TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Grabowski, Sven A1 - Sahrhage, H. A1 - Lampke, T. T1 - Electrochemical corrosion investigations on binary and ternary zinc alloy coatings using gel electrolytes JF - Advanced engineering materials N2 - Novel agar-based test electrolytes are used to perform electrochemical corrosion investigations on ZnFe and ZnNi binary as well as ZnFeMo ternary zinc coatings. The objectives of the electrochemical investigations include the characterization of the corrosion behavior, the description of the protective effect of the coatings as well as the investigation of the layer formation and degradation under artificial aging. ZnFe and ZnFeMo coatings are applied with varying iron content as well as an additional passivation layer, respectively, to study the effect on corrosion resistance. The results show that the protective effect of the coatings is not negatively influenced by different iron contents or the addition of molybdenum. Additional passivation of the ZnFe-containing coatings by means of a passivating agent leads to a significant improvement in the protective effect. Artificial aging leads to slight degradation of the additional passivation layer whereas coatings without post-treatment enhance their protective effect by the formation of corrosion product layers. KW - Binary zinc alloys KW - Ternary zinc alloys KW - Corrosion testing KW - Gel electrolytes KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543013 DO - https://doi.org/10.1002/adem.202101336 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Stadler, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Jeschke, S. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. A1 - Ostertag-Hennig, C. A1 - Schmitz, S. A1 - Schütz, S. A1 - Waldmann, S. T1 - Towards an optimization of the CO2 stream composition - A whole-chain approach JF - International Journal of Greenhouse Gas Control N2 - CO2 streams captured from power stations or industrial plants may contain impurities that impact the consecutive steps of the CO2 capture and storage (CCS) chain. As the basis for an optimization of CO2 purity over the whole CCS chain, impacts of different impurities were investigated at key steps including studies on (i) corrosion of metallic materials in CO2 streams and brine, (ii) fluid and interfacial properties as a function of pressure, temperature and CO2 stream composition and their implications for CO2 transport, injection and geological storage, (iii) costs of different pipeline design options, (iv) geochemical alterations at typical reservoir conditions and their implications for geomechanical rock properties. Major findings are synthesized for two exemplary single source-single sink CCS chain scenarios involving CO2 stream compositions typical for pre-combustion capture and oxyfuel combustion. Recommendations for material selection for compression, transport and injection were derived for various CO2 stream compositions. To reliably control corrosion, a limitation of water contents to 50 ppmv is recommended for pipeline transportation of all CO2 streams. At geological storage conditions, the presence of either O2, NOx or SO2 only weakly affected fluid-mineral/rock interactions that still impacted geomechanical rock properties. KW - CCS KW - Impurities KW - Associated incidental substances KW - Pipeline design KW - Corrosion KW - Fluid-rock interactions PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S1750583616305047 DO - https://doi.org/10.1016/j.ijggc.2016.08.019 SN - 1750-5836 SN - 1878-0148 VL - 54 IS - 2 SP - 682 EP - 701 PB - Elsevier AN - OPUS4-38401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Feldmann, Ines T1 - Low melting glasses for transparent and environmentally-resistant enamels JF - Glass Technology: European Journal of Glass Science and Technology Part A N2 - Today glass is broadly used in modern architecture. For indoor applications it is possible to produce decorated glass by using enamel colours and glass painting techniques without any problems. However, this is more limited for applications out of doors. Humidity and environmental pollution attack the surface of the coating and can damage it. There are only a few colours on the market which are resistant towards acids and bases until now. Additionally, most of those colours are opaque. To extend the colour palette, chemically resistant low melting coloured glasses are being developed which are transparent and intensively toned even in thin coating thicknesses. To achieve such an ambitious aim, many parameters have to combine and act in a complex manner. New compositions of lead borosilicate, zinc borosilicate and lead-zinc borosilicate glasses were produced and milled as powder. The thermal properties as well as the environmental stability were analysed. The influence of PbO and ZnO on the thermal properties and the environmental stability were investigated. Evaluation of the fusing results shows that the production and mixture of transparent vitreous enamels for the exterior side of glasses is possible. The tests made it clear that the original materials for making the vitreous enamels must be excellently ground and prepared to achieve a satisfactory result. The method to produce durable vitreous enamels for exterior application also seems to allow the production of glass colours. KW - Low melting glasses KW - Enamels KW - Heavy metal free KW - Corrosion KW - Chemical durability KW - Aging tests KW - Architecture KW - Colored glasses PY - 2019 DO - https://doi.org/10.13036/17533546.60.4.002 SN - 1753-3546 SN - 1753-3554 VL - 60 IS - 4 SP - 97 EP - 104 PB - Society of Glass Technology CY - Sheffield, UK AN - OPUS4-48835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stoljarova, A. A1 - Regenspurg, S. A1 - Bäßler, Ralph A1 - Mathiesen, T. A1 - Braüner Nielsen, J. T1 - Effect of lead and copper containing brine on steel materials for geothermal applications – A corrosion study JF - Geothermics N2 - Geothermal brines often contain high amounts of lead and copper ions that can precipitate as native Cu and Pb as consequence of galvanic corrosion when brines react with carbon steel materials. This contribution evaluates which materials could overcome the problem of galvanic corrosion at geothermal environment. The behavior of these materials in water containing high chloride concentration (> 100 g/L NaCl) as well as various amounts of dissolved bCl2 and/or CuCl2 was characterized by electrochemical and exposure measurements. Both methods reveal carbon steel suffers corrosion susceptibility, accompanied by Cu◦ and/or Pb◦ precipitation on the surface. Electrochemical measurements on stainless steels result in significant difference in corrosion and repassivation potentials (Ecorr = -189 mV, Erep = 70 mV), indicating a good corrosion resistance. KW - Copper KW - Lead KW - Corrosion KW - Steel KW - Geothermal energy PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2020.102024 SN - 0375-6505 VL - 91 SP - NIL_75 EP - NIL_85 PB - Elsevier CY - Amsterdam AN - OPUS4-51976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola JF - Extremophiles N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy JF - Corrosion Science N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society JF - Materials and corrosion N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, S. A1 - Horn, Wolfgang A1 - Eggert, G. A1 - Krekel, C. T1 - Are cellulose ethers safe for the conservation of artwork? New insights in their VOC activity by means of Oddy testing JF - Heritage Science N2 - Cellulose ethers, like methyl cellulose (MC) or hydroxypropyl cellulose (HPC), are widely used in conservation. They also occur as additives and rheology modifiers in various products like dispersions or gels. Do such products release harmful volatile organic compounds (VOC) during their accelerated aging? A mass testing series utilizing the Oddy test of 60 commercial cellulose ethers ranks the products in safe for permanent use (P, no corrosion), only for temporary use (T, slight corrosion), and unsuitable at all (F, heavy corrosion). Results show that 55% of the products passed the test whereas 33% are for temporary use as slight corrosion occurred on at least one metal coupon and only 11% failed the Oddy test. Raman measurements of the corrosion products identified oxides like massicot, litharge, cuprite, and tenorite among carbonates (hydrocerussite, plumbonacrite), and acetates like basic lead acetate, lead acetate trihydrate as well as lead formate as main phases. For example, commercial, industrial Klucel® G (HPC) scored a T rating through slight corrosion on the lead coupon. Basic lead acetate among other phases indicates the presence of acetic acid. Additional measurements of the sample with thermal desorption GC–MS utilizing the BEMMA scheme confirm the high acetic acid outgassing and reveal the presence of a small amount of formaldehyde. KW - Cellulose ether KW - Corrosion KW - Oddy test KW - VOC KW - BEMMA PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547591 DO - https://doi.org/10.1186/s40494-022-00688-4 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 12 PB - Springer Open AN - OPUS4-54759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratzig, A. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Menneken, M. A1 - Bäßler, Ralph T1 - Early Stage of Corrosion Formation on Pipeline Steel X70 Under Oxyfuel Atmosphere at Low Temperature JF - Processes N2 - The early stage of corrosion formation on X70 pipeline steel under oxyfuel atmosphere was investigated by applying a simulated gas mixture (CO2 containing 6700 ppmv O2, 100 ppmv NO2, 70 ppmv SO2 and 50 ppmv H2O) for 15 h at 278 K and ambient pressure. Short-term tests (6 h) revealed that the corrosion starts as local spots related to grinding marks progressing by time and moisture until a closed layer was formed. Acid droplets (pH 1.5), generated in the gas atmosphere, containing a mixture of H2SO4 and HNO3, were identified as corrosion starters. After 15 h of exposure, corrosion products were mainly X-ray amorphous and only partially crystalline. In-situ energy-dispersive X-ray diffraction (EDXRD) results showed that the crystalline fractions consist primarily of water-bearing iron sulfates. Applying Raman spectroscopy, water-bearing iron nitrates were detected as subordinated phases. Supplementary long-term tests exhibited a significant increase in the crystalline fraction and formation of additional water-bearing iron sulfates. All phases of the corrosion layer were intergrown in a nanocrystalline network. In addition, numerous globular structures have been detected above the corrosion layer, which were identified as hydrated iron sulphate and hematite. As a type of corrosion, shallow pit formation was identified, and the corrosion rate was about 0.1 mma−1. In addition to in-situ EDXRD, SEM/EDS, TEM, Raman spectroscopy and interferometry were used to chemically and microstructurally analyze the corrosion products. KW - Corrosion KW - CCUS KW - In-situ ED-XRD KW - CO2 pipeline transport KW - Oxyfuel KW - Carbon steel KW - Impurities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506303 DO - https://doi.org/10.3390/pr8040421 SN - 2227-9717 VL - 8 IS - 4 SP - 421-1 EP - 421-19 PB - MDPI CY - Basel AN - OPUS4-50630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 JF - Materials N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prosek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Therryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - La corrosion: un défi pour une société durable JF - Techniques de l'ingenieur N2 - Une transition mondiale vers des systèmes énergétiques plus durables, abordables et fiables a été initiée par l’accord de Paris et l’Agenda 2030 des Nations unies pour un développement durable. Il s’agit là d’un défi industriel majeur car les systèmes et infrastructures énergétiques résilients au changement climatique exigent de se positionner pour le long terme. Se pencher sur le comportement dans la durée des matériaux structurels - principalement des métaux et des alliages - s’impose alors comme une nécessité. Dans cette optique, « La corrosion : un défi pour une société durable »présente une série de cas montrant l’importance de la tenue à la corrosion et de la protection anticorrosion des métaux et des alliages pour le développement de systèmes durables, économiques et fiables de production d’énergie. KW - Corrosion KW - Coûts de la corrosion KW - Protection KW - Anticorrosion KW - Stratégies deprévention PY - 2023 DO - https://doi.org/10.51257/a-v1-cor2000 SN - 2555-5383 VL - 2023 IS - Avril SP - 1 EP - 23 CY - Saint-Denis, France AN - OPUS4-57927 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -