the environment in a targeted and rapid manner is solved by innovative coupling of thermogravimetric analysis with mass spectrometric methods. Fast identification and quantitative determination of most thermoplastic polymers and elastomers is possible by using thermal extraction Desorption gas chromatography–mass spectrometry (TED-GC–MS). KW - Microplastics KW - Mikroplastik KW - TED-GC/MS KW - Microplastics analytic KW - Mikroplastik Massegehalt PY - 2021 VL - 17 IS - 3 SP - 2 EP - 7 PB - MultiMedia (UK) LLC CY - Cranbury AN - OPUS4-52570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel A1 - Braun, U A1 - Altmann, Korinna T1 - Representative sampling of roadside soil and determination of tire wear contents by TED-GC/MS N2 - The presentation describes microplastic findings from tyre wear near roads. Both the sampling and the analysis are presented. T2 - Mikroplastik Workshop der Hochschule Zittau CY - Online meeting DA - 25.11.2021 KW - Mikroplastik KW - Reifenabrieb KW - TED-GC/MS KW - Probennahme PY - 2021 AN - OPUS4-53831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesner, Yosri A1 - Müller, A. A1 - Kittner, Maria A1 - Bannick, C. G. A1 - Bednarz, M. A1 - Braun, U. A1 - Altmann, Korinna T1 - Microplastics in composts - Identification and quantification of microplastic contents using a thermal decomposition method N2 - The ubiquitous presence of unintended plastics in the environment has been an issue in scientific studies and public debate. Recent studies on MP findings are focused mainly on aquatic systems, while little is known about MP in terrestrial ecosystems. Fermentation residues, sewage sludge and compost are secondary raw material fertilizers and represent a possible input path of plastics in soils. Soils are final sinks for micro plastics. In this context, samples were taken in a combined fermentation and composting plant in Germany to get real compost samples which were investigated. Existing regulations include requirements for total contents of plastics in combination with visual determination methods. In order to avoid possible underdeterminations, precise detection methods should be used in the future from a scientific point of view. For this reason, the use of thermoanalytical detection is an appropriate way. Spectroscopic methods such as Raman or FTIR are not suitable for determining the mass content of microplastic, as these output a particle number. In Germany, compost is a potential vector for MP in soil due to its use as fertilizer. Therefore, we show the application of TThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) as a fast, integral analytical technique, which in contrast to the spectroscopic methods does not measure the number of particles but a mass content. In a nitrogen atmosphere the sample is pyrolyzed to 600 °C and an excerpt of the pyrolysis gases is collected on a solid phase adsorber. Afterwards, the decomposition gases are desorbed and measured in a GC-MS system. Characteristic pyrolysis products of each polymer can be used to identify the polymer type and determine the mass contents in the present sample. For the first time the work represents a routine procedure for the determination of plastics in composts and fermentation residues. This current study will also give inside in various important aspects of sample preparation, which include a meaningful size fractionation, a necessary density separation regarding the removal of inorganic contents and at finally a homogenization. T2 - SETAC Copenhagen – SETAC Europe 32nd Annual Meeting CY - Copenhagen, Denmark DA - 15.05.2022 KW - Microplastics KW - Soil KW - Pathway KW - Detection PY - 2022 AN - OPUS4-56293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Müller, A. A1 - Kittner, Maria A1 - Braun, U. T1 - Plastik in Böden: Mikroplastik-Ergebnisse N2 - In diesem Vortrag geht um die Vorstellung der Ergebnisse des UBA Projektes Plastik in Böden. Es werden Mikroplastik-Gehalte in verschiedenen Böden präsentiert. T2 - Fachgespräch "Plastik in Böden" CY - Online meeting DA - 28.03.2022 KW - Mikroplastik KW - Mikroplastik Böden KW - Mikroplastik-Analytik PY - 2022 AN - OPUS4-54648 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Current projects in risk assessment and harmonisation N2 - The talk gives an overview about EU projects currently running for risk assessment and harmonisation in microplastic analysis. T2 - Micro- and Nanoplastics CY - Halle (Saale), Germany DA - 01.11.2023 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R PY - 2023 AN - OPUS4-58766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Scheid, C. A1 - Steinmetz, H. A1 - Paul, Andrea A1 - Beleites, C. A1 - Braun, U. T1 - Identification of microplastic pathways within a typical European urban wastewater system N2 - In recent years, thermoextraction/desorption-gas chromatography/mass spectrometry (TED-GC/MS) has been developed as a rapid detection method for the determination of microplastics (MP) mass contents in numerous environmentally relevant matrices and, in particular, for the measurement of polymers in water samples without time-consuming sample preparation. The TED-GC/MS method was applied to investigate a typical European municipal wastewater system for possible MP masses. Such investigations are important in view of the recent revision of the Urban Wastewater Treatment Directive. Four different representative sampling sites were selected: greywater (domestic wastewater without toilet), combined sewer, and influent and effluent of a wastewater treatment plant (WWTP). All samples were collected by fractional filtration. Filtration was carried out over mesh sizes of 500, 100, 50, and in some cases, 5 µm. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were detected in all samples, with the PE fraction dominating in all cases. Styrene-butadiene rubber which serves as an indication of tire abrasion, was only found in the influent of the WWTP. The highest MP mass contents were found in the combined sewer, so MP can become a source of pollution during heavy rain events when the capacity limits of the effluent are reached, and the polluted effluent is released uncontrolled into the environment. Based on the studies, MP retention from the WWTP could be estimated to be approximately 96%. Few trends in polymer type or mass contents were detected within the different fractions of the samples or when comparing samples to each other. KW - Microplastics KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic pathways KW - Mass contents PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568289 DO - https://doi.org/doi.org/10.1002/appl.202200078 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Stakeholder Workshop – Plastictrace WP1 N2 - The talk is about WP1 in the PlasticTrace project funded by Euromat. The projects harmonizes microplastic analysis by developing SOPs and reference materials. WP1 is responsible for material selection and preparation. All particles are homogeneity and stability checked according to ISO guide 35. T2 - Stakeholder workshop of PlasticTrace project CY - Online meeting DA - 14.12.2022 KW - Microplastic KW - Microplastics standardisation KW - Reference materials PY - 2022 AN - OPUS4-56772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Visileanu, E. A1 - Altmann, Korinna A1 - Brossell, D. A1 - Miclea, P.-T. A1 - Grosu, C. T1 - Methods for the collection and characterization of airborne particles in the textile industry N2 - The presentation summarizes possibilities to sample airborne micro and nanoplastic particles. An example of a textil company is shown. T2 - 5th International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2023 CY - Dubrovnik, Croatia DA - 27.09.2023 KW - Microplastics KW - Polymer 3R KW - Textile company PY - 2023 AN - OPUS4-58561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesner, Yosri A1 - Altmann, Korinna T1 - MIKROPLASTIK – von der Probenvorbereitung bis zur Analytik N2 - Der Vortrag beschreibt die Herausforderungen bei der Analyse von Mikroplastik inklusive Probennahme, Probenvorbereitung und Detektion. Es werden Ergebnisse aus dem BMBF-Projekt RUSEKU vorgestellt. T2 - LABO-Anwendertag CY - Online meeting DA - 23.11.2021 KW - Mikroplastik KW - TED-GC/MS KW - Mikroplastik-Analytik PY - 2021 AN - OPUS4-53829 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt (RUSEKU) N2 - Der Vortrag wurde im Rahmen der Abschlusskonferenz des Forschungsschwerpunktes "Plastik in der Umwelt" des BMBF gehalten. Er fasst die Ergebnisse des Verbundprojektes RUSEKU zusammen. Es wurde die Herstellung verschiedener Testmaterialien für die Mikroplastik (MP) Analytik beschrieben. Im weiteren geht es um verschiedene Ansätze MP kostengünstig und schnell zu detektieren, z.B. mit Nahinfrarotspektroskopie. Nanoplastik konnte mit der Transmissionselektronenmikroskopie sichtbar gemacht werden. Für die praxisnahe Beprobung von Gewässern wurde die Fraktionierte Filtration entwickelt. Integrale Beprobungen können mit dem Sedimentationskasten erfolgen. Als Beispiele für die Beprobung realer Gewässer wurde das urbane Abwassersystem Kaiserslautern, Getränkewasser und Waschmaschinenwasser gezeigt. T2 - Abschlusskonferenz des Forschungsschwerpunktes "Plastik in der Umwelt" des BMBF CY - Online meeting DA - 20.04.2021 KW - Mikroplastik KW - TED-GC/MS KW - Probennahme KW - RUSEKU PY - 2021 AN - OPUS4-52546 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik – Ein Problem für die Menschheit? N2 - Mikroplastik findet sich in Ozeanen, Seen, Flüssen und Bächen. Es kann in unserem Boden, in der Luft und sogar in Organismen nachgewiesen werden. Jedes Jahr werden weltweit Millionen Tonnen freigesetzt. Doch wo und wie landet Mikroplastik in der Umwelt? Und wie können wir diese winzigen Partikel nachweisen? T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2021 KW - Mikroplastik KW - TED-GC/MS PY - 2021 AN - OPUS4-53734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Systemverständnis und Untersuchungsstrategien von Kunststoffeinträgen in die Umwelt – Ergebnisse des RUSEKU-Forschungsprojektes N2 - Ziel des Vortrages ist die Vermittlung der Herausforderungen der Mikroplastik-Analytik sowie der Harmonisierung der Analytik und des Ergebnistransfers in die Normung. T2 - Jahresabschluss-Sitzung GA "Mensch und Umwelt" CY - Online meeting DA - 24.11.2021 KW - Mikroplastik KW - Mikroplastik-Analytik PY - 2021 AN - OPUS4-53830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Referenzmaterial und erste Vergleichsuntersuchungen N2 - Hierbei geht es um die Vorstellung von ersten Möglichkeiten um Referenzmaterial für die Mikroplastik-Analytik herzustellen und die Ergebnisse erster Vergleichsversuche. T2 - EUROLAB-D Workshop: Mikroplastik in der Praxis CY - Online meeting DA - 30.11.2021 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsversuche PY - 2021 AN - OPUS4-53880 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Microplastics at BAM: TED-GC/MS and reference materials N2 - Thsi talk aims to present the activities of microplastic analysis at BAM according to TED-GC/MS and reference materials developement. T2 - Webinar BAM / University of Birmingham CY - Online meeting DA - 15.06.2021 KW - Microplastic KW - TED-GC/MS KW - Reference materials PY - 2021 AN - OPUS4-53738 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Braun, U. T1 - Monitoring von Mikroplastik N2 - Der Vortrag gibt einen Überblick was bei der Analyse von Mikroplastik zu beachten ist und beschreibt die Vor- und Nachteile der TED-GC/MS. T2 - Abschlusstreffen MikroPlaTas CY - Online meeting DA - 23.06.2021 KW - Mikroplastik KW - TED-GC/MS KW - Mikroplastik-Analytik PY - 2021 AN - OPUS4-52916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, Leon A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schumann, P. A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohle-Charakterisierung als weiterer Schlüssel für das Verständnis der Spurenstoffadsorption in der 4. Reinigungsstufe N2 - Aktivkohle ≠ Aktivkohle, Adäquate Materialcharakterisierung - Voraussetzung für Adsorptionsprognosen und Wasserspezifische Auswahl von Aktivkohleprodukten. Ausblick: Publikationen zu Aktivkohlecharakterisierung und Adsorptionsprognose in Vorbereitung T2 - Wasser 2021 - Jahrestagung der Wasserchemischen Gesellschaft CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 AN - OPUS4-52742 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Bannick, C. G. A1 - Braun, Ulrike T1 - Mikroplastik - Suchen und Finden N2 - Der Vortrag stellt spektroskopische und neue thermoanalytische Verfahren zum Nachweis von Mikroplastik in Umweltproben vor. Ein spezieller Fokus liegt auf dem neu entwickelten Verfahren der TED-GC-MS. Zusätzlich wird gezeigt, wie die TED-GC-MS eingesetzt werden kann, um Reifen in der Umwelt zu bestimmen. T2 - Fachforum Ressourcen - Kunststoffe und Nachhaltigkeit CY - Leverkusen, Germany DA - 06.11.2018 KW - Mikroplastik KW - TED-GC-MS KW - Thermoanalytische Verfahren KW - Spektroskopische Verfahren PY - 2018 AN - OPUS4-46652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Ricking, Mathias A1 - Bannick, Claus-Gerhard A1 - Braun, Ulrike T1 - Freshwater compartments: Screening method for polymer identification and mass contents of microplastic particles using TED-GC-MS N2 - The pathways of plastics, especially of microplastic (MP), in environmental compartments, particularly in aquatic systems, are not well understood. The critical point is the lack of fast, harmonised methods for sampling, sample preparation and sample analysis. These three analytical steps are dependent on one another and must be optimised. In recent years, we developed a method for representative sampling and fast detection of MP in aqueous systems. The sampling in different freshwater bodies is performed in the field with a fractionated filtration system using mesh sizes of 500, 100 and 50 µm. For water with an intermediate or high content of suspended particular matter a minimum of 1000 L has to be filtered. In the lab, mesh sizes of 10 and 5 µm are used for further filtration. Subsequently, the water filtrates of the different particle size classes are sterilised, dried, weighed and homogenised, if necessary. Conventional methods for MP analysis are infrared and raman spectroscopy, giving information on the shapes and numbers of individually identified MP particles. Our focus is on the determination of mass contents of various polymers potentially contained in environmental samples. For qualitative and quantitative MP detection TED-GC-MS is used, a two-step method based on gas chromatography-mass spectrometry (GC-MS) with previous thermal extraction. This method not only enables us to screen the samples for characteristic marker-molecules, thus identifying single polymers, but furthermore allows the calculation of mass contents of individual polymers. In the present work, different freshwater compartments were exemplarily studied to identify containing polymers and calculate their mass content in MP particles. T2 - MICRO2018 CY - Lanzarote, Spain DA - 19.11.2018 KW - Microplastic KW - TED-GC-MS KW - Mass contents PY - 2018 AN - OPUS4-46739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Braun, Ulrike A1 - Bannick, C.-G. A1 - Steinmetz, H. A1 - Abusafia, A. A1 - Scheid, C. T1 - Identification and Quantification of Microplastic in Sewage systems by TED-GC-MS N2 - The number of publications reporting the amount of microplastic (MP) all over the world increased rapidly. Methods used so far are very time consuming and not able to provide information on total contents. As harmonised sampling, sample preparation and analysis strategies are missing different studies can hardly be compared and quantitative data, including identification and mass contents of the polymers found, are missing. This leads to a lack of comprehensive understanding of MP occurrence, source and entry pathways into the environment. We developed a method, Thermal Extraction/Desorption-Gaschromatography-Massspectrometry, as a fast screening method for MP analysis. Solid residues of water samples are heated up to 600 C under a N2 atmosphere without any sample preparation. The collected decomposition gases are separated in a gas chromatography system and detected in a mass spectrometer. Mass contents of the identified polymers can be calculated. In this presentation we will show first results from the influent of the wastewater treatment plant Kaiserslautern (Germany) and its combined sewage system as possibly entry pathway. In order to determine the relevance of wastewater split streams analysis of grey water will be conducted. Samples are fractionally filtered by a sieve cascade with mesh sizes of 500, 100, 50 µm. T2 - CEST2019 CY - Rhodos, Greece DA - 04.09.2019 KW - Microplastic KW - TED-GC-MS KW - Microplastic analysis KW - Grey water KW - Waste water treatment plant PY - 2019 AN - OPUS4-48933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rohner, C. A1 - Braun, Ulrike A1 - Schlögl, R. A1 - Lunkenbein, T. T1 - Electron beam induced amorphisation of polypropylene particles N2 - Untersuchung von Polypropylen Nanopartikeln mittels REM. Es wird die Hypothese aufgestellt, dass mit der Paarverteilungsfunktion auf den Alterunszustand geschlossen werden kann. N2 - Analysis of polypropylene nanoparticles with scanning elektron spectroscopy (SEM). The poster describes the hypothesis that the pair distribution function determined by SEM can be used to deduce the state of polymer age. T2 - Microscopy characterisation of organic-inorganic interfaces 2019 CY - Berlin, Germany DA - 07.03.2019 KW - Nanopartikel KW - Mikroplastik-Analytik KW - Paarverteilungsfunktion KW - Pair distribution function KW - Nanoparticles KW - Microplastic analysis PY - 2019 AN - OPUS4-47890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt N2 - Es wird über die Fortschritte des Verbundprojektes RUSEKU des BMBF-Forschungsschwerpunktes "Plastik in der Umwelt" berichtet. T2 - Statuskonferenz Plastik in der Umwelt CY - Berlin, Germany DA - 09.04.2019 KW - RUSEKU KW - Mikroplastik KW - Referenzmaterial KW - Neue Filtermaterialien PY - 2019 AN - OPUS4-47889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heller, C. A1 - Altmann, Korinna A1 - Braun, U. A1 - Kerndorff, A. A1 - Bannick, C.-G. A1 - Fuchs, M. A1 - Thamsen, P. U. T1 - Garment ageing in a laundry care process under household‐like conditions N2 - This study reflects typical consumer textile washing behaviour while taking into account existing standards in the household appliance and garment industries. Two garments were washed repeatedly with artificial dirt and detergent 30 times. The collected washing water was separated using fractional filtration. Textile physical tests were used to follow property changes of the garments, the microplastic release is determined using thermoextraction/desorbtion–gas chromatography/mass spectrometry and the total organic carbon was measured as a sum parameter for the organic bonded carbon. This article shows the importance of a reality‐based approach when investigating microplastics of textile origin in the laundry care process. Deposits of detergent and dirt on the textiles were detected. The total mass of sieve residues was much higher than the release of synthetic polymers. The cotton content of the garments causes a much higher fibre release than synthetic fibres. Both will lead to false results by purely gravimetric analysis because nonpolymer fibres will be included microplastic mass. The results cannot be generalised only by the main polymer type, knowledge of the textile construction must be included for final evaluation. KW - Fibre release KW - Microplastics KW - TED-GC/MS KW - Washing machine PY - 2023 DO - https://doi.org/10.1002/appl.202200086 SP - 1 EP - 8 PB - Wiley online library AN - OPUS4-56976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, U. A1 - Altmann, Korinna T1 - Thermoanalytical methods to measure mass in microplastics N2 - The talk adresses the use of thermoanalytical methods in microplastics analysis. T2 - EUROLAB webinar: MICROPLASTICS: regulations, standards and the role of laboratories CY - Online meeting DA - 15.02.2023 KW - TED-GC/MS KW - Thermoanalytical methods KW - Microplastic mass PY - 2023 AN - OPUS4-57009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meurer, Maren A1 - Altmann, Korinna T1 - Accelerated solvent extraction to identify an accurate polyethylene mass value in microplastic analytics N2 - It is of high priority to capture the extent of microplastics (MP) contamination for understanding its impact and consequences to our environment. However, due to a lack of standardized methods, MP analysis as well as its quality assurance, is still a challenge. The thermal extraction desorption-gas chromatography/-mass spectrometry (TED-GC/MS) as a novel innovative thermoanalytic method can detect MP particles in environmental samples based on their decomposition products. According to MP analysis, a distinctively larger polyethylene (PE) content in comparison to other synthetic polymers was detected in environmental samples. Various substances within the matrix which have a similar molecular structure to PE, like fats and oils, might interfere with its marker and lead to an overestimation. In this investigation an automated extraction method, the accelerated solvent extraction (ASE), is introduced as quality control tool before TED-GC/MS measurement. Thereby, not the extract like usually used, but the solid filtrate is analyzed. The aim is to clean the environmental samples from solvent removable compounds which could lead to false positive signals and thus receive a more accurate PE mass. Consequently, a sample mimicking environmental samples with a defined matrix and a known polymer mass was generated. The common polymers polyethylene, polypropylene, polystyrene and styrene-butadiene rubber, used as an indication for tire wear, were added to the matrix. Different parameters for ASE extraction were varied such as different solvents, filters and purge time. Finally, a PE recovery rate of 91 % after extraction could be reached. T2 - Micro 2022 CY - Online meeting DA - 14.11.2022 KW - PE KW - ASE KW - TED-GC/MS PY - 2022 AN - OPUS4-56347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kerndorff, A. A1 - Heller, C. A1 - Fuchs, M. A1 - Braun, U. T1 - Release of synthetic fibres during washing of typical household textiles: Findings from washing machine tests and resulting policy recommendations N2 - This talk summarizes the experimental setup and the results of one washing experiment under realistic conditions according to microplastic fiber release. T2 - Tackling microplastics in the environment CY - Brussels, Belgium DA - 09.03.2023 KW - Microplastics KW - Fibers of textile origin KW - Washing machine KW - Microplastic fibre release PY - 2023 AN - OPUS4-57204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lukas, M. A1 - Kittner, Maria A1 - Kremer, T. A1 - Kochmann, R. A1 - Isernhinke, L. A1 - Altmann, Korinna A1 - Braun, U. T1 - Artificial Plastic Ageing as a Framework for Microplastics Ecotoxicity Evaluation N2 - Microplastics are widely distributed in aquatic and terrestrial environments, up to now less is known on toxicological impacts under realistic conditions. Research so far has focused mainly on the impacts on organisms by fresh plastic fragments or beats. However, plastic materials found in the environment are mainly a mixture of different polymers and particularly degraded during aging processes. Although especially oxidized degradation products might escape from plastic materials during aging, there is a lack of information on potentially adverse effects on aquatic biota. The latter is of particular interest as oxidized chemicals become more water soluble due to higher polarity and are more bio-available, therefore. The present study focussed on plastic leachates of polystyrene (PS) and polylactic acid (PLA), which were derived from alternating stress by hydrolysis and UV radiation. Test specimen of PS, PLA or PS/PLA blends (each 50 %) were alternatingly maintained in water at 45 °C for five days and UV radiated at 45 °C for two days, for in total six weeks. Ecotoxicological effects of potentially generated degradation products of plastic materials in the storage water (mineral water, pH: 7.2) were detected by algae growth inhibition tests with Desmodesmus suspicatus and photosystem II inhibition tests with Raphidocelis subcapitata. Results clearly indicate inhibitory effects on algae growth by contaminants in the storage water of stressed plastic materials with increasing growth inhibition of proceeding hydrolysis and UV stress times. Here, different plastics cause variable responses of algal growth. First chemical analyses indicate dissolved monomers and their oxidation products of plastic materials as possible driver of detected ecotoxicological effects, since detected microplastic particles do not seem to harm algae. The existing data highlight the relevance of plastic aging as a framework for microplastic ecotoxicity evaluation and allow a proof of concept. T2 - SETAC 2023 CY - Dublin, Ireland DA - 30.04.2023 KW - Microplastics KW - Ecotoxicity KW - Plastic aging KW - Algae growth inhibition tests PY - 2023 AN - OPUS4-57501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesner, Yosri A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Metrological Observation of the Stability Performance of Reference Materials for Microplastic Analysis N2 - The formation of microplastic (MP) particles (1-1000 µm) is mostly related to physicochemical degradation processes of macroplastics. Photooxidative damage is often set as the initial degradation process, which leads to embrittlement of the plastics. Mechanical processes then lead to further fragmentation and the formation of MP particles. In the environment, this can be associated with UV exposure through direct radiation from the sun, which leads to radical formation in the polymer systems on the one hand and radical formation of oxygen on the other. The result is material embrittlement usually caused by chain shortening in the polymeric system. Due to specific ecosystem conditions, the damaged polymer is fragmented by erosive, abrasive processes or wave action. According to reference material topic for MP analysis, pristine and artificially weathered polymers are needed. Starting from granulate or macroplastics, these can be pulverised with different techniques, bottled and stored until usage. The bottled powders need to be homogen and stable over a defined time interval regarding to a specific property. This work deals with different polymer types, aged and non-aged. It tries to answer the question under which storage conditions polymers will be stable in particle size. The powders are characterized for chemical composition and shape with FTIR, DSC and SEM. Particle size distribution was measured by laser diffraction with wet and dry dispersion. Artificially pre-aged materials seem to be more vulnerable for further aging and less stable in particle size distribution measurements. T2 - SETAC Dublin– SETAC Europe 33nd Annual Meeting CY - Dublin, Ireland DA - 30.04.2023 KW - Reference material KW - Microplastics KW - Metrological Observation PY - 2023 AN - OPUS4-57475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmitt, M. A1 - Altmann, Korinna A1 - Fengler, Petra A1 - Gehde, M. T1 - Air-based polyethylene fragmentation with high yield to form microplastic particles as reference material candidates N2 - Microplastic particles with sizes between 1 to 1000 μm are widely distributed worldwide. Origin, transport pathways and fate are poorly known, as sampling, sample preparation and detection methods are major challenges. In addition, reference materials that mimic environmental particles are lacking. Most challenging is the yield of MP particle production and the need for resource-intensive grinding with liquid nitrogen. In this paper, a machine is designed to produce aged microplastic particles as reference material candidates with high yield. The machine is based on ultraviolet aging of a thin foil and mechanical fragmentation using clean air. An example of aging and fragmentation of high density polyethylene with additional physical and chemical characterization of shape, size, aging state by carbonyl index and density is presented. KW - Microplastics KW - Degradation of polyethylene KW - Air fragmentation KW - Microplastics reference material PY - 2023 DO - https://doi.org/10.1002/appl.202200121 SP - 1 EP - 18 PB - Wiley online library AN - OPUS4-57203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -