TY - CONF A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina A1 - Gorbushina, Anna T1 - Why some like it on the rocks: Recurring stresses select for organisms with manifold protective pigments N2 - Microcolonial fungi (MCF) are the most stress-resistant eukaryotes known to date. Black fungi are an interesting object to study mechanisms of stress resistance and to perform applied research to prevent material colonization and biodeterioration. Pigments, like melanin and carotenoids, have been proven to contribute to the unique robustness of MFCs. We study how these pigments ameliorate oxidative stress responses - one of the most significant environmental challenges encountered by MCF - using the model rock fungus Knufia petricola (Chaetothyriales) strain A95. T2 - VAAM-Jahrestagung 2016 CY - Jena, Germany DA - 13.03.2016 KW - MCF KW - Oxidative stress KW - Pigment PY - 2016 AN - OPUS4-37970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Feldmann, Ines A1 - Schüssler, J.A. A1 - Toepel, Jörg A1 - von Blanckenburg, F. A1 - Gorbushina, Anna T1 - Olivine dissolution by a model consortium: biological impact and analytical methodology considerations N2 - Microbiological biofilms on rocks are ubiquitous in nature and their influence on soil formation through rock weathering has been shown (Gorbushina 2007). However, most previous studies on rock weathering are limited to understanding the physical and chemical aspects overlooking the impact of biota. Due to the enormous amounts of variables that come with a biological process, the quantification of its influence is only possible by using well-controlled and simplified laboratory models. Thereby gaining more insight on the impact of rock inhabiting biofilms on mineral weathering. This presentation will show the impact of biotic weathering in terms of olivine dissolution rates Natural forsterite was incubated in batch reactor flasks with and without a model consortium consisting of the phototrophic cyanobacterium Nostoc punctiforme and the rock-inhabiting ascomycete Knufia petricola, and submerged in a growth solution (pH 6). The flasks were incubated for 30 days under 25°C, 90 µmol photons/m2s and were shaken at 150 rpm. qPCR was performed to quantify the cell number of both organisms, BET to gather the specific surface of the used olivine and ICP-OES to follow up the change of concentration of the leached out metals. Our results show that our model consortium, especially K. petricola does increase the dissolution rate of olivine. The pH increased from the initial 6 to around 7.2 for all setups. Initially Mg was preferentially released over Si (Mg/Si of 3.5), until after two days the ratio starts equilibrating around stoichiometric dissolution. During this timeframe the dissolution rate drops by nearly two orders of magnitude, just as observed by Daval et al., (2011). The difference in dissolution rates between the different setups is initially non-existent, but increases over time. After 30 days the setup with K. petricola gives a dissolution rate of 1.08 10-13 moles/cm2s, compared to 9.23 10-14 moles/cm2s for the abiotic setup. We expect this study to cause awareness on the impact of microbiology on mineral weathering. Additionally it is a starting point for other, more complicated experiments using for instance flow through or drip flow reactors or other minerals. T2 - VAAM CY - Jena, Germany DA - 13.03.2016 KW - Olivine KW - Weathering KW - Biofilm PY - 2016 AN - OPUS4-37971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breitenbach, Romy A1 - Toepel, Jörg A1 - Vandrich, Jasmina T1 - The role of c-di-GMP in biofilm formation of the filamentous cyanobacterium Nostoc punctiforme N2 - The signaling molecule c-di-GMP is a ubiquitous second messenger in bacterial species including cyanobacteria. C-di-GMP stimulates the biosynthesis of extracellular polymeric substances (EPS) in biofilms and regulates the transition between a motile and a sessile life style in many bacteria. In our study we focus on c-di-GMP function and EPS production associated with biofilm Formation in Nostoc punctiforme, which is known to produce EPS in biofilms and liquid culture. T2 - VAAM-Jahrestagung 2016 CY - Jena, Germany DA - 13.03.2016 KW - Cyanobacteria KW - EPS KW - C-di-GMP PY - 2016 AN - OPUS4-37974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heide, K. A1 - Nolze, Gert A1 - Völksch, G. A1 - Heide, G. T1 - Boracite Mg3[B7O13Cl] from the Zechstein salt deposits N2 - Among the borates in the Middle European Zechstein Salt Succession boracite Mg3[B7O13Cl] is the most common mineral in quantity and local distribution. An exceptional enrichment is observed in Stassfurt Serie Z2) in the Stassfurth seam K2H. Boracite is to be found in two varieties: individual crystals in cubic, tetrahedral or dodecahedral habit on the one hand and fibrous crystals so-called “stassfurtite” on the other hand. The formation conditions such widely spread borates in the salt succession are ambiguous in two respects. First of all the synthetic formation of boracites is to be made by hydrothermal or melt conditions. Both processes can be suspended for the salt succession. Furthermore the cubic modification is stable above 265°C for the Mg-boracite. The cubic, tetrahedral or dodecahedral habit could be used as a geothermometer, but such conditions can be exclude by the paragenetic minerals, esp. carnallite (MgKCl3 x 6H2O). The chemical composition of orthorhombic, pseudo-cubic boracite depends on the location. Pure Mg-boracite in hexahedral habit and in fibrous habit, so-called “stassfurtite”, occurs in the North Harz region, whereas the Fe-, Mn-, Mg-boracite appears in the South Harz region. Until now the source of boron, the time of formation of crystals, but also the reasons for the differences in habit of the single hexahedral crystals are still unclear. The formation during a diagenetic/metamorphic process is evident. However, the preferred formation in Stassfurt seam could be an indication for the boron enrichment in an early diagenetic process. Furthermore permit the determination of the thermal stability and the volatile content of crystals conclusions to the chemical composition of the fluid. The observed variation suggests that the condition of crystal growth as well as the chemical composition of fluid repeatedly changed over the time. Randomly occuring xenomorpheous anhydrite and magnesite inclusions within single boracite crystals have been interpreted as an indication to factors of chemical milieu during the formation of crystals. The reversible phase transition temperature of the boracite is a linearly function of the iron and manganese content and varies from 265°C for Mg-boracite to 330°C for Fe(Mn)-boracite. The thermal decomposition of boracite is determined by two processes. The decomposition started with a boron-chlorine release (BOCl?), having a maximum rate at 1050°C. Additionally to this release one observes a simultaneous emission of H2O, HCl, HF, CO2 , N2 , SO2 , H2 , and hydro carbons. The results give evidence for the aged approach of a secondary formation of boracite within the complete Stassfurt seam, possibly in connection with the formation of salt diapirs in the Jura and Cretaceous period. The wider environmental distribution of borates is an indication of chemical transport processes within the salt succession. This should be a more important issue in the discussion about the utilisation of salt diapirs for the storage of nuclear waste. KW - Borate KW - Boracite KW - Thermal behaviour KW - Electron backscatter diffraction KW - Energy-dispersive x-ray spectroscopy PY - 2013 DO - https://doi.org/10.1524/zkri.2013.1633 VL - 228 SP - 467 EP - 475 PB - Oldenbourg Wissenschaftsverlag, München AN - OPUS4-37982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Elevated virulence of an emerging viral genotype as a driver of honeybee loss N2 - Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo. The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline. T2 - 8th European meeting of the International Union for the Study of Social Insects CY - Helsinki, Finland DA - 08.08.2016 KW - Emerging infectious disease KW - Species decline KW - Virulence PY - 2016 AN - OPUS4-37849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieksmeyer, Thorben A1 - McMahon, Dino Peter T1 - Beyond nutrition: pathogen infection drives macronutrient dietary preference in the cockroach Blatta orientalis N2 - Diverse animal species consume toxins, minerals or secondary compounds as an adaptive response to pathogen infection – a process termed self-medication. Recent studies have also shown that macronutrients can play an important role in an individual’s infection response. For instance African army worm caterpillars select a diet rich in protein and low in carbohydrate upon baculovirus infection. Here we investigate whether dietary choice of macronutrients also plays a role in immunity in the omnivorous cockroach: Blatta orientalis. After challenging individual cockroaches with a common entomopathogenic soil bacterium, Pseudomonas entomophila, we conducted food-choice experiments using two artificial diets differing in their relative protein to carbohydrate ratio. We show for the first time that cockroaches are able to self-select a protein-enriched diet as a response to bacterial infection. This is driven by a sharp decline in carbohydrate intake rather than an increase in protein intake. Additionally, infected cockroaches reduced their overall nutrient intake, which is consistent with an illness-induced anorexia-like response. The feeding pattern of bacteria-challenged individuals returned to normality approx 4 days after challenge. We also investigate whether cockroach survival and hemolymph immunity are enhanced in individuals when restricted to a protein-rich vs. carbohydrate-rich diet. Overall, our findings demonstrate that macronutrient preferences follow a general pattern independent of pathogen type. Furthermore, we show that interactions between nutrition and immunity are highly conserved in evolution, highlighted by the fact that caterpillars and cockroaches diverged some 386 million years ago. T2 - 109. Jahrestagung der deutschen Zoologischen Gesellschaft CY - Kiel, Germany DA - 14.09.2016 KW - Self-medication KW - Nutrition KW - Cockroach PY - 2016 AN - OPUS4-37843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Elevated virulence of an emerging viral genotype as a driver of honeybee loss N2 - Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo. The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline. T2 - International Congress of Entomology 2016 CY - Orlando, Florida, USA DA - 26.09.2016 KW - Emerging infectious disease KW - Species decline KW - Virulence PY - 2016 AN - OPUS4-37847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina T1 - Genetic manipulation of protective pigments in a rock-inhabiting model fungus Knufia petricola A95 N2 - Sub-aerial biofilms typically form on bare rock. They consist of 99% cell material and extracellular polymeric substances (EPS) metabolising at low water availability. Rock-inhabiting melanised fungi represent an important part of the microbial community in these environments, playing important roles in the colonisation of mineral surfaces, rock weathering and soil formation in the ecological/geochemical context. Different cellular stress responses make rock-inhabiting ascomycetes fit for survival under extremely changing irradiation, as well as water, energy sources and nutrient availability. Melanised, rock-inhabiting fungi possess multiple protective pigments, form facultative symbiotic associations with photobionts and weather minerals. Melanised fungi build a protective layer around the cell that is critical in adhesion to other living partners, for the colonisation of the substrate and in the subsequent damage of the colonised surface. We chose Knufia petricola (Chaetothyriales) as a model species to analyse colonisation of surfaces. The basic physiology of K. petricola strain A95 is studied, its full genome sequence has been prepared for annotation and methods for deleting specific genes have been established. Unique features of K. petricola including the protective pigments (melanin and carotenoids) and EPS/cell wall properties are now being dissected genetically. As K. petricola strain A95 is in the basic clade of Chaetothyriales, it is an ancestor of both important human pathogens including Exophiala and lichens from the Verrucariaceae family. For this reason studies with A95 can help clarify the basis of fungal pathogenicity – as well as explain interactions with microscopic phototrophic partners like unicellular green algae and cyanobacteria. With Knufia petricola we will establish a canon of experimental approaches to characterise and quantify fungi that actively contact inanimate solid materials. The set of methods developed for Knufia will be adapted to heavily melanised and EPS-producing ascomycetes and can be broadly applied to medically important as well as material-colonising fungi. T2 - Gordon Research Conference (Cellular & Molecular Fungal Biology) CY - Holderness, NH, USA DA - 19.06.2016 KW - Model fungus KW - Knufia petricola A95 KW - Biofilm PY - 2016 AN - OPUS4-37812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Hobohm, J. A1 - Kuchta, K. A1 - van Wasen, Sebastian A1 - Krüger, Oliver T1 - Recovery of rare earth elements - optimized elemental analysis of fluorescent lamp shredder waste N2 - Rare earth elements (REE) are a crucial component of fluorescence lamps. Several procedures have been developed to recovery these technological important elements. Nevertheless, actual REE recycling from fluorescence lamps is scarce so far (recovery rate of less than 1 %), with current recycling approaches concentrating on glass recovery. Since most recycling processes include several, also wet-chemical steps, a complete knowledge of the actual elemental composition of the respective mass flows is necessary for an efficient REE recovery. We tested seven different reagent mixtures for microwave-assisted digestion of fluorescent lamp shredder, including HF, HClO4, and H2O2. We determined the concentrations of 25 of the most relevant rare earth and other trace elements in the respective dilutions. Two independent digestions, one a mixture of perchlorid/nitric/hydrofluoric acid and the other aqua regia, showed the highest concentrations of 23 of these elements, excluding only Sn and Tb. The REE concentrations in the tested lamp shredder sample (stated in g/kg) were 10.2 (Y), 12.1 (La), 7.77 (Ce), 6.91 (Eu), 1.90 (Gd), and 4.11 (Tb). T2 - 5th International conference industrial and hazardous waste management - Crete 2016 CY - Chania, Crete, Greece DA - 27.09.2016 KW - Rare earth elements KW - Critical raw materials KW - Resource recovery KW - WEEE PY - 2016 SN - 978-960-8475-20-5 SN - 2241-3138 SP - 1 EP - 4 AN - OPUS4-37761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Oliver A1 - Hobohm, J. A1 - Kuchta, K. A1 - van Wasen, Sebastian A1 - Adam, Christian T1 - Recovery of rare earth elements - optimized elemental analysis of fluorescent lamp shredder waste N2 - Rare earth elements (REE) are a crucial component of fluorescence lamps. Several procedures have been developed to recovery these technological important elements. Nevertheless, actual REE recycling from fluorescence lamps is scarce so far (recovery rate of less than 1 %), with current recycling approaches concentrating on glass recovery. Since most recycling processes include several, also wet-chemical steps, a complete knowledge of the actual elemental composition of the respective mass flows is necessary for an efficient REE recovery. We tested seven different reagent mixtures for microwave-assisted digestion of fluorescent lamp shredder, including HF, HClO4, and H2O2. We determined the concentrations of 25 of the most relevant rare earth and other trace elements in the respective dilutions. Two independent digestions, one a mixture of perchlorid/nitric/hydrofluoric acid and the other aqua regia, showed the highest concentrations of 23 of these elements, excluding only Sn and Tb. The REE concentrations in the tested lamp shredder sample (stated in g/kg) were 10.2 (Y), 12.1 (La), 7.77 (Ce), 6.91 (Eu), 1.90 (Gd), and 4.11 (Tb). T2 - 5th International conference industrial and hazardous waste management - Crete 2016 CY - Chania, Greece DA - 27.09.2016 KW - Rare earth elements KW - Critical raw materials KW - Resource recovery KW - WEEE PY - 2016 AN - OPUS4-37762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Oliver A1 - Adam, Christian T1 - Phosphorus recovery from wastewater - analytical challenges N2 - Phosphorus is essential for all animate beings and not replaceable in its functions. Recovered phosphorus from secondary sources is expected gain importance in the future due to supply risks and environmental concerns regarding fossil phosphate rock, the single source of phosphorus so far. Existing regulations, standards, and analytical methods are basically configured for well-established organic and mineral fertilizer but not for the emerging recycling products. Consequently, the respective procedures have to be adapted, especially in terms of matrix effects and so far not regulated pollutants like uranium and emerging pollutants of concern. T2 - ASSM 2016 - Advances in Sustainable Sludge Management CY - Cracow, Poland DA - 18.09.2016 KW - Phosphorus KW - Resource recovery KW - Critical raw materials KW - Supply risk PY - 2016 AN - OPUS4-37763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Oliver T1 - Recovery of phosphorus - German trends N2 - The seminar aimed on improved wastewater treatment and resource recovery in Poland. Tha talk was about the current situation and future prospects of phosphorus recovery in Germany. T2 - GFW Seminar 2016 CY - Gdansk, Poland DA - 15.09.2016 KW - Phosphorus KW - Resource recovery KW - Wastewater treatment KW - Supply risk PY - 2016 AN - OPUS4-37764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Oliver A1 - Adam, Christian T1 - Phosphorus recovery - why, where, how? N2 - The tak describes the current situation of phosphorus as critical raw material, its recovery potential and possible recovery procedures, T2 - Montagsseminar Technische Universität Wien CY - Wien, Austria DA - 03.10.2016 KW - Phosphorus KW - Critical raw materials KW - Resource recovery KW - Supply risk KW - Sewage sludge ash PY - 2016 AN - OPUS4-37765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Dümichen, Erik A1 - Korop, Luba A1 - Barthel, Anne-Kathrin A1 - Bannick, Claus Gerhard T1 - Analysis of microplastics in environmental samples using TED-GC-MS N2 - The presence of plastic debris and especially small plastic particles in marine ecosystems has been recognized in the 1970`s. Since then various other environmental systems all over the world, like rivers, lakes and biota have been found to be polluted by plastics. Lately, agriculturally used land, waste-water treatment and biogas facilities come into focus as possibly relevant distribution vectors. To monitor the situation and investigate distribution pathways, the need for fast and reliable analytical procedures is high. Up to now, there is no standard procedure for sampling, concentrating and analyzing plastic particles in environmental samples. Our group recently reported the development of a new analyzing method for microscale plastic particles, thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS). This method consists of thermal extraction of the sample via thermogravimetric analysis, collection of the evolved gaseous decomposition products on a solid-phase adsorber and analysis of the loaded adsorber using Thermal-Desorption-GC-MS. This technique utilizes the characteristic decomposition products of polymers for identification and even quantification of plastics in environmental samples. In the present work we investigated samples of fermentation residues taken from a biogas plant. The results of sample preparation, concentration and analysis are presented as well as a comparison with alternative methods. T2 - MoDeSt 2016 CY - Cracow, Poland DA - 04.09.2016 KW - Microplastic PY - 2016 AN - OPUS4-37782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Dümichen, Erik A1 - Korop, Luba A1 - Barthel, Anne-Kathrin A1 - Bannick, Claus Gerhard T1 - Analysis of microplastics in environmental samples using TED-GC-MS N2 - The first analysis of environmental samples shows, that the use of TED-GC-MS is suitable to analyse microplastic in environmental samples. Compared to the micro-spectroscopic methods this method is faster and gives good hints to the occurrence of high loadings of MP in environmental samples. In consequence, the method allows the monitoring of the situation and the investigation of MP distribution pathways in environment, to assess the relevance of various inputs. T2 - 7th Late Summer Workshop "Microplastics in the aquatic environment" CY - Haltern am See, Germany DA - 25.09.2016 KW - Microplastic PY - 2016 AN - OPUS4-37785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute T1 - Leaching of biocides from organic coatings N2 - Biocide leaching was investigated for acrylate and polymer based coatings containing biocides either as liquid formulations or microcapsules. Laboratory and field tests indicate similar relations of results on carbendazim, diuron, terbutryn and OIT from different coatings in laboratory and field experiments. Emissions were higher in EN 16105 laboratory tests than from vertically installed test specimens exposed to weathering, and slower for microencapsulated biocides. Competing processes that cause losses of active substances can occur in both tests, but to a higher degree in field experiments. Emission curves related to runoff water were similar in repeated field experiments. Relative humidity, temperature and global radiation were identified as meteorological factors that affect leaching by complex interaction besides the amount of driving rain. T2 - Advances in Coatings Technology CY - Sosnowiec, Poland DA - 08.11.2016 KW - Biocide KW - Coating KW - Leaching PY - 2016 AN - OPUS4-38234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Mathies, Helena A1 - Wegner, R. A1 - Uhlig, S. A1 - Baldauf, H. A1 - Colson, B. T1 - Leaching of biocides from organic coatings N2 - Biocide leaching was investigated for acrylate and vinyl acetate based coatings containing biocides either as liquid formulations or microcapsules. Laboratory and field tests indicate similar relations of results on carbendazim, diuron, terbutryn and OIT from different coatings in laboratory and field experiments. Emissions were higher in EN 16105 laboratory tests than from vertically installed test specimens exposed to weathering, and slower for microencapsulated biocides. Competing processes that cause losses of active substances can occur in both tests, but to a higher degree in field experiments. Emission curves related to runoff water were similar in repeated field experiments. Relative humidity, temperature and global radiation were identified as meteorological factors that affect leaching by complex interaction besides the amount of driving rain. T2 - 12th International Conference 'Advances in Coatings Technology ACT´16' CY - Sosnowiec, Poland DA - 08.11.2016 KW - Biocide KW - Leaching KW - Coating PY - 2016 SN - 978‒83‒63555‒50‒4 SP - Paper 51, 1 EP - 10 AN - OPUS4-38236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 AN - OPUS4-38247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Menzel, Friederike A1 - Menzel, Friederike A1 - Conradi, Bianca A1 - Rodenacker, K. A1 - Gorbushina, Anna A1 - Schwibbert, Karin T1 - Semi-automated statistical quantification of initial colonization of bacteria on different materials under standardized conditions N2 - The formation of biofilms on different materials provokes high costs in industrial processes, as well as in medical applications. Therefore, the interest in development of new materials with improved surfaces to reduce bacterial colonization rises. In order to evaluate the quality and safety of these new materials, it is highly important to ensure world-wide comparable tests that are relying on statistical evidence. The only way to reach this statistical safety is through a high-throughput Screening under standardized test conditions. We developed a flow through system for cultivation of biofilm-forming bacteria under controlled conditions with a total capacity for testing up to 32 samples in parallel. Quantification of the surface colonization was done by staining the bacterial cells with a fluorescence marker, followed by epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated with the free open source software gmic (http://gmic.eu), followed by a precise statistical evaluation. Overview images of all gathered pictures of the whole material coupon were generated to illuminate the colonization characteristics of the selected bacteria on certain materials. With this method, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. The innovative and solid test procedure will support the design of improved materials for medical and industrial applications such as implants, ship hulls, pipelines, heat exchangers, aquaculture equipments, photovoltaic-panels and fundaments of wind power plants. T2 - Vereinigung für Allgemeine und Angewandte Mikrobiologie - Jahrestagung 2016 CY - Jena, Germany DA - 13.03.2016 KW - Biofilm cultivation KW - Image analysis KW - Microscopy PY - 2016 AN - OPUS4-37724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kreutzbruck, Marc A1 - Stegemann, Robert T1 - Prospects of the metal magnetic memory technique N2 - Prospects and Restrictions of the Metal Magnetic Memory Technique T2 - 69th-IIW-Meeting CY - Melbourne, Australia DA - 12.07.2016 KW - Metal magnetic memory KW - Magnetic field KW - GMR sensor KW - Microstructure PY - 2016 AN - OPUS4-38133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -