TY - CONF A1 - Schraut, Katharina A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar T1 - Production of an alite-rich material from reduced basic oxygen furnace slags N2 - Basic oxygen furnace slag (BOFS) is a by-product of steelmaking of which about 10.4 Mt are produced annually in the EU. BOFS is mostly used in road construction, earthwork and hydraulic engineering. However, in this use, the iron bound in BOFS is lost and the opportunity to produce higher value products from BOFS is forgone. In recent decades, many researchers have investigated the production of both Portland cement clinker and crude iron from BOFS via a thermochemical reductive treatment. The reductive treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density and can be recovered. An advantage of this process is that simultaneously the chemical composition of the reduced BOFS is adapted to that of Portland cement clinker and the hydraulic reactive mineral alite (Ca3SiO5) is formed. In this study, German BOFS was reduced in a small-scale electric arc furnace and a low-iron mineral product rich in alite was produced. Despite a chemical and mineralogical composition similar to that of Portland cement clinker, the reduced BOFS produced less heat of hydration, and its reaction was delayed compared to Portland cement. However, adding gypsum accelerated the hydration rate of the reduced BOFS. Further research to improve the hydraulic properties of the reduced BOFS is essential. If successful, the production of a hydraulic material and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - GeoBerlin 2023 CY - Berlin, Germany DA - 04.09.2023 KW - BOFS KW - Alite KW - Hydraulic reactivity PY - 2023 AN - OPUS4-58206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Souza Filho, I. A1 - Adam, Christian T1 - Fundamentals of the hydrogen plasma reduction of iron ores N2 - Hydrogen plasma treatment of iron ores or iron oxide containing wastes can be an efficient option to produce green iron e.g. for steel production. This way iron oxide is reduced to metallic iron in the liquid form by the highly reactive species that are formed in a hydrogen plasma. Hydrogen plasma can be used at the same time to remove undesired gangue elements. The presentation shows the experimental setup, shows first results of iron ore reduction by hydrogen plasma and gives an outlook for industrial application of the technology. T2 - European Academic Symposium on EAF steelmaking (EASES 2023) CY - Oulu, Finland DA - 05.06.2023 KW - Hydrogen KW - Plasma KW - Reduction PY - 2023 AN - OPUS4-57626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Schraut, Katharina ED - Adamczyk, Burkart ED - Adam, Christian ED - Stephan, D. ED - Simon, Sebastian ED - von Werder, Julia ED - Meng, Birgit T1 - Production of a hydraulic material from post treated steelmaking slags N2 - Steelmaking slag is a by-product of steel production, of which 4.5 Mt were produced in 2020 in Germany alone. It is mainly used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical cycle, used as fertiliser or landfilled. With this use, iron oxides still contained in steelmaking slag are lost. In addition, the possibility of producing higher-grade products from steelmaking slag is foregone. In recent decades, many researchers have investigated the production of Portland cement clinker and crude iron from basic oxygen furnace slags (BOFS) via a reductive treatment. Carbothermal treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. Simultaneously, the chemical composition of the reduced slag is adapted to that of Portland cement clinker. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as a reducing agent. The resulting low-iron mineral product has a similar chemical composition to Portland cement clinker and was rich in the tricalcium silicate solid solution alite (Ca3SiO5). Based on its chemical and mineralogical composition, similar to that of Portland cement clinker, the reduced BOFS has the potential to react comparably. In our study, the reduced BOFS produced less hydration heat than OPC, and its hydraulic reaction was delayed. However, adding gypsum has shown to accelerate the hydration rate of the reduced BOFS compared to that known from the calcium silicates of Portland cement clinker. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, producing a hydraulic binder and crude iron from BOFS has economic and ecological benefits for both the cement and steel industries. T2 - The 16th International Congress on the Chemistry of Cement 2023 (ICCC2023) CY - Bangkok, Thailand DA - 18.09.2023 KW - Steelmaking slag KW - Alite KW - Clinker substitute KW - Hydraulic reactivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590522 UR - https://www.iccc-online.org/archive/ SP - 432 EP - 436 CY - Bangkok AN - OPUS4-59052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Formation and hydraulic reactivity of an alite rich material from post treated basic oxygen furnace slag N2 - Basic oxygen furnace slag (BOFS) is a by-product of steelmaking of which about 10.4 Mt are produced annually in the EU. BOFS is mostly used in road construction, earthwork and hydraulic engineering. However, in this use, the iron bound in BOFS is lost and the opportunity to produce higher value products from BOFS is forgone. In recent decades, many researchers have investigated a thermochemical process to reduce iron oxides to metallic iron in molten BOFS. The metallic iron formed separates from the reduced slag due to its higher density and can be recovered. An advantage of this process is that simultaneously the chemical composition of the reduced slag is adapted to that of the Portland cement clinker and the hydraulic reactive mineral alite is formed. In this study, BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent, and the hydraulic properties of the reduced, low-iron BOFS were investigated. Despite a chemical and mineralogical composition similar to that of Portland cement clinker, the reduced BOFS produced less heat of hydration, and its reaction was delayed compared to Portland cement. However, the addition of gypsum, as is also done in cement production from Portland cement clinker, has been found to accelerate the hydration rate of reduced BOFS. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, the production of a hydraulic binder and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - GeoMin Köln 2022 CY - Cologne, Germany DA - 11.09.2022 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2022 AN - OPUS4-56080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin T1 - Microbial corrosion coupled to methanogenesis by strains from different environments N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms, either chemically (formation of hydrogen sulfide) or electrically (direct electron uptake). Methanogenetic Archaea are also known to be involved in iron corrosion, forming a multi-species biofilm on corroding metallic structures. However, mechanistic details and kinetics of the overall process in methanogen-induced MIC are poorly understood. T2 - Beirat Material CY - Berlin, Germany DA - 26.04.2018 KW - Corrosion KW - Methanogens KW - Archaea KW - Implants KW - Biofilm PY - 2018 AN - OPUS4-45112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Meyer, Christian A1 - Krüger, Oliver A1 - Scharf, Holger A1 - Reinsch, Stefan A1 - Ostermann, Markus A1 - Nofz, Marianne A1 - Jäger, Christian A1 - Adam, Christian A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4 stabilized at room temperature: synthesis and X-ray powder diffraction data N2 - X-ray powder diffraction (XRD) patterns of the high-temperature (HT) cristobalite form of SiO2 and its isoelectronic AlPO4 analogue are essentially influenced by the dynamic disorder of these crystal structures. The nature of this disorder and of the phase transition between the α- and β-form has been the subject of intensive research during the last four decades [1]. By 1989 it became possible to stabilize the HT-form of cristobalite SiO2 at room temperature in laboratory and engineering ceramic industries by applying solid solution forming techniques [2]. However, for the HT-form of cristobalite AlPO4 nothing similar has been known until 2014 when it was discovered that nanocrystalline and stacking-disordered β-cristobalite AlPO4 is the major component of the fly ash of a large incineration facility operated by the waste water treatment authorities of Frankfurt/M. [3]. Previous comprehensive investigations of this fly ash failed to interpret its complex XRD pattern – presumably mainly due to the lack of a matching experimental digital pattern in the Powder Diffraction Database. The present paper reports on a synthesis route that facilitates the crystallization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is free of crystalline impurity phases and long-term stable at ambient. Its room temperature XRD pattern is presented with parameters traced back to certified reference materials. [1] Yuan F. and Huang L., Phys. Rev, B, 2012, 85, 134114. [2] Perrotta J.A., Grubbs D.K., Martin E.S., Dando N.R., McKinstry H.A. and Huang C.-Y., J. Am. Ceram. Soc., 1989, 72, 441. [3] Peplinski B., Adam C., Adamczyk B., Müller R., Michaelis M., Krahl Th. and Emmerling F., Powder Diffraction Journal, 2015, 30, 2, Supp. 1, S31. T2 - 15. European Powder Diffraction Conference (EPDIC15) CY - Bari, Italy DA - 12. June 2016 KW - Stabilization of HT-structures at room temperature KW - β-cristobalite structure type KW - Databases PY - 2016 AN - OPUS4-36727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian T1 - Reductive treatment of steel making slags to produce a hydraulic binder and crude iron N2 - Steelmaking slags are a by-product of steel production, that are currently used primarily in road construction, earthwork, and hydraulic engineering. In this use, the iron bound in the steelmaking slags (< 30 wt.%) is lost. Recovery of iron from steelmaking slags is possible by thermochemical reductive treatment. The reductive treatment of liquid steelmaking slags causes iron oxides to be reduced to metallic iron, which separates from the mineral phase due to its higher density. The chemical composition of the mineral phase is thus adapted to that of the Portland cement clinker and the mineral alite, the most important component of Portland cement, is formed. This way, crude iron can be recovered, and at the same time a hydraulic binder can be produced. This process, however, is uneconomical due to the high temperatures required (~1800 °C). In the current project, the process is to be adapted so that the reduction of liquid steelmaking slag can be carried out at ~1600 °C. The chemical composition is to be modified in such a way that the melting temperature of the slags as well as their viscosity are in a technically suitable range and still a product with good cementitious properties is obtained. T2 - LithiumDays CY - Online meeting DA - 06.12.2021 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2021 AN - OPUS4-56081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taube, Mareike Carolin A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Schulenburg, F. A1 - Bartmann, U. A1 - Beckmann, T. A1 - Michalik, K. A1 - Reuter, M. A1 - Stelter, M. T1 - Optimisation of a Pyrometallurgical Niobium and Tantalum Recyling Process with on-line-LIBS N2 - Tantalum and niobium are essential for the development of electronics towards a more and more compact design, but without reducing their performance today. Especially in smart phones and tablets, tantalum and niobium capacitors with high charge densities have already become almost indispensable. However, tantalum as a critical raw material is still a problem for the sustainable production of electronics. Due to this fact, the existence of efficient recycling processes especially in Europe is becoming even more important nowadays. The Bundesanstalt für Materialforschung und -prüfung (BAM) is currently working on the optimisation of an existing pyrometallurgical tantalum recycling process. Optimisation of this industrial process is carried out in a small-scale electric arc furnace (480 kVA, capacity approx. 150 kg/h) at BAM using a new and innovative equipment for on-line analysis of high temperature processes. The aim of this project is to identify the best timing for an optimum slag tapping, when the slag is lower than minimum targeted tantalum concentration. Hence, LIBS (Laser induced breakdown spectroscopy) is used to identify the chemical composition of the slag layer and during slag tapping. The on-line-LIBS prototype of BAM enables an in-situ measurement of the element distribution in the melt after calibration on the slag system. First results of this joint research project will be presented including LIBS-measurements and thermodynamic and kinetic aspects of the process. T2 - European Mineral Processing & Recycling Congress (EMPRC 2018) CY - Essen, Germany DA - 25.06.2018 KW - Laser-induced breakdown spectroscopy KW - On-line analysis KW - Tantalum KW - Niobium KW - Pyrometallurgy PY - 2018 SN - 978-3-940276-84-1 SP - 347 EP - 362 PB - GDMB Verlag GmbH CY - Clausthal-Zellerfeld AN - OPUS4-47040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taube, Mareike Carolin A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Schulenburg, F. A1 - Bartmann, U. A1 - Beckmann, T. A1 - Michalik, K. A1 - Reuter, M. A1 - Stelter, M. T1 - Optimisation of a Pyrometallurgical Niobium and Tantalum Recyling Process with on-line-LIBS N2 - Tantalum and niobium are essential for the development of electronics towards a more and more compact design, but without reducing their performance today. Especially in smart phones and tablets, tantalum and niobium capacitors with high charge densities have already become almost indispensable. However, tantalum as a critical raw material is still a problem for the sustainable production of electronics. Due to this fact, the existence of efficient recycling processes especially in Europe is becoming even more important nowadays. The Bundesanstalt für Materialforschung und -prüfung (BAM) is currently working on the optimisation of an existing pyrometallurgical tantalum recycling process. Optimisation of this industrial process is carried out in a small-scale electric arc furnace (480 kVA, capacity approx. 150 kg/h) at BAM using a new and innovative equipment for on-line analysis of high temperature processes. The aim of this project is to identify the best timing for an optimum slag tapping, when the slag is lower than minimum targeted tantalum concentration. Hence, LIBS (Laser induced breakdown spectroscopy) is used to identify the chemical composition of the slag layer and during slag tapping. The on-line-LIBS prototype of BAM enables an in-situ measurement of the element distribution in the melt after calibration on the slag system. First results of this joint research project will be presented including on-line-LIBS-measurements and thermodynamic and kinetic aspects of the process. T2 - European Mineral Processing & Recycling Congress (EMPRC 2018) CY - Essen, Germany DA - 25.06.2018 KW - Laser-induced breakdown spectroscopy KW - Process control KW - Tantalum KW - In-situ analysis KW - Pyrometallurgy PY - 2018 AN - OPUS4-45614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, B. A1 - Vogel, Christian A1 - Hermann, P. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Synchrotron radiation-based nano-FTIR spectroscopy for the characterization of chlorine gas corrosion of different silicon carbides N2 - Near-field optical techniques such as nano-FTIR spectroscopy enable spectroscopic characterization of samples with a high sensitivity and a spatial resolution at the nanoscale. In this work we realized nano-FTIR spectroscopy by elastic scattering of infrared light from a probe tip of an atomic force microscope operated in tapping mode, with broadband infrared synchrotron radiation provided by the Metrology Light Source (MLS). We apply this technique to characterize the protective oxidation layers of different Silicon Carbides (SiCs) treated by chlorine gas. The process using chlorine-donors has been developed to separate toxic heavy metals from sewage sludge ash (SSA) and to increase the plant-availability of phosphors in the SSA in order to produce P-fertilizers. Nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. In order to discuss this behavior high resolution imaging has been performed on the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. The formation of a SixNiyO protective layer, which might be the reason for the higher corrosion resistance, was observed using nano-FTIR spectroscopy. T2 - WIRMS2017 CY - Oxford, UK DA - 25.09.2017 KW - Phosphorus recovery KW - Corrosion science KW - Nano-FTIR spectroscopy PY - 2017 AN - OPUS4-42450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neuhold, S. A1 - Höllen, D. A1 - Dijkstra, J.J. A1 - van Zomeren, A. A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Vogel, Christian A1 - Raith, J. T1 - Effect of Leaching on the Surface Mineralogy of Steel Slags N2 - Electric arc furnace (EAF)slag is a complex multi-Phase system comparable to natural rock mineralogy, which can be used as a secondary rawmaterial. To ensure the environmental safety of EAF slags,regarding the mobility of contaminants,it is necessary to understand the Controlling mechanisms for the leaching of heavy metals such as chromium and Vanadium in this complex system. T2 - Goldschmidt Conference 2017 CY - Paris, France DA - 13.08.2017 KW - EAF slag KW - Leaching PY - 2017 AN - OPUS4-41853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin A1 - Lu, Xin A1 - Chrusicki, Sebastian A1 - Krebber, Katerina T1 - Measurement of Slowly Changing and Quasi-Static Strain Signals for Ground Motion Monitoring Applications using Distributed Acoustic Sensing N2 - The suitability of wavelength-scanning COTDR for distributed dynamic strain sensing (DAS) along buried fiber cables for long-term geotechnical monitoring applications is demonstrated by experiments showing the method’s capability to demodulate slowly varying and quasi-static signals T2 - Optica Sensing Congress 2024 CY - Toulouse, France DA - 15.07.2024 KW - Distributed acoustic sensing KW - Ground movement monitoring KW - Geomonitoring KW - Quasi-static signals KW - Distributed fiber optic sensing PY - 2024 AN - OPUS4-60817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin A1 - Lu, Xin A1 - Chruscicki, Sebastian A1 - Krebber, Katerina T1 - Measurement of Slowly Changing and Quasi-Static Strain Signals for Ground Motion Monitoring Applications using Distributed Acoustic Sensing N2 - The suitability of wavelength-scanning COTDR for distributed dynamic strain sensing (DAS) along buried fiber cables for long-term geotechnical monitoring applications is demonstrated by experiments showing the method’s capability to demodulate slowly varying and quasi-static signals. T2 - Optica Sensing Congress 2024 CY - Toulouse, France DA - 15.07.2024 KW - Ground motion KW - Ground movement monitoring KW - Distributed fiber optic sensing KW - Quasi-static signals KW - Geomonitoring PY - 2024 SP - 1 EP - 2 PB - Optica CY - Washington D.C., USA AN - OPUS4-60816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A. A1 - Erdmann, Eileen A. A1 - Gerrits, Ruben A1 - Schumacher, Julia T1 - From rocks to riches: Knufia petricola as model and expression platform N2 - Black fungi belong to different classes of Ascomycota but evolved similar morpho-physiological adaptations such as yeast-like growth and constitutive melanin formation to colonize extreme competition-free environments. They are ubiquitously found on air-exposed surfaces, from ancient marble monuments to modern solar panels. The rock inhabitant Knufia petricola was chosen to become a model for these extremotolerant black fungi. Plasmid-based and ribonucleoprotein-based CRISPR/Cas9 techniques were introduced to precisely introduce one to multiple double strand breaks into the DNA to modify, replace or add sequences to the genome either using the available selection marker systems (hygR, natR, genR, baR, suR) or by marker-free approaches. Multiplexing is very efficient, allowing for four or more simultaneous genome editing events. The newly generated cloning vectors containing the Tet on construct for doxycycline-controlled gene expression, and the validated sites in the K. petricola genome for color-selectable (pks1, phs1, ade2) or neutral insertion (igr1 to 5) of expression constructs complete the reverse genetics toolbox. One or multiple endogenous or heterologous genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides. We thus can express genes from synthetic clusters in a non-pigmented background (Δpks1/Δphs1). The fact that K. petricola only produces few secondary metabolites (DHN melanin, carotenoids, mycosporines and a siderophore) and plant cell-wall degrading enzymes but is capable to take the burden of acetyl-CoA-consuming metabolism and protein secretion renders K. petricola a promising host for the expression of heterologous genes encoding high-end secondary metabolites and enzymes. T2 - 12th International Mycological Congress (IMC12) CY - Maastricht, Netherlands DA - 11.08.2024 KW - Fungus KW - Genetic engineering KW - Heterologous gene expression KW - Cell factory PY - 2024 AN - OPUS4-60838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Jacimovic, R. A1 - Gažević, L. T1 - Joint research project for the production of certified matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PFOS, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in order to establish a quality system. It is necessary to provide appropriate calibrators i.e. matrix CRMs relates to the unique sample matrices representing typical samples in the geomorphological and anthropological sense. In addition to that, bearing in mind the complexity and instability of environmental samples, it is very difficult to obtain appropriate referents materials with no local providers. Our project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Our project will have an impact on environmental monitoring in the partnering countries and on the scientific community, who will use the newly developed reference materials. Furthermore, partners will develop strategies for producing new CRMs either on their own or in cooperation. This will lead to regional CRM producers serving scientific and official laboratories. T2 - 2nd International Congress of Chemists and Chemical Engineers of B&H CY - Sarajevo, Bosnia and Herzegovina DA - 21.10.2016 KW - CRM KW - Environmental analysis KW - CRM producer KW - Quality system PY - 2016 AN - OPUS4-45257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schannor, Mathias A1 - Oelze, Marcus A1 - Traub, Heike A1 - He, Yubei A1 - Schmidt, Robin A1 - Savic, Lynn A1 - Vogl, Jochen A1 - Meermann, Björn T1 - LA-MC-ICPMS analysis of Cu isotopes in biological material N2 - Stable metal isotopes receive increasing attention as medical biomarkers due to their potential to detect changes of the metal metabolism related to disease. Potential mechanisms causing isotope fractionation include biological processes that involve redox- or bond-forming reactions and interaction of metals during transmembrane import and export. In order to advance our understanding of the underlying processes responsible for isotope fractionation between normal and diseased cells, we need in situ, spatially resolved methods. Despite its frequent use, laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) analysis of biological material is severely limited by the scarcity of matrix-matched standards. Such matrix-matched standards are necessary to correct for instrumental sources of isotope fractionation such as particle size distribution, ablation physics and differential ionization. Copper stable isotopes have proven to be a particularly powerful tool to identify differences in isotope composition between tumors and healthy tissue suggesting application in cancer diagnosis [1, 2]. To further our knowledge of Cu isotope fractionation processes induced by diseases we have developed gelatin-based bracketing standards allowing to correct instrumentally induced isotope fractionation during LA-MC-ICPMS analysis. Since gelatin properties resemble properties of protein-rich cellular material, they mimic biological matrices and their ablation behaviour. Hence, gelatin standards are spiked with known amounts of Cu stable isotopes of a known Cu isotope composition and used as matrix-matched bracketing standard. A Ni reference solution was aspirated to the plasma to allow for mass bias correction and laser energy densities were below the glass ablation threshold. The method achieved reproducibilities of better than 0.10‰ (2SD) for inorganic reference materials and reproducibilities of better than 0.17‰ (2SD) for biological reference materials. The developed routine is tested on biomedical samples and the in situ Cu isotope data will be presented. T2 - European Workshop on Laser Ablation CY - Gent, Belgium DA - 01.07.2024 KW - Laser Ablation KW - Reference Material PY - 2024 AN - OPUS4-60594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skundrić, N. A1 - Jotanović, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Suljagić, S. A1 - Kovačević, L. A1 - Jaćimović, R. A1 - Gažević, L. A1 - Arı, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gökcen, T. A1 - Fotis, T. T1 - A joint research project for the sustainable production of certified matrix reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - BERM-14 CY - National Harbor, Maryland, USA DA - 11.10.2015 KW - Reference material KW - Priority pollutants KW - Toxic metals KW - PFOS KW - PFOA PY - 2015 AN - OPUS4-45251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Noireaux, J. A1 - Ghestem, J.-P. T1 - Metrology for the recycling of technology critical elements to support Europe’s circular economy agenda (MetrocycleEU) N2 - Technology critical elements (TCE) are key materials for high-tech products such as smartphones, notebooks and monitors. Their demand is expected to increase exponentially as a result of the shift towards greener economy through the deployment of renewable energy and electro mobility solutions (European Green Deal). This and the lack of natural resources in the EU, puts the market under pressure and leads to increasing prices. The need to secure TCE supply has become even more pressing under the current health crisis and it is a major objective of the Covid-19 Recovery Plan aimed at reinforcing Europe’s resilience and autonomy. A sustainable solution for solving this problem is first through recycling and finally through a circular economy. However, the analysis of waste streams is a complicating factor and requires suitable analytical solutions first, which need to be traceable to the SI to allow for comparability of measurement results throughout the recycling process or the circular economy. The required reference materials certified for TCE in the corresponding waste or secondary raw materials and specific documentary standards for TCE to comply with ISO/IEC 17025 requirements, however, are lacking. Furthermore, wastes from the urban mine are extremely heterogeneous, which makes the estimation of their TCE content difficult. Currently there is a lack of knowledge at the European level about the TCE stocks and flows in the urban mine. Given the high volume of waste generated and received, fast reliable analytical methods as well as sampling and sample preparation strategies are needed to determine the economic value of the waste and of the final product and to develop recycling procedures. Within this project we focus on a set of TCEs(Co, Ga, Ge, In, Ta, Nd, Pr, Dy, Gd, La, Au, Pt, Pd, Rh), which have been selected from the list of critical elements for Europe established by the EU in 2017. The overall objective of the project is to provide reliable and SI traceable determination of TCE in urban waste material at µg/g levels in order to increase the efficiency and accuracy of TCE recycling. This will be realized by developing validated SI-traceable reference methods, developing traceable and validated reference materials for the TCEs, validating the use of the routine methods and reference materials for real world applications and facilitating the take up of the technology and measurement infrastructure developed in the project by the measurement supply chain, standards developing organisations and end users. T2 - 6. Sitzung des Beirats Umwelt CY - Online meeting DA - 12.03.2020 KW - Technology-critical elements KW - Circular economy KW - Green Deal KW - Metrology PY - 2021 AN - OPUS4-52448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -